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Abstract: Following the frequent and harmful collapses of trees that have plagued the municipal
territory of Rome in recent years, a protocol of understanding was initiated between the Department
of Environmental Protection of ROMA CAPITALE, the American University of Rome, the Research
Centre for Forestry and Wood of the– Council for Agricultural Research and Economics (CREA)–,
and Sensors and Software, Inc. This protocol aims to start an experimental project by conducting a
series of non-destructive geophysical measurements using ground-penetrating radar (GPR) technology
and assessing the effectiveness of this methodology to investigate the root system and tree trunks
located along paved roads in two sample areas of the city. The test will use the GPR technique to
confirm some hypothetical assumptions about tree stability based on a posteriori evaluations made
by the Department of Environmental Protection of ROMA CAPITALE. All phases of this test showed
the effectiveness of the method and the rapidity of the data acquisition.
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1. Introduction

In numerous urban areas, trees are normally developed in cleared regions along avenues in
disengagement from other green spaces, for example, parks and riparian passages [1]. Along
streets, trees and different plants face significant challenges, as cleared surfaces (blacktop) lead
to hot conditions with the absence of evaporative cooling, which brings about high-subsurface
temperatures [2]. Subsequently, many difficulties faced by urban trees start due to the development
procedures. Consequently, toward the start of street development, topsoil is commonly evacuated,
following which, the subsoil is compacted and layers of pound and run stone are included before
finally spreading and compacting blacktop or cement [3,4].

In accordance with the above, trees planted on close and cleared surfaces regularly endure root
harm and soil volume limitations. The horizontal development of shallow tree attachments makes the
asphalts break and hurl, resulting in “lips” or “stubbed-toe spots” due to the uneven dislodging of
the abutting segments of cement [5–11]. Additionally, this “root-versus-asphalt” struggle stands out
amongst the most inescapable issues in urban greening. The evacuation and substitution of trees and
the fixing of cleared surfaces can be strenuous for already-constrained metropolitan assets. Moreover,
city governments might be obligated to take action for the common or reformatory claims where
wounds or deaths have occurred due to the presence of asphalt dangers [12].

To be specific, due to the thick soil and asphalt, roots alter courses, quit developing, or adjust
by residuals strangely near the surface. Consequently, harm mainly occurs on roads with meager
blacktop layers, particularly in the upper part of the asphalt structure. As a result, examinations of
the developmental attributes have demonstrated that tree roots majorly infiltrate the street structure

Remote Sens. 2019, 11, 1301; doi:10.3390/rs11111301 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8232-4935
http://www.mdpi.com/2072-4292/11/11/1301?type=check_update&version=1
http://dx.doi.org/10.3390/rs11111301
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1301 2 of 17

between the rock sub- and blacktop layers, as these layers do not permit entrance to the tree roots
because of high compaction and entrance opposition [13,14]. In addition, attachments appear to be
pulled in due to the consolidated water gathering on the underside of the blacktop layer. This shallow
establishment makes urban trees increasingly defenseless against the dry season, thereby causing
uncertainty and asphalt hurling. Nonetheless, if thick soil is waterlogged, tree roots can get spoiled
due to the absence of oxygen [15,16].

To preserve tree stability, it is crucial to evaluate root systems and trunk defects without
compromising their environment with destructive and laborious methods. Therefore, the ground
penetrating radar (GPR) technology used in urban forestry studies is key to active remote sensing
technology based on the use of electromagnetic waves, providing unique and non-invasive resources
to assess the strength of trees in an urban context [17–19]. Furthermore, trees along paved roads
in cities often increase asphalt elevation and trunk collapses. Thus, evaluating tree root systems in
a non-destructive way, without compromising the environment, is important for protecting plant
resources [20]. Consequently, buried roots, root size, and internal defects of trunks can be detected well
in urban areas of various types of soft and hard soil stratigraphy, such as asphalt concrete or partially
water-permeable soil [21–25]. The application of GPR in the evaluation of tree trunks primarily helps
in detecting the presence of defects inside the trunk. An example of such internal defects is wood
decay, a biological process in which cellulose and lignin (two organic compounds) are converted to
carbon dioxide, water, and energy. Although a natural process of nutrient circulation, corruption of
wood can reduce the strength of wood and pose a threat to people and properties in surrounding
urban environments [26,27].

