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Abstract: Global retrieval of solar-induced chlorophyll fluorescence (SIF) using remote sensing by
means of satellites has been developed rapidly in recent years. Exploring how SIF could improve the
characterization of photosynthesis and its role in the land surface carbon cycle has gradually become
a very important and active area. However, compared with other gross primary production (GPP)
models, the robustness of the parameterization of the SIF model under different circumstances has
rarely been investigated. In this study, we examined and compared the effects of temporal aggregation
and meteorological conditions on the stability of model parameters for the SIF model (ε/SIFyield),
the one-leaf light-use efficiency (SL-LUE) model (εmax), and the two-leaf LUE (TL-LUE) model (εmsu

and εmsh). The three models were parameterized based on a maize–wheat rotation eddy-covariance
flux tower data in Yucheng, Shandong Province, China by using the Metropolis–Hasting algorithm.
The results showed that the values of the ε/SIFyield and εmax were similarly robust and considerably
more stable than εmsu and εmsh for all temporal aggregation levels. Under different meteorological
conditions, all the parameters showed a certain degree of fluctuation and were most affected at the
mid-day scale, followed by the monthly scale and finally at the daily scale. Nonetheless, the averaged
coefficient of variation (CV) of ε/SIFyield was relatively small (15.0%) and was obviously lower
than εmax (CV = 27.0%), εmsu (CV = 43.2%), and εmsh (CV = 53.1%). Furthermore, the SIF model’s
performance for estimating GPP was better than that of the SL-LUE model and was comparable to that
of the TL-LUE model. This study indicates that, compared with the LUE-based models, the SIF-based
model without climate-dependence is a good predictor of GPP and its parameter is more likely to
converge for different temporal aggregation levels and under varying environmental restrictions in
croplands. We suggest that more flux tower data should be used for further validation of parameter
convergence in other vegetation types.
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1. Introduction

The gross primary production (GPP) of a terrestrial ecosystem is the maximum global carbon
flux between the land surface and the atmosphere [1]. It refers to the amount of organic carbon fixed
by green plants through photosynthesis in unit time and determines the initial substance and energy
entering terrestrial ecosystems [2,3]. Accurate and quantitative estimation of spatial and temporal
variations of GPP is important for a clear understanding of ecosystem functions and carbon budgets in
response to global change [4,5].

Over the past decades, many approaches for terrestrial GPP estimations have been developed.
Among them, the concept of light-use efficiency (LUE) is generally accepted for both its theoretical
basis and practicality, as well as the advantage gained from connecting the eddy covariance (EC)
observations of carbon fluxes and remotely sensed data [5]. Therefore, LUE-based models are widely
used for terrestrial photosynthesis modeling [6]. In recent years, sun-induced chlorophyll fluorescence
(SIF)-based GPP modelling is another practical and state-of-the-art method providing a new perspective
for evaluating vegetation photosynthesis and simulating regional GPP due to its inherent connection
with the photosynthetic process [7–11]. Since the first truly global SIF observations were derived
from a hyper-spectrum obtained by the Japanese Greenhouse Gases Observing Satellite (GOSAT)
mission launched in 2009 [12,13], there have been multitudinous SIF retrievals carried out using
other satellite devices [14–18]. Joiner et al. [14] showed that even moderate spectral resolution can
be used to infer SIF using either a very broad Fraunhofer line at 866 nm (using Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography, SCIAMACHY) or applying a larger spectral
range from 715 to 780 nm using Global Ozone Monitoring Experiment-2 (GOME-2) [15]. Based on the
methodology of Joiner et al. [15], a global monthly averaged time series of SIF (from January 2007 to
June 2015) was then derived from GOME-2 spectral measurements [16]. Later, the differential optical
absorption spectroscopy technique was used to exploit narrow spectral structures resulting from the
filling-in of the Fraunhofer Fe I line for SCIAMACHY and GOME-2 [17]. However, there is generally a
tradeoff between spectral resolution and spatiotemporal resolution [8]. The SIF retrieved from the
Orbiting Carbon Observatory-2 (OCO-2) satellite, with smaller ground-pixels (1.3 × 2.25 km2), can
alleviate some of the drawbacks of current SIF observations and combine the advantages of both
GOSAT and GOME-2 [8]. Variations in SIF provide more insight into plant physiological functioning
at the canopy- and ecosystem scale compared to reflectance-based vegetation indices [19,20]. Studies
on SIF from leaf to canopy scales have exhibited moderate to strong linear correlations (R2 = 0.45–0.80)
with photosynthesis across all ecosystems [7,11,21,22]. SIF can also capture the seasonal hysteresis of
vegetation response temperature changes across boreal ecosystems throughout a growing season [19].
In addition, Lee et al. [23] and Guan et al. [24] suggested that SIF can capture the decreased GPP directly
through radiative emission by the photosynthetic machinery in a drought-stressed forest even as the
leaf area remained constant, confirming that the passive measurements of SIF can be used to track
changes in physiological activity at large scales in the absence of changes in greenness or structure.

