remote sensing @\py

Article
Ensemble-Based Cascaded Constrained Energy
Minimization for Hyperspectral Target Detection

Rui Zhao >3, Zhenwei Shi "*3*, Zhengxia Zou *© and Zhou Zhang °

1 Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China;

ruizhaoipc@buaa.edu.cn

Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China

State Key Laboratory of Virtual Reality Technology and Systems, School of Astronautics, Beihang University,
Beijing 100191, China

Department of Computational Medicine and Bioinformatics, University of Michigan,

Ann Arbor, MI 48109, USA; zzhengxi@umich.edu

Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA;
zzhang347@wisc.edu

*  Correspondence: shizhenwei@buaa.edu.cn

check for
Received: 17 April 2019; Accepted: 24 May 2019; Published: 1 June 2019 updates

Abstract: Ensemble learning is an important group of machine learning techniques that aim to
enhance the nonlinearity and generalization ability of a learning system by aggregating multiple
learners. We found that ensemble techniques show great potential for improving the performance
of traditional hyperspectral target detection algorithms, while at present, there are few previous
works have been done on this topic. To this end, we propose an Ensemble based Constrained Energy
Minimization (E-CEM) detector for hyperspectral image target detection. Classical hyperspectral
image target detection algorithms like Constrained Energy Minimization (CEM), matched filter (MF)
and adaptive coherence/cosine estimator (ACE) are usually designed based on constrained least
square regression methods or hypothesis testing methods with Gaussian distribution assumption.
However, remote sensing hyperspectral data captured in a real-world environment usually shows
strong nonlinearity and non-Gaussianity, which will lead to performance degradation of these
classical detection algorithms. Although some hierarchical detection models are able to learn strong
nonlinear discrimination of spectral data, due to the spectrum changes, these models usually suffer
from the instability in detection tasks. The proposed E-CEM is designed based on the classical
CEM detection algorithm. To improve both of the detection nonlinearity and generalization ability,
the strategies of “cascaded detection”, “random averaging” and “multi-scale scanning” are specifically
designed. Experiments on one synthetic hyperspectral image and two real hyperspectral images
demonstrate the effectiveness of our method. E-CEM outperforms the traditional CEM detector and
other state-of-the-art detection algorithms. Our code will be made publicly available.

Keywords: hyperspectral image; target detection; constrained energy minimization; cascaded
detection; ensemble; multi-scale scanning

1. Introduction

Hyperspectral remote sensing measures the reflectance from the earth’s surface materials at
hundreds of narrow and contiguous wavelength bands. A hyperspectral image captured by an
imaging spectrometer can be considered as a three-dimensional data called “data cube” with two
spatial dimensions and one spectral dimension. Since each hyperspectral pixel contains a large number
of bands with corresponding wave reflectance, its spectral characteristics can be applied to distinguish
different materials [1,2].
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In recent years, hyperspectral image target detection has become a research hot spot in the image
processing field and it has wide applications, both in military and civilian fields. Hyperspectral
image target detection is of great significance for military reconnaissance and strike. It can be used
to detect important military targets [3,4], such as aircraft, ships, airports, oil tanks, etc. In the field of
ecology and forest science, hyperspectral image target detection can be used to detect newly grown
leaves [5]. In the field mineral prospecting, hyperspectral image target detection can be used to detect
iron oxides [6]. In other civilian fields, it also has a great number of applications such as post-disaster
rescue [7] and gas-detection [1]. Many hyperspectral image target detection algorithms have been
proposed. Spectral angle mapper (SAM) [8] and Spectral Information Divergence (SID) [9] are two
very simple and straightforward detection algorithm which measures the “distance” between the
spectrum of the test pixel and the prior spectral signature of the target. The adaptive coherence/cosine
estimator (ACE) [10,11], the matched filter (MF) [11], and Matched Subspace Detectors (MSD) [12]
are hypothesis-test-based detection algorithms based on Gaussian distribution assumption of the
spectral data and is derived from generalized likelihood ratio (GLR) test. The Constrained Energy
Minimization (CEM) [2,10] detection algorithm builds a linear filter that minimizes the total spectral
output energy under the constraint that the target’s output is a constant. On the basis of these
algorithms, some of their recent improved versions have been proposed, such as Matched Shrunken
Subspace Detectors (MSSD) [13], the robust CEM detector [14], the Total Variation Detector (TVD) [15]
and Robust High-Order Matched Filter (RHMF) [16], Hierarchical CEM detector (HCEM) [17], etc.
Some subspace based hyperspectral image target detection algorithms have also been proposed, such
as the Orthogonal Subspace Projection (OSP) [18,19] and the Adaptive Subspace Detector (ASD) [20].
OSP projects pixel vectors into orthogonal subspaces of undesired spectral signatures to reduce the data
dimensionality and suppress the interference of undesired signatures. ASD originates from the problem
of binary hypothesis testing. OSP and ASD require prior knowledge of target spectral features and
background spectral features, while a complete statistical characteristic of background spectral features
is difficult to obtain in real-world applications. In addition to the subspace based algorithms, some other
non-Gaussian based hyperspectral image target detection algorithms have also been proposed, such as
elliptically contoured distributions based algorithms [21], Gauss-Markov random field (GMRF) based
algorithms [22,23], sparse representation based algorithms [24,25] and non-parametric approaches
based algorithms [26].