This technical note is a short study that provides a brief description of a specific procedure, which
has practical value and contributes to the diagnosis or management of a urgent need to monitor urban
tree stability within the city of Rome. Furthermore, it is a convention among different entities in
Rome (the Department of Environmental Protection of ROMA CAPITALE, the American University
of Rome, the CREA–Italian Council for Agricultural Research and Economics–Research Centre for
Forestry and Wood, and Sensors and Software, Inc.) to start an experimental project by conducting a
series of non-destructive geophysical measurements using GPR equipment. In this study, the GPR
technique was used to assess the stability of two different types of trees—an ash (Fraxinus angustifolia)
and domestic pine (Pinus Pinea)—in three different areas. It is worth noticing how experts at the
Department of Environmental Protection of ROMA CAPITALE have already hypothetically assessed
the presence of some defects in the subsurface root architecture (such as the inclination of some trees)
due to the presence of some works related to modern subservices. Hence, the aim of this test was to
confirm this assessment with a posteriori GPR evaluation of the thicker roots (0.1 m approximately),
normally perpendicular to the GPR direction.

2. Materials and Methods

The GPR technique uses radio waves to create an electromagnetic (em) image of features buried
in the ground. A GPR transmitting antenna emits a short electromagnetic impulse (typically a 1–10 ns
wavelet) that can be scattered by an em discontinuity in the ground and gathered by the receiving
antenna [19,28]. Additionally, GPR measures a time range (two-way travel time, TWT) between the
antennas, an em discontinuity, and the signal amplitude and phase that result in an em image [29].

There are different ways to acquire the GPR data. In the reflection mode (the one used in this
paper), antennas are in a fixed configuration (constant separation) and moved over the ground,
providing a section that shows TWT time to the GPR reflectors on the vertical axis versus the antennas’
position along the horizontal axis; in this representation, each trace corresponds to a specific antennas’
position on the surface [28–31].

Various factors affect the radio wave signal propagating in a layer, such as the energy loss in
correspondence with each boundary between two strata due to the reflection process, the scattering
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phenomena, and the attenuation and dispersion caused by the electromagnetic properties of the
medium in which the radio waves propagate [28–31].

The survey modality, i.e., the spatial distribution of the acquired data, defines the possibility to
obtain a 2D or a pseudo-3D image of the subsurface targets. A 2D GPR section is acquired if a single
profile is conducted along a specific direction, with the TWT time plotted on the y-axis and the position
of the antennas shown on the x-axis. On the other hand, if an area is investigated after acquiring a series
of parallel profiles (frequently called a grid survey), the data can be interpolated to create plan-view
maps of the subsurface at different time depths (or time slices). Alternatively, the interpolated data can
be represented in a pseudo-3D mode using a commercial 3D rendering software [19,28,29,31].

In Rome, the three sample areas chosen within this project were: (1) Via di Valle delle Camene,
(2) Piazza Beata Vergine del Carmelo, and (3) the garden of the American University of Rome (AUR)
(Figure 1). The GPR system used was bistatic, which was equipped with 500 MHz (the FINDAR) and
1 GHz antennas (the NOGGIN). During these investigations, a total of 650 m2 was covered.
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Figure 1. In this figure, it is possible to localize three areas of the GPR investigations.

For the NOGGIN system, a time window of 22 ns was used during all the data acquisitions, and a
1-cm step-size and a trace stacking of 4 was used in all profiles. The collected data were generally of
good quality and did not require any particular processing; additionally, only some gain functions were
used to increase the signal (i.e., dewow and SEC2 gain—Attenuation: 0.5; Start Gain: 1.50; Maximum
Gain: 500). For the FINDAR system, the time window was 45 ns, the step-size was 2.5 cm, and a trace
stacking of 4 was used in all profiles. Even here, the data were of good quality, and they required just
the dewow and the automatic gain (Gain: 4). Migrated data were not used due to both the presence of
multiple subservices at different depths and the clear stratigraphy. Finally, note that even if they were
manufactured by the same company (Sensors and Software, Inc.), the two GPR systems used differed
in hardware, software, and output format.

In all the surveyed areas, a test scan of the subsurface under investigation was initially acquired
through a single radar profile or radargram. Consequently, owing to the possibility of having the
results of this scan in real time on the screen of the instrument, it was possible to notice a series of
important information for the geophysical investigation: (1) the signal velocity (between 0.08 and
0.10 m/ns) was calculated using the hyperbola calibration technique [28], and (2) the stratigraphy was
relevant to the presence of natural and anthropogenic anomalies.
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Subsequently, in the same areas, a series of one-directional (Y) grids of various sizes was acquired
with parallel radar profiles interspaced at about 0.1 m. This further investigation allowed to produce
a series of maps of the areas at different depths starting from the surface up to the maximum depth
investigated. The maps were elaborated every 0.1 m of depth. Note that the NOGGIN system was
involved in every measurement while the FINDAR system was used in some to double-check possible
deeper anomalies due to the presence of modern subservices.