Based on the various algorithms and their simulation results, there have been a lot of evaluations
and developments reported. For LUE-based models, early studies paid attention to simulations using
different input data and uncertainties generated from input data [25–27]. In recent years, some studies
focused on the model structure. He et al. [28] partitioned the sunlit and shaded leaves of the canopy to
improve the simulation of GPP and validated its application in six ecosystems. However, a previous
comparative study based on 26 models showed that the structural differences between LUE-based
models and process-based models did not affect their GPP estimations [29]. Compared to the use
of improvements of the structural and process deficiencies of models, parameter adjustment is used
more commonly to reduce the uncertainty of the simulation results [30,31] as it involves negligible
modification of the modelling mechanism [32]. For example, Chen et al. [30] and Baldocchi et al. [33]
found that adding the soil water factor to the LUE algorithm would make the adjusted LUE parameter
more robust for sites with the same PFT and among different PFTs. The seasonal fluctuations of
the maximum LUE parameters were considered to improve the capability of GPP variations [5,34].
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Much research on the evaluation of SIF-based GPP estimation has also been published in recent years.
Some studies focused on comparing the uncertainties of SIF products derived from different retrieval
algorithms and their effects on GPP estimation [11]. Evaluating the structural errors between linear
and nonlinear (hyperbolic) GPP–SIF models is another way to explore the relationship between GPP
and SIF [1,35,36]. Similar to the LUE-base models, in addition to the SIF-based structure, calibrating
the parameters and studying the factors that affect the spatiotemporal relationship between SIF and
GPP are also a first consideration [10,37,38].

As mentioned before, parameter tuning plays a vital role in the evaluations and developments
of GPP models. This is because adjusting key parameters can compensate for the errors introduced
by the model structure [39,40]. It is known that the parameter adjustment was mostly addressed by
calibrating them on situ or across different ecosystems using half-hour EC flux data in previous studies.
Recent studies have suggested that the establishment of parameter robustness in parameterization
is very important to determine whether there is a degree of “universality” in the parameter values
of models and in which circumstances they can be used to predict GPP [10,41]. Particularly, along
with the breakthroughs of global retrievals of SIF from space-borne sensors, an exploration of how SIF
could improve the characterization of photosynthesis, whether the GPP–SIF relationship is convergent
across spatial and temporal, and what role it plays in GPP models becomes a very important and active
area. However, less attention has been given to whether the calibrated parameters are robust under
different situations, such as across different timescales (e.g., mid-day, daily, and monthly) or under
varying environment stresses (e.g., soil water content, photosynthetically active radiation (PAR), and
air temperature) [37,42,43]. Comparison between the SIF model and other GPP models has also rarely
been explored currently, let alone an examination of the degree of difference between their parameter
stabilities. Verma et al. [3] examined the effect of meteorological conditions on the slope of OCO-2
SIF versus tower GPP at a grassland site. Their results suggest that under different meteorological
conditions, the GPP–SIF linear relationship is more robust at the canopy scale than the theory based
on leaf-level processes. Wood et al. [37] found that linear GPP–SIF scaling is insensitive to the spatial
or temporal scale for corn and a heterogeneous landscape. Nonetheless, the former only focused
on a mid-day timescale and the latter mainly evaluated the consistency of the linear relationship
between GPP and SIF across instantaneous to monthly time scales. They both only used the SIF-based
model without comparison with other GPP models. Similarly, even though there are a few studies
that simultaneously compared the GPP estimates obtained from SIF-based methods with those from
LUE-based or process-based modeling approaches, their comparisons both focused on the single
timescale and did not address the aspect of parameter stabilities. For example, Cui et al. [4] and Walge
et al. [44] evaluated the performance in GPP simulations of the LUE-based model, the process-based
model, and the SIF-based model at a maize site. Both results showed that the accuracies in GPP
estimates of the SIF-based model and the LUE-based model were similar (R2 = 0.67–0.88), but they
were lower than that of the process-based model (R2 = 0.87–0.94).