In recent years, deep learning technology [27-29] has made great breakthroughs in computer
vision and remote sensing field, such as target detection [30-32], image segmentation [33,34],
image captioning [35,36], etc. By building cascaded structures and using nonlinear functions,
such as ReLU and sigmoid functions, a deep learning model obtains strong nonlinearity which
learns high-level abstraction of the input data layer by layer. It is worth noting that the nonlinear
function is important for the model to obtain the strong nonlinearity. If only the cascade structures are
used without any nonlinear function, the model will still be linear. Since hyperspectral data captured
in real environment usually shows strong nonlinearity and non-Gaussianity due to the influence of
imaging noise, atmospheric turbulence, and spectral-mixing [17], similar ideas have been brought to
hyperspectral target detection and some cascaded detection algorithms have been proposed recently,
such as iteratively Reweighted ACE detector (RACE) [37], Hierarchical CEM detector (HCEM) [17],
etc. However, these algorithms usually show instability since the inherent variability in target spectral
signatures [15] sometimes leads to an overfitting problem when building nonlinear or hierarchical
detectors based on biased spectral data.

The nonlinear discrimination ability and generalization ability are both important factors for
any machine learning models as well as for any hyperspectral target detection algorithms. It is
important to make a trade-off between the two properties when designing a hyperspectral image
target detection algorithm. On one hand, the classical detection algorithms, such as CEM, MF, and
ACE, have strong generalization ability but weak discrimination ability. These algorithms are not
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suitable to apply to detection problems with strong nonlinear distribution of spectral data. On the
other hand, the hierarchical detection algorithms have strong discrimination ability but weak stability.

Ensemble learning is a group of important machine learning techniques which aims to enhance the
nonlinearity and generalization ability of a learning system by aggregating the training and prediction
of multiple learners [38-41]. Ensemble learning methods can be roughly divided into two sub-groups,
(1) boosting based methods and (2) bagging based methods, where the former one constructs cascaded
learners that are associated with each other during training and prediction [39,42,43] while the latter
one constructs independent learners in parallel [40,41].

Considering the above problems, by incorporating the idea of ensemble learning, we propose
a new hyperspectral image target detection algorithm called Ensemble based Constrained Energy
Minimization (E-CEM) for hyperspectral target detection. In E-CEM algorithm, three strategies
are specifically designed to improve both of its nonlinear discrimination and generalization ability,
(1) cascaded detection, (2) random averaging and (3) multi-scale scanning.

e  (Cascaded Detection

Firstly, we use the strategy, “cascaded detection”, to improve the nonlinear discrimination ability.
Traditional hyperspectral image target detection algorithms usually follow a detection paradigm
of “single layer detection” or “one-time detection”. Inspired by the idea of cascaded operation in
boosting algorithms, we propose a cascaded detection structure. In the framework of cascade structure,
the sigmoid nonlinear function is used between layers to transform the output of each layer in nonlinear
to improve the nonlinear performance of the detector.

* Random Averaging

Secondly, we use the strategy, “random averaging”, to improve the detector’s stability. Gaining
inspiration from the idea of ensemble learning in the bagging algorithms, we know that we can get a
stronger learner by integrating multiple weak learners, and when the differences between these weak
learners are large to a certain extent, stable results can be achieved. Based on this idea we randomly
constructing multiple CEM detectors in each layer of cascades and combining their outputs improve
the detector’s stability.

¢ Multi-scale Scanning

Thirdly, the strategy, “multi-scale scanning”, is used for spectrum feature extraction which aims
to improve the detector’s robustness against the spectrum changes. E-CEM scans the spectral vector
at multiple scales and produces spectral features which contain the information of various spectral
resolution. By integrating the original spectral vector with these additional pieces of information,
our detector is more robust to the spectrum changes.

The experiments on one synthetic image and two real hyperspectral images have demonstrated
the effectiveness of these strategies.

The rest of this paper is organized as follows. In Section 2, we give a review of the classical CEM
detector and a detailed introduction to the proposed E-CEM detection algorithm. Experiments and
results on one synthetic image data and two real hyperspectral image data and discussion are given in
Section 3. Finally, our conclusion is drawn in Section 4.
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2. Methodology

In this section, we first give a brief review of the classical CEM detector and then give a detailed
introduction to the proposed E-CEM detection algorithm.

2.1. CEM Detector

Suppose a hyperspectral image can be arranged as a matrix S = [r{, 15, ..., ry] € RP*N, where each
column of S is a spectral vector r; € RP*1, and d € RP*! is a spectral vector representing the spectrum
of targets of interest. N is the number of pixels and D is the number of wavebands.