3. Results and Discussion

3.1. Area 1: via di Valle Delle Camene

Along this road, there were ash trees planted on the sidewalks. The Department of Environmental
Protection of ROMA CAPITALE noticed some inclinations of these trees toward the road, and it was
hypothesized that the recent subservices works compromised the tree stability. Thus, a first acquisition
was collected with the NOGGIN system in an area of 8 × 70 m with a distance of 0.13 m between
the profiles.

Note that, generally, tree roots are concentrated close to the trunk base and they are included into
the canopy projection on the ground, although, in some situations, they reach a greater extension [18,32].
According to an initial analysis of the radargrams (Figure 2), it is possible to see how much, for the
entire width of the road, the works related to modern subservices at various depths (between 0.1 m and
0.6 m, approximately) have intruded upon the likely area of the roots. These works are oriented parallel
to the GPR direction of acquisition, and, in the radargrams, they look mostly like elongated reflectors.
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Figure 2. This figure shows two illustrative radargrams within the investigated area (below), in which
it is possible to see how much, for the entire width of the road, the works related to modern subservices
at various depths (between 0.1 m and 0.6 m, approximately) have intruded upon the likely area of
the roots.

Furthermore, these works can be noted because of the different types of asphalt used to cover
the road, especially through the presence of several manholes for telecommunications, electricity, and
water (Figure 3).

In the depth slices of the area investigated by the GPR at different depths (from about 0.07 m to
0.40 m), it is possible to see the subservices that probably cut the roots in depth (Figure 4). These works
were a continuation of the following, which were identified in the adjacent area along the same road.
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Thereafter, in this adjacent area along the same route, we proceeded to acquire data with both
the NOGGIN and FINDAR systems, acquiring 50 parallel profiles equally spaced every 0.1 m in an
area of about 5 × 20 m with the first system and 50 parallel profiles equally spaced every 0.1 m in two
almost contiguous areas of about 5 × 5 m with the second system. According to an initial analysis of
the NOGGIN radargrams (Figure 5), it is possible to see how much, for the entire width of the road,
the works related to modern subservices at various depths (between 0.1 m and 0.7 m, approximately)
have intruded upon the likely area of the roots. Even here, these works look mostly like elongated
reflectors due their orientation parallel to the GPR direction of acquisition.
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Figure 5. Similar to Figure 2, it is possible to see how much, with respect to the entire width of the road,
the works related to modern subservices at various depths (between 0.1 m and 0.7 m, approximately)
intruded upon the likely area of the roots. Note that the central part of these radargrams will be missed
in the FINDAR (see Figure 6) because it collected only two almost contiguous areas (the two red squares
in the picture below).

Furthermore, the points noticed in the data acquired by the NOGGIN system can be deduced
from the data acquired by the FINDAR system. In Figure 6, the detail of the first meter (better defined
in the NOGGIN) has a lower resolution, but it is always possible to identify a series of anomalies not
related as much to the roots as the subservices. Moreover, unlike the NOGGIN, two 5 × 5 m areas were
acquired almost contiguously and the central part (visible in the NOGGIN acquisition) was missing.

In the depth slices of the area investigated by the NOGGIN (from about 0.09 m to 0.45 m), it is
possible to further notice the subservices that were probably cutting the roots in depth (Figure 7).
These works were a continuation of the aforementioned. In the depth slices of the area investigated by
the FINDAR at the same depths reported above, it is possible to notice the same anomalies due to the
subservices (Figure 8).
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Finally, consistently along the same road, six vertical profiles with the NOGGIN system were
collected on four trees that were visibly damaged at the base (Figure 9a). In addition, the NOGGIN
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system was used to investigate the presence or absence of cavities or the discontinuities inside the
trunk that could preclude stability.
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Figure 9. (a) A moment of the vertical acquisition with the NOGGIN system; (b) schematic reconstruction
to understand the presence or absence of a cavity inside a trunk; (c) the investigation showing good
homogeneity on the inside of the trunk with no cavities and clearly visible thickness (about 0.70 m in
this case); and (d) the 0.90 m thickness of the trunk and an anomaly of around 0.40 m (yellow circle).
In this case, the GPR acquired data very close to the cavity, which was visible from the outside, and the
cone of radiation intercepted it.
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As mentioned above in the introduction, an air-filled tree trunk (with a decayed hole) or a
partially air-filled early-stage decay zone inside a tree are excellent reflectors for GPR detection.
Furthermore, different qualitative and quantitative methods have been used to interpret internal
anomalies (see References [33–36], and literature therein). The main principle to understand the
presence or absence of a cavity inside the trunk is knowing how to interpret the inhomogeneity of the
radargram [33] (Figure 9b). On this technical note, the qualitative method to determine the presence or
absence of an abnormality will be evaluated.