Thus, in this study, we compared the effects of multiple temporal aggregation levels (mid-day,
daily, and monthly scales) and different integrated meteorological conditions (absorbed photosynthetic
active radiation (APAR), air temperature, vapor pressure deficit (VPD)) on the robustness of parameters
for SIF-based and LUE-based models. The major objectives of this study are threefold: (i) Compare the
parameter stability between the SIF-based model and LUE-based models across multiple temporal
aggregation levels, (ii) analyze the effects of integrated meteorological conditions on the parameter
robustness of SIF-based and LUE models for each timescale, and (iii) evaluate the estimation
performances of the SIF-based and LUE-based GPP models from mid-day to monthly timescales
using an independent dataset. This study provides the first assessment of the effects of viewing the
zenith angle in OCO-2 Glint mode on the magnitude of SIF values and the GPP–SIF relationship,
and for the first time compares and addresses the influence of multi-aspect on the SIF-based and
LUE-based models (both one-leaf (SL)-LUE and two-leaf (TL)-LUE models). We aim at providing a
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better understanding of the different capabilities or limitations of the SIF-based and LUE-based models
for the estimation of GPP.

2. Materials and Methods

2.1. Flux Tower Measurements

2.1.1. Experimental Site Description

The experiments were conducted at Yucheng Comprehensive Ecological Station (CN-YuC; 36.95◦N,
116.63◦E), which is located in the southwest of Yucheng County, Shandong Province, with a mean
altitude of 28 m. This area is the hinterland of Huang-Huai-Hai Plain, and the landform type is the
alluvial plain of the Yellow River. The soil is an alluvial deposit of the Yellow River and mainly
consists of eutric cambisols and solonchaks. The surface soil is rich in sandy loam. CN-YuC is an
agricultural experimental station for maize–wheat rotation. The growing period of the wheat begins in
mid-November and continues until the beginning of June in the following year, and maize is sowed
immediately after harvesting the winter wheat and reaped in the middle of October. The average
annual rainfall in this area is 590 mm, about 70% of which falls between June and August, the growing
period of summer maize.

2.1.2. Flux Tower Data Processing

At the site described above, an EC system was installed on one of the towers (40.0167◦N,
116.3833◦E) to measure the carbon dioxide (CO2) exchange between the land surface and the atmosphere
from September 2014 to April 2017. The EC system comprises a three-dimensional (3D) sonic
anemometer (CSAT3, Campbell Scientific, USA) that measured 3D wind velocity, two temperature and
relative humidity probes (HMP155A-L15) that collected the temperature and relative humidity, and
a closed-path gas analyzer (Models 911-0010, Los Gatos, USA) for monitoring of the H2O/CO2/CH4

density, etc. The installation height of the EC sensor was 21.6 m. The EC measurements were sampled
at a frequency of 10 Hertz, and the turbulence data were stored using data loggers (CR3000, Campbell
Scientific, USA) and processed every 30 minutes. A mini weather station was also installed beside
the tower to record data on the air temperature, precipitation, radiation, wind speed/direction, and
relative humidity every second.