CEM is a standard linear detector. Its input is a spectral vector to be identified, and its output can
be represented as the inner product of the spectral vector r and detector’s coefficient w:

y= w'r. @

CEM aims to highlight the target’s outputs while suppress the “energy” of all background spectra
so as to find a projection vector to separate the target from the background in the spectral space.
Since the average “energy” of output can be obtained by averaging the square of the output values
of all pixels, the optimal coefficients of a CEM detector can be obtained by solving the following
optimization problem:

min E{y*} = w'Rw
¢ @

st wld=1,

where R = E{rr!} = %SST € RP*D js the maximum likelihood estimation of the correlation matrix
of the spectral data. The closed solution of the above optimization problem can be written as:
Rl

- dTR1d°

(U*

®)

2.2. Regularized CEM

To enhance the numerical stability of the matrix inversion operation R~!, a small diagonal positive
matrix Al is usually added to the matrix R: R + AI, where A > 0 is the regularization coefficient.
The modified solution of CEM detector can be written as:

-1
w(h) = (R+AD)"'d

T ATR+AD) A @

After we have the optimal solution w*, we can use (1) to run detection on each pixel of S to
complete the detection process.

There are two reasons why we add A to our method.

Reason 1. In real world applications, the correlation matrix R sometimes could be a singular
matrix. For example, when number of pixels N is less than the number of wavebands D, R will not be
a full-ranked matrix and thus will not be invertible. The role of the regularization here is to improve
the numerical stability and to ensure that R is invertible. In many previous works of hyperspectral
target detection, the CEM detector is improved with the regularization [17,44].

Reason 2. In fact, as the CEM algorithm can be essentially considered as a constrained least
square regression problem, regularizing CEM is equivalent to adding an L2 norm penalty A ||w||3 to the
objective Function (2). The above operation is equivalent to the well-known “Tikhonov regularization”
in statistical analysis. Tikhonov regularization is a classical method to solve the ill-conditioned
regression problem. In addition to improving the numerical stability, Tikhonov regularization can be
also used to improve the generalization ability of a machine learning model and make it robust to new
data. Therefore, we chose to the regularized CEM as our base detector in this paper.
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2.3. Ensemble based Cascaded CEM Detector

E-CEM detector consists of two stages, (1) “multi-scale scanning” stage and (2) “cascaded
detection” stage. In the first stage, the input is a spectral vector while the output is a feature vector
containing multi-scale spectral information, which aims to extract the features of the spectrum and
to enhance the robustness to spectrum changes. In the second stage, the input is the feature vector
produced by the multi-scale scanning stage, while the output is the final detection score, where the
higher the score, the more likely the current spectrum is a target. In this stage, we use a cascaded
detection structure with sigmoid nonlinear transformation to enhance the nonlinear discrimination
ability of the detector. Besides, we also use multiple CEM detectors in each layer to further improve
the robustness to spectral changes. Figure 1 shows an illustration of the E-CEM detector.

Layer-1 Layer-2

Input Spectral Vector
Multi-scale Scanning

@ average
@ sigmoid
——— g ) product

-

v v
Layer-1 detection result Layer-2 detection result

Figure 1. An overview of the E-CEM detector.
2.3.1. Multi-Scale Scanning

The multi-scale scanning stage consists of several parallel units. Similar to the processing pipeline
of the deep forest algorithm [45], in each unit, we use a sliding window with a particular size to scan
and crop the spectrum into a set of spectral fragments, and then each spectral fragment is processed
and concatenated as the output of this unit. Then, the outputs of all the units and the original spectral
vector are concatenated together to finally produce the output feature vector of this stage. Figure 2
shows the process of multi-scale scanning.

Specifically, suppose that the size of the sliding window of the current unit is [, the stride of
the window is s and the input of this unit is a spectral vector r = [r1, 12, ...,7p] € RP*1, The entire
multi-scale scanning process can be expressed as the following steps. First, slide the window on the
spectrum with the length I and the stride s and crop it into K fragments:

f'l = [7’1, Yo, ..., T’I]T

2 = [r]+S/ Yoggs ey rl+s]T (5)

For N pixels, we have NK fragments in total. The pixel here refers to the spectral vector, which
is a vector with spectral dimension of D and spatial dimension of 1. For simplicity, we refer to it as
a “pixel”. Then, we use a CEM detector to process each of the fragments. For each window location,
a CEM detector is constructed by using the fragments of all pixels of this location and gives the
corresponding outputs: v;,i = 1, ..., k. By concatenating them together, the feature vector of the current
unit will have the following expression: v; = [v1,vs,...,v4]T € RF¥1. Finally, by concatenating the
output of each unit and the original spectral vector r, the output feature vector of the multi-scale
scanning stage can be represented as:

F= [1/11}1/[2,...,’ 1/1”;1'] c R(HK+D)><]’ ©
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where [y, ..., 1, represents the window size of each unit and n represents the total number of
scanning units.

i " ’

I =1 [ |
concat
. . >
|

l s =

 e—

4\ I
.
.
.