Consequently, the investigation showed good homogeneity on the inside of the trunk with no
cavities and clearly visible thickness (about 0.7 m) (Figure 9c). In Figure 9d, the trunk thickness was
0.9 m, and it is possible to notice an anomaly related to a cavity inside the trunk. This happened
because the GPR acquired very close to the cavity at the base of the tree was visible from the outside,
and its conical radiation pattern intercepted it.

3.2. Area 2: Piazza Beata Vergine Del Carmelo

The second area was a square a few kilometers away from the previous one. Here, the NOGGIN
system acquired 70 parallel profiles equally spaced every 0.1 m in an area of about 7 × 3 m around a
pine tree.

According to an initial analysis of the radargrams (Figure 10), it is possible to note that the
possible root system depth was below 0.2 m (thickness of the sidewalk) with clear hyperbolic events.
In the depth slices, these roots were visible at a depth of about 0.2 m, confirming what was noted
in the radargrams. Furthermore, it is possible to see in the depth slices how the south-western zone
of the pine had less evident elongated anomalies than the south-eastern and north-eastern zones
(Figure 11). This is due to the fact that, probably, the GPR detected finer and thicker roots in the
respective zones. On account of this acquisition, it is possible to have a pseudo-3D reconstruction
of the subsoil. Moreover, in-depth reconstruction of the roots’ geometry was possible by navigating
inside it (Figure 12).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 18 
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Figure 10. According to an initial analysis of the radargrams, it is possible to notice how the root system
was below by about 0.20 m (thickness of the sidewalk) with evident hyperbolas.
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Figure 11. Map distribution of the roots (white rectangles) at a depth of about 0.25 m. At the same
depth, in the south-western zone, the GPR detected less evident elongated anomalies (possible finer
roots) than in both the south-eastern and north-eastern zones (possible thicker roots). Note that the
lower image merely illustrates the investigated area linked to the GPR results.
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3.3. Area 3: the AUR Garden

The third area was the AUR garden consisting of a leaning pine tree. The root architecture beneath
this tree was already investigated using the FINDAR system a year prior to this project. Therefore,
both GPR systems were involved here. Furthermore, the GPR investigation was focused on confirming,
a posteriori, not only the initial hypothesis of a constant inclination of the tree during the last year with
a consequent and probable uplifting of the north-western side of the pine but also the main orientation
of the thicker roots (NW-SE). As the visible inclination of the trunk and the high risk for the safety of the
everyday students, it was highly recommended to uproot it in a short time given the recurrent adverse
weather events. As a result of this intervention, it was possible to notice, a posteriori, the presence,
orientation, and geometry of the subsurface root system as well as the correct depths identified by the
non-destructive GPR investigations (Figure 13).Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 13. After uprooting the pine, it was possible to notice, a posteriori, the presence and the
geometry of the subsurface root system as well as the correct depths identified by the non-destructive
GPR investigations.

According to an initial analysis of the radargrams (Figure 14), it is possible to understand that
the architecture of the thicker roots did not penetrate more than 0.30–0.40 m deep into the subsoil.
Furthermore, other deeper anomalies were related to various cables and subservices present on the
site. Thus, by comparing the current measurements with those of the previous year through the same
instrument (i.e., FINDAR), it is possible to note how the roots became visible around 0.25 m deep
in the previous year, while the current roots placed in the north-western side of the pine were only
about 0.15 m deep (Figure 15). Even if the resolution of the FINDAR acquisition cannot be so precise,
the north-western side have highlighted a different depth slice with the same conditions of acquisition
in both 2017 and 2018. Hence, the north-western roots alone had risen by about 0.05/0.1 m merely a
year later, confirming, a posteriori, the initial hypothesis. In addition, this evaluation is visible in the
corresponding map acquired this year with a better resolution through the NOGGIN system (Figure 16)
and the relative pseudo-3D reconstruction (Figure 17).
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Figure 14. The comparison of the radargrams collected with both the FINDAR and NOGGIN systems
shows that the main root system did not penetrate more than 0.30–0.40 m deep into the subsoil.
Moreover, the other deeper anomalies were related to various cables and subservices present on the site.
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Figure 16. Even the NOGGIN measurements at the same area confirmed the presence of the north-
western roots, around the pine, at a depth of about 0.15 m. Note that: i) the visible anomalies on the 
western side of the GPR map are due to the various and superficial cables and services, and ii) the 
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Figure 15. On comparing the measurements made with the same instrument (FINDAR) in 2017 and
2018, it is possible to note that, in the first case, the north-western roots were visible in the subsoil at
about 0.25 m, and in the second case, the same roots were visible at about a depth of 0.15 m. Note that
the dark-grey areas are the ones in which the GPR has collected no data.