ﬂ Sliding window - 1

Input Spectral
Vector

Sliding window - n

Figure 2. An illustration of the multi-scale scanning stage for spectral feature extraction.
2.3.2. Cascaded Detection

Cascaded detection consists of multiple detection layers. The input of this stage is the spectrum
feature vector produced by the multi-scale scanning stage, while the output is E-CEM’s detection
score. The output score of each detection layer is used for transforming the feature vector and then
serves as the input of the next layer. Then, a new detection score can be obtained based on the
transformed feature. In addition, in each layer, we design m different CEM detectors with random
regularization coefficients Ay, ..., Ay, to enhance the detector’s generalization ability. In our model,
instead of using fixed A, we set it as a random variable. In the ensemble learning, there are two groups
of classic algorithms, one group is boosting, and another group is bagging. For bagging algorithms,
increasing the diversity of each base model will effectively improve the stability of final prediction [46].
The random forest [46], which is a representative of bagging method, increases the difference of each
model by randomly sampling features. Similarly, in our method, we have the similar purpose set
different A in different base detectors, that is, to further increase the divergence of the each model
to improve the final detection’s robustness. As for how A affects the detection result, we investigate
two extreme cases, one is that A is equal to 0, and the other is that A is infinite. When A is set to 0,
the regularized CEM will become the original CEM:

lim w(A) = lim R+AD) 'w _ R
A—+0 - a5+0dT(R+AI-1d  dTR-1d’

@)

When A is set to infinite, w will become independent of R and will have the same direction as that
of the target spectrum d. This is because:

, . R4+AD)w d
Jim w(3) = /\Llr}:oodT(R—I—/\I)*ld —dfd’

®)

Therefore, in the case of A is infinite, the detection will be the projection of the spectral vector in the
d direction, which can be considered as the simplest “spectral matching” method. The above discussion
indicates that A can be considered as the tradeoff between the original CEM and the projection in the
d direction.
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Suppose the input feature vector of layer ¢ is ¥, and the output scores of m CEM detectors are
u1, Uy, ..., Uy, then the average score of these detectors can be written as:

|
|

(M)

g

Il
—_

)

2= Fr»

=

dT(R + /\l‘I)_lf't
d

=1 T(R + )\il)fld’

where w(A;) is the coefficients of the ith CEM detector. Then, the feature vector ¥ of the current layer
is transformed into a new feature vector as the input of the next layer according to i:

i = fth(ﬂ) (10)

We use the sigmoid function, which is commonly used in neural networks [29], as our nonlinear
transformation function. This function has the following expression:

h(x) =1/(1+e7 ). (11)

This function indicates that the features with small outputs will be suppressed while those with
large outputs will be unchanged. After several layers, the average score of the last layer # is used as
the detection output of the E-CEM algorithm.

Since our method is inspired by the cascaded structure in deep learning, it does have some
similarities with CNN in terms of the processing pipeline. For example, CEM can be regarded as
the convolution unit and the output can be regarded as the feature map. However, the difference
between our method and CNN is that the output of the CEMs h(i1) is just a probability and does not
contain the spectral information, in order to better transfer the spectral information to subsequent
layers, the spectral vector is multiplied with the output.

In addition, there is another advantage of using multiplication, i.e., it can be considered as an
integration of attention mechanism. Since higher scores pixels are more likely to be the target, while the
lower scores pixels are more likely to be the background, so, after multiplying, target pixels are retained,
and background pixels are suppressed. In this way, in the subsequent layers, the target pixels will
receive more attention to get better detection results.

3. Experiments, Results and Discussion

To evaluate the effectiveness of the proposed E-CEM algorithm, we compare it with eight
popular hyperspectral target detection algorithms, including CEM [2], ACE [10], MF [11], SID [9],
TVD [15], RHMF [16], RACE [37], and HCEM [17] on one synthetic hyperspectral image and two real
hyperspectral images. Among these algorithms, the former four are classical detection algorithms.
TVD and RHMF are two recent improvements of CEM detector by considering the local similarity
constraint and high order statistics. RACE and HCEM are cascaded detectors and are the most similar
ones with our method. In these two detectors, the traditional ACE/CEM detector is used as a basic
detector in each layer, and the target/background spectra are iteratively updated based on the previous
layer’s detection outputs. In the HCEM detector, in each layer of detection, the CEM’s output of each
spectrum is transformed by a nonlinear suppression function and then considered as a coefficient
multiplied on this spectrum for the next round of iteration. The authors theoretically proved the
convergency of the HCEM and gave a theoretically explanation that why they can obtain the gradually
increasing detection performance. In the RACE detector, an ACE detector is used as a basic detector in
each layer, and the target spectrum is revised iteratively based on the last layer’s detection outputs
to generate the “optimal” target spectrum. Finally, the authors use the “optimal” target spectrum to
obtain the final detection result.
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The codes of TVD, RHMF, RACE, and HCEM are provided by their authors, while the other four
classical algorithms are implemented by ourselves. The code of our algorithm will be made publicly
available at levirbuaa.edu.cn/Code.htm.

3.1. Data Used

The experiments are conducted on one synthetic image data, and two real hyperspectral image
data: AVIRIS San Diego Data and AVIRIS Cuprite Data.

3.1.1. Synthetic Data

The synthetic hyperspectral image we used is generated from the United States Geological
Survey (USGS) digital spectral library [47]. 15 endmember spectra are used for data synthesis,
including Axinite HS342.3B, Rhodochrosite HS67, Chrysocolla HS297.3B, Niter GDS43 (K-Saltpeter),
Anthophyllite HS286.3B, Neodymium Oxide GDS34, Monazite HS255.3B, Samarium Oxide GDS36,
Pigeonite H5199.3B, Meionite WS700.HLsep, Spodumene HS210.3B, Labradorite HS17.3B, Grossular
WS484, Zoisite HS347.3B, and Wollastonite HS348.3B. The reflectance values of these 15 kinds of
materials are collected in 224 bands, and the wavelength lies in 0.4~2.5 pum.

The Labradorite HS17.3B is used as the target of interest. We use the data generation and target
implantation method introduced by Chang et al. [48] to generate the synthetic data. Specifically, we
first divide the synthetic map, whose size is s2 x g2 (s = 8), into s x s regions, where each region
is initialized with the same type of ground cover that randomly selected from the above 15 kinds
of spectra. We implant clean target into the backgrounds by replacing their corresponding pixels.
To evaluate the detector’s performance on mixed spectral data, we first mix the synthetic map through
a(s+1) x (s +1) spatial low-pass filter so that there is no pure pixel in the synthetic image. To evaluate
the algorithm’s robustness to spectral variation, all pixels including both targets and backgrounds are
corrupted by a Gaussian white noise Signal-to-Noise Ratio (SNR) of 20 dB and 25 dB. Figure 3a shows
the first band of the synthetic image. Figure 3b shows its ground truth. The synthetic image size is
64 x 64 and the total number of target pixels is 12. SNR is defined as follows:

Psignal

SNR(dB) = 10log;,

, (12)

Pnoise

where D¢, represents the power of signal and P,;y;s, represents the power of noise.

(b)

Figure 3. (a) The first band of the synthetic hyperspectral image. (b) Ground truth location of the target.
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3.1.2. AVIRIS San Diego Data

Two real hyperspectral images collected by the Spectrometer Visible/Infrared Imaging
Spectrometer (AVIRIS) are used for evaluating the algorithms. AVIRIS is the first full spectral range
imaging spectrometer and dedicated to earth remote measurement [49]. The spectrometer delivers
calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with
wavelengths from 0.38 to 2.51 um.

The AVIRIS San Diego Data we used was captured at San Diego, America. It contains a part of an
airport. The targets are three airplanes and the backgrounds are farmland, buildings, and runways.
The total number of target pixels is 134. The target spectrum d is obtained by averaging all spectra
within the target regions. The size of each band is in 200x200 pixels. After removing the low
SNR and water vapor absorption bands, a total of 189 bands are used to conduct the experiments.
Figure 4a shows the first band of the hyperspectral image. Figure 4b shows its ground truth. All the
above-mentioned algorithms and the proposed E-CEM algorithm are tested on this data.

(a) (b)

Figure 4. (a) The first band of the AVIRIS San Diego hyperspectral image. (b) Ground truth location of
the target.

3.1.3. AVIRIS Cuprite Data

The AVIRIS Cuprite Data [50] is used to test our algorithm. This image was captured by AVIRIS
in the Cuprite mining district of Nevada in 1997. There are about 14 kinds of mineral in this image,
including buddingtonite, Na-Montmorillonite, Nontronite (Fe clay), Kaolinite-wxl, etc. Figure 5a
shows the minerals map [51] which is produced by the Tricorder 3.3 software. We use a 250191
pixel subset of this image to conduct our experiment, which is marked by the red box in this figure.
The buddingtonite is selected as the target, which occupies 39 pixels. Figure 5b shows the first band
of the image and Figure 5¢ shows the distribution of the buddingtonite targets. After removing the
low SNR and water absorption bands, 188 bands are left to conduct our experiment. As there are two
spectra for buddingtonite in the USGS Digital Spectral Library [47], we use their average as the target
spectrum for all algorithms. The reason why we choose “buddingtonite” for detection is that this
mineral is difficult to detect and the number of pixels of this material is moderate. More importantly,
many previous target detection papers [15-17] have used buddingtonite as the target. In order to make
a fairer comparison with previous methods, we use it as the target.
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Cuprite, Nevada
AVIRIS 1995 Data
USGS

| Clark & Swayze
Tetracorder 3.3 product
Sulfates
K-Alunite 150¢
K-Alunite 250¢
K-Alunite 450c
g Na8z-Alunite 100c
Nado-Alunite 400c
Jarosite
Alunite+Kaolinite

and/or Muscovite
ll Kaolinite group clays

Kaolinite, wxI

Kaolinite, px!

Kaolinite +smectite
‘or muscovite

Halloysite

Dickite

Calcite

Calcite +Kaolinite

Calcite +
- montmorillonite
I Na-Montmorillonite
Nontronite (Fe clay)
other minerals
low-Al muscovite
med-Al muscovite
B high-Al muscovite
I Chiorite+Musc,Mont
Chlorite
Buddingtonite
% [ Chalcedony: OH Qtz
Pyrophyliite +Alunite

Tk 4N

(a) (b) (c)

Figure 5. The Cuprite mining district of Nevada captured by AVIRIS in 1997. (a) The minerals
map produced by the Tricorder 3.3 software [51]. We use a 250x 191 pixel subimage of this data to
conduct our experiment, which is marked by the red box. (b) The first band of our experimental data.
(c) The distribution of the buddingtonite targets.