Moreover, the NOGGIN system was used to investigate the presence or absence of cavities or
discontinuities inside the trunk that could preclude the pine tree stability. Accordingly, four profiles
were performed every 90◦. The investigation showed the homogeneity on the inside of the trunk with
no cavities and confirmed the estimation of the diameter at about 0.85 m (Figure 18).
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Figure 16. Even the NOGGIN measurements at the same area confirmed the presence of the
north-western roots, around the pine, at a depth of about 0.15 m. Note that: i) the visible anomalies on
the western side of the GPR map are due to the various and superficial cables and services, and ii) the
white areas are the ones in which the GPR has collected no data.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 18 
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3.4. The SWOT Analysis 

Figure 18. Four profiles were vertically performed every 90◦ (top right). Additionally, the investigation
showed the homogeneity of the inside of the trunk with no cavities and confirmed the estimation of the
diameter at about 0.85 m.

3.4. The SWOT Analysis

Based on these results, a SWOT analysis [37] was created to evaluate the whole research project
and better understand it through its internal strengths and weaknesses, and external opportunities
and threats [38].

On the one hand, among the internal strengths of this project, are mainly two things. First are
the GPR characteristics which provided consistent results on internal structures (i.e., pavements and
trunks). Then, there was the interest of the Italian public administration, for the first time, in such a
technology. A large city like Rome with more than 310,000 trees [39] desperately needs to use fast,
real-time, and non-destructive techniques such as GPR to constantly monitor tree and root status.
However, the main limitations of this research could be the sample dimension and the a posteriori
evaluation. This sample is perfect for a small test, but to plan meticulous monitoring of the urban
greening of Rome, it is necessary to consider a larger number of species. Moreover, an effort to increase
the level of knowledge with an a priori assessment should be done in the future.

On the other hand, this research provides a great opportunity to employ this geophysical approach
again for future investigations of tree roots and trunks not only in a large city like Rome but also in
other smaller realities, such as public parks or open-air archaeological sites, in which the risk of tree
collapse could be substantial. Nevertheless, this methodological procedure is also characterized by a
potential threat. This approach, indeed, does seem to work for some tree species in Rome. However,
due to the nature of the arboreal heritage, will the same method work with different species as well
(Figure 19)?
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4. Conclusions

The main purpose of this technical note was to create a short paper that provided a brief description
of a specific procedure, which had a practical value and contributed to the diagnosis or management of
an urgent need in Rome, catalyzing the attention on a possible non-destructive solution, such as GPR.
The test involved the GPR technique to confirm what the experts of the Department of Environmental
Protection of ROMA CAPITALE had already assessed hypothetically: the presence of some defects
in the subsurface root architecture (such as the inclination of some trees) due to the presence of
works related to modern subservices. Therefore, the aim of this test was to confirm this assessment
with a posteriori GPR evaluations of the thicker roots, normally perpendicular to the GPR direction.
All phases of this test showed the effectiveness of the method and the rapidity of the data acquisition,
and mainly, the results were achieved with a prompt, precise, accurate, and relatively low-cost activity
for assessing tree stability.

Consequently, it was found that the root depth measurements were accurate in one surveyed area of
this project owing to the ground truth (i.e., the AUR pine tree). Based on these measurements, there was
negligible difference between the depth of the root of the GPR calculation and the actual observed
depth. Therefore, a posteriori verification of the ability to locate roots in the urban environment of the
GPR determined in this study confirmed that this technology is suitable for this purpose. Moreover,
the ability of the GPR to accurately identify the positions of multiple thicker roots and reconstruct the
geometry of a singular thicker root in a three-dimensional environment is a relevant tool for any city
government involved in preventing possible disasters on account of falling trees. Finally, the possibility
of reconstructing the internal geometry of a trunk, such as in this work, can easily and rapidly help in
planning correct urban greening management as much as possible.

As a result, preventing fatal incidents around trees depends on the ability and promptness in
determining the circumstances linked to subsurface conditions in a fast and non-destructive way.
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