3.2. Experimental Setup and Evaluation Metrics

In all of our experiments, we use the same parameter configuration for E-CEM detector:

¢ In the multi-scale scanning stage, we set the number of windows to n = 4 and the window size to
I, = iD,i =1,...,4, where D is the number of bands.

* Inthe cascaded detection stage, we set the number of detection layers to k = 10 and the number
of CEMs per layer to m = 6.

To evaluate the algorithm quantitatively, we use the Receiver Operating Characteristic (ROC)
curve [17] to evaluate the detection results. The ROC curve describes the relationship between False
alarm rate (Fa) and Probability of detection (Pd). Fa and Pd are defined as follows:

N f N,
Fa=—, Pd= —, 13
a=- N, (13)
where Ny represents the number of pixels of false alarms in the image; N, represents the number of
correctly detected target pixels; N; represents the number of target pixels; N represents the number
of all pixels in the image. Clearly, under the same Fa, the higher the Pd, the better detection
performance is.

3.3. Detection Results on Synthetic Data

The detection outputs of all detectors on synthetic data (with 20dB SNR Gaussian white noise) are
shown in Figure 6. The first row of this figure shows the E-CEM detection output scores of its 1st, 2nd,
3rd, 5th and 10th layer. The second and third rows show the detection output of other comparison
algorithms. As we can see, when the number of detection layers increases, the output scores of the
target pixels are gradually enhanced while that of the background pixels are suppressed. All output
scores are normalized to [0, 1] for a fair comparison. Figure 7 shows their ROC curves. Both of the
ROC curves and the detection outputs suggest that E-=CEM achieves better detection results than other
algorithms and it is more robust to noise interference. As there are no pure pixels in the synthetic
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image, experimental results demonstrate that the E-CEM is also robust to spectrum changes caused by
mixed pixels.

As the ROC curves tend to “saturate” at a high recall rate, to make a more comprehensive
evaluation of these algorithms, we further use the Area Under the Curve (AUC) of ROC as another
quantitative evaluation criterion. In order to avoid the randomness of the results, for synthetic data
experiment, we have repeated 10 times to randomly generate each group of synthetic data by randomly
adding noise. Table 1 shows the mean and standard deviation of AUC values of the nine algorithms
on the synthetic data under the interference of white Gaussian noise with different SNR. Experimental
results show that E-CEM has a higher average score and a lower standard deviation than other
algorithms. This indicates that E-CEM is more robust than other algorithms while achieving higher

detection accuracy.

(a2) E-CEM: layer 2 (a3) E-CEM: layer 3 (a4) E-CEM: layer 5 ) E-CEM.: layer 10

(c) ACE (e) SID (f) HCEM

(h) RACE (J) Groundtruth

Figure 6. Detection outputs of different algorithms on the synthetic data (with noise of 20 dB SNR):
First row (al-a5): 1st, 2nd, 3rd, 5th and 10th layer of the E-CEM’s outputs. Second row and third row
(b—i): results of CEM [2], ACE [10], MF [11], SID [9], HCEM [17], TVD [15], RACE [37], RHMF [16] and
the proposed E-CEM. (j): ground truth. All outputs are normalized to [0, 1].
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Figure 7. ROC curves of different detection algorithms on our synthetic hyperspectral data (with noise
of 20dB SNR): CEM [2], ACE [10], MF [11], SID [9], HCEM [17], TVD [15], RACE [37], RHMF [16]

and the proposed E-CEM.

Table 1. The mean and standard deviation of the area under the ROC curve of different algorithms on

synthetic data under the interference of white Gaussian noise.

Noise of 20 dB SNR Noise of 25 dB SNR

Method
Mean Standard Deviation Mean Standard Deviation

CEM [2] 0.97957 529x1073 0.99733 1.13x1073
ACE [10] 0.96998 4.47x1073 0.99653 2.19%x1073
MEF[11] 0.97549 404%x1073 0.9892 1.33x1073
SID [9] 0.55201 3.86x1073 0.88742 1.70x1073
HCEM [17] 0.99221 6.81x1073 0.99801 5.24x1073
TVD [15] 0.96270 8.63x1073 0.97745 3.62x1073
RACE [37] 0.98732 2.14x103 0.99335 9.47x104
RHMEF [16] 0.98884 8.32x1073 0.99773 1.68x1073
E-CEM (ours) 0.99941 247x104 0.99995 3.13x10°5

3.4. Detection Results on AVIRIS San Diego Data

Figure 8 shows the detection score maps of the different algorithm on AVIRIS San Diego data.
The first row of this figure shows the E-CEM detection score maps of its 1st, 2nd, 3rd, 5th and 10th
layer. The second and third rows show the detection output of other comparison algorithms. We can

again observe the increasing performance of the detector with the increasing number of stacking

layers. All output values are scaled to [0, 1] for a fair comparison. Figure 9 shows their ROC curves.

Our algorithm is among the best entries of the detection results.
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(al) E-CEM: layer 1 (a2) E-CEM: layer 2 (a3) E-CEM: layer 3 (a4) E-CEM: layer 5 (a5) E-CEM: layer 10

(b) CEM (c¢) ACE (e) SID (f) HCEM

(g) TVD (h) RACE (i) RHMF (J) Groundtruth

Figure 8. Detection outputs of different algorithms on the AVIRIS San Diego data: First row (al-a5):
1st, 2nd, 3rd, 5th and 10th layer of the E-CEM’s outputs. Second row and third row (b—i): results of
CEM [2], ACE [10], MF [11], SID [9], HCEM [17], TVD [15], RACE [37], RHMEF [16] and the proposed
E-CEM. (j): ground truth. All outputs are normalized to [0, 1].
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Figure 9. ROC curves of different detection algorithms on AVIRIS San Diego hyperspectral data:
CEM [2], ACE [10], MF [11], SID [9], HCEM [17], TVD [15], RACE [37], RHMF [16] and the
propose E-CEM.

Similar to the synthetic data generation process, we also add additional Gaussian white noise
to the AVIRIS San Diego data to increase the detection difficulty. Table 2 shows the AUC values of
the nine algorithms on AVIRIS San Diego data under the interference of white Gaussian noise with
different SNR. We observe the better performance of our method over other detection algorithms.
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Table 2. The area under the ROC curve of different algorithms on AVIRIS San Diego data under the
interference of white Gaussian noise with different SNR.

San Diego Data
Method
w/o Noise 20dB SNR 25dB SNR

CEM [2] 0.99047 0.98398 0.98573
ACE [10] 0.97882 0.97841 0.97894
MF [11] 0.99078 0.98396 0.98584
SID [9] 0.81225 0.81659 0.81507
HCEM [17] 0.99571 0.97173 0.97977
TVD [15] 0.99046 0.98398 0.98573
RACE [37] 0.97882 0.97842 0.97894
RHMEF [16] 0.98982 0.98284 0.98543
E-CEM (ours) 0.99988 0.98540 0.99356

3.5. Detection Results on AVIRIS Cuprite Data

Figure 10 shows the detection output scores of different algorithms on AVIRIS Cuprite data,
where (al)—(a5) are the 1st, 2nd, 3rd, 5th, and 10th layers’ output of the proposed E-CEM algorithm,
(b)-(i) are the other eight detection algorithms, (j) is the ground truth. All outputs are scaled to [0, 1]
for a fair comparison. Since the publicly available Cuprite data were obtained by AVIRIS in 1997 while
the corresponding ground truth was produced by Tricorder software in 1995 [52], we can only make a
qualitative analysis of the different detection outputs on this data. Therefore, we do not plot their ROC
curves. We notice that RACE fails to detect the target. This is because the amount of target pixels in
this image is too small and the vast number of the undesired background will overwhelm the updating
process of the “target” spectrum.

(al) E-CEM: layer 1  (a2) E-CEM: layer 2 (a3) E-CEM: layer 3 (a4) E-CEM: layer 5 (a5) E-CEM: layer 10

(e) SID (f) HCEM

(b) CEM (c) ACE

(g) TVD (h) RACE (i) RHMF (j) Groundtruth

Figure 10. Detection outputs of different algorithms on the AVIRIS Cuprite data: First row (al-a5):
1st, 2nd, 3rd, 5th and 10th layer of the E-CEM’s outputs. Second row and third row (b—i): results of
CEM [2], ACE [10], MF [11], SID [9], HCEM [17], TVD [15], RACE [37], RHMEF [16] and the proposed
E-CEM. (j): ground truth. All outputs are normalized to [0, 1].
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3.6. Parameters Analysis

We also design three ablation experiments to analyze the importance of each technical component
of our method, including the “cascaded detection”, “random averaging” and “multi-scale scanning”.
All the ablation experiments are quantitatively performed on the AVIRIS San Diego data and the

synthetic data.
*  How important is cascaded detection

As we introduced in Section 2.3, the detection of the proposed E-CEM is processed in a cascaded
detection paradigm. Therefore, the number of detection layer is an important configuration of our
method. The effect of the cascaded detection can be analyzed by setting the number of layers to
k =1 ~ 15, without changing other parameter configurations. Figure 11 shows the AUC values of each
layer’s detection outputs on AVIRIS San Diego data and synthetic data. Compared with non-cascaded
detection (number of layers k = 1), we can observe significant improvement of the detection results by
using the cascaded detection strategy. In addition to that, the detection performance also increases
with the increase in the number of layers. As the results begin to saturate after stacking 10 layers, to
balance the accuracy and time efficiency, the default setting of the layer number is k = 10.

Area under the AOC curves

. . N . . Y

1 —
0.999
0.998
0.997
0.996
0.995
0.994 -
0.993 r

0.992
0.991 F —&— AVIRIS San Diego Data |

0.99 F —— Synthetic Data with 20dB SNR | |
0.989 F Synthetic Data with 25dB SNR | |
0.988 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

012 3 456 7 8 9 101112131415 16

Number of detection layers

AUC

Figure 11. The area under the ROC of the proposed E-CEM detector’s detection results under its 1st ~
15th detection layers on the Synthetic data and the AVIRIS San Diego data.

e  How important is multi-scale scanning

To evaluate the effectiveness of the “multi-scale scanning” strategy, we designed 5 scanning
modes with a different number of windows and different window size. Table 3 shows their AUC
values on San Diego data. There is a noticeable improvement in the detection results when applying
“multi-scale scanning”. When the number of scanning windows is larger than 4, there is very little
improvement. To balance the accuracy and time efficiency, we choose [%D, %D, %D, D] as the default
setting of the scanning windows.

Table 3. AUC of E-CEM with a different number of sliding windows n on San Diego Data. D is the
number of bands.

n  Window Wize AUC
1 [D] (no sliding window) 0.9916
2 [1/2,1]D 0.9923
4 [1/4,2/4,3/4,1]D 0.9999
6 [1/6,2/6,3/6,4/6,5/6,1]D 0.9999
8 [1/8,2/8,3/8,4/8,5/8,6/8,7/8,1]D  0.9999
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¢  How important is random averaging

The ensemble is an important strategy in our methods to improve its robustness and generalization
ability. To evaluate the effectiveness of the random averaging of multiple CEM detectors in each
detection layer, we set the number of detectors in each layer to m = 1 ~ 15 and compare their detection
results. Figure 12 shows the AUC values with different combinations of layer numbers and detector
numbers in each layer on San Diego data. We can see when the m < 5, the performance of E-CEM
detectors will be unstable as the number of layers increases. When m > 5, E-CEM will have more
stable results. To balance the robustness and time efficiency, we choose m = 6 as our default setting.

unstable region stable region

A A
AN o AN

N N

/.
15 |l
14
13 -0.998
12

11

10.999

7 0.997

1 0.996

iy
o

9 0.995
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0.993

Number of detection layers

0.992

0.991

0.99

PN W Pk O N 0O

0.989
1 2 3 45 6 7 8 9 1011 12 13 14 15

Number of CEM detectors in each layer

Figure 12. The area under the ROC of the proposed E-CEM detector’s detection results under its
1st~15th detection layers, and under the different number of base detectors in each layer (1~15).

¢ Analysis on the regularization parameter A

In order to compare the performance of our method on using a constant regularization coefficient
and random regularization coefficient, we have made the an experiment on the synthetic data with
different settings of regularization coefficient and Table 4 shows the area under the ROC curve of our
method. The experimental result suggests that the E-=CEM achieves more stable and better performance
when random A is used. The experimental result also suggests that when there is stronger noise (SNR
reduced from 25 dB to 20 dB), the model needs a larger A to achieve better performance.

Table 4. The area under the ROC curve of E-CEM with different regularization coefficient A on synthetic
data under the interference of white Gaussian noise.

Noise of 20 dB SNR Noise of 25 dB SNR

A = constant(t) A =random (0,t) A =constant(t) A =random(0,t)

0.01 0.91310 0.99800 0.99990 0.99997
0.02 0.99520 0.99886 0.99982 0.99994
0.05 0.99669 0.99941 0.99857 0.99995
0.08 0.99051 0.99949 0.99494 0.99996

0.10 0.98198 0.99794 0.98939 0.99980
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3.7. Speed Performance

To compare the speed performance of the algorithms, we test them on the same computer with
a 4.00 GHz Intel Core i7 CPU and 32 GB of memory. The computational time of E-CEM and other
algorithms on the synthetic data, AVIRIS San diego Data and AVIRIS Cuprite data is listed in Table 5.

Although the proposed E-CEM is slower than classical algorithms such as CEM and ACE, when
comparing with some recent algorithms, it has comparable speed performance. For example, on San
Diego data and Cuprite data, our algorithm is faster than RHMFE. On Synthetic data, our algorithm is
faster than RHMF and HCEM.

Table 5. The computational time (second) of different algorithms on synthetic data, AVIRIS San diego
Data and AVIRIS Cuprite data.

Method Synthetic Data San Diego Data Cuprite Data
CEM [2] 0.04 0.11 0.08
ACE [10] 0.04 0.17 0.20
MF [11] 0.02 0.08 0.07
SID [9] 0.07 0.53 0.94
HCEM [17] 5.18 5.89 7.08
TVD [15] 2.07 6.38 221
RACE [37] 0.51 1.16 1.24
RHME [16] 4.82 43.77 21.08
E-CEM (ours) 2.58 13.02 15.35

4. Conclusions

The nonlinear discrimination ability and generalization ability are two important factors
for machine learning algorithms. Inspired by the ensemble learning method, we propose a
new hyperspectral image target detection algorithm named Ensemble based Constrained Energy
Minimization (E-CEM) that takes into account both of the above factors. E-CEM is designed
with the help of the ensemble method by integrating a number of techniques including “cascaded
detection”, “random averaging” and “multi-scale scanning” so that to improve both of its nonlinear
discrimination ability and generalization ability. Experimental results on one synthetic data and two
real hyperspectral data demonstrate the effectiveness of these techniques. Compared with the classical
hyperspectral target detection algorithms and their recent improved versions, E-CEM has higher
detection accuracy and is more robust to the interference of noise and spectrum changes. Since the
proposed ensemble based cascaded framework is scalable, flexible and shows promising results under
extensive experimental verification, in our future work, we will focus on improving other classical
algorithms such as MF, ACE, etc, by using ensemble techniques and improving their detection speed.
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