The tower carbon flux data from January 2015 to December 2016 (a total of 2 years) were used in this
study. EddyPro software (https://www.licor.com/env/products/eddy_covariance/eddypro.html) was
used to correct the raw EC data conventionally, including coordinate rotation, Webb–Pearman–Leuning
(WPL) correction, and frequency response calibration, etc. In addition, the half-hourly flux data
were u* (friction wind speed) filtered and storage calculated by the u* threshold, gap-filled, and
flux partitioned using the REddyProcWeb online processing tool (https://www.bgc-jena.mpg.de/bgi/
index.php/Services/REddyProcWeb). The ReddyProc tool used the nighttime net ecosystem exchange
(NEEnight) as nighttime respiration, and the model of NEEnight and air temperature at nighttime was
determined using nonlinear optimization. After that, daytime respiration (Rd) was estimated using the
daytime temperature. Finally, GPP was calculated as the difference between the daytime NEE and Rd.
The GPP in the output data files derived from the ReddyProc tool included the original and gap-filled
results. The percentage of high quality gap-filled GPP data in the calibrated and validated years was
44% and 54%, respectively. Therefore, the original data and the most reliable 44% gap-filled GPP data
in the calibrated year were used for the parameter estimations of LUE-based and SIF-based models.
All the gap-filled GPP data in the validated year (including 54% of the most reliable data) were used
for model validation in this study.

https://www.licor.com/env/products/eddy_covariance/eddypro.html
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb


Remote Sens. 2019, 11, 1328 5 of 27

2.2. Field Spectral Measurements

2.2.1. Spectral Measurements and Processing

An automated multi-angle spectrometer system named AMSPEC II [45] was installed on the same
EC flux tower at a height of 32 m during the growing period of summer maize. It was used to measure
continuous multi-angle remote sensing observations of top-of-canopy radiance and reflectance. The
AMSPEC II comprises tower observation and a computer control modules. The tower part consists of
a spectrometer (Unispec-DC, PP System, Amesbury, MA, USA), a pan-tilt unit (D-46, FLIR Commercial
Systems, Inc), and a high-resolution digital camera (NetCam SC SD500BN). The Unispec-DC features
256 consecutive bands ranging from 350 to 1200 nm with a spectral resolution of 3 nm and a full-width
half maximum (FWHM) spectral response of 10 nm. To enable sampling under various sky conditions,
the Unispec-DC is equipped with two channels for measuring solar irradiance (upward probe) and
vegetation radiance (downward probe) synchronously with a frequency of 5 s all day. Its instantaneous
field of view (IFOV) is 20◦ and it can collect the canopy spectral information around the tower with a
viewing azimuth range of 0 to 330◦ and zenith angle of 43 to 78◦ using the pan-tilt unit. A complete
horizontal and vertical rotation of the pan-tilt unit takes 15 minutes with a 10◦ angular spacing. More
detailed information about this system can be found in [45].

The spectral data during the growing period of summer maize (from June to October 2015)
collected above were used in this study. The missing observations from 17 August 2015 to 1 September
2015 were due to an instrument failure. The discrepancies in light sensitivity were corrected using
a cross-calibration method using the reflectance of a standardized reference whiteboard [42] and
dark current (dc) was rectified by the relationship between the dc measured when blocking off the
light from both probe channels and the sensor’s temperature measured by the internal thermometer
of Unispec-DC [45]. In addition, by comparing the reflected spectral curves, it was found that
the anomaly values originated from the areas of non-vegetated areas near the tower and distant
background observations. They were eliminated by removing the measurements in a range of the
viewing azimuth (174–226◦) and viewing zenith (>64◦). Finally, multi-angle measurements included
complete information on vegetation characteristics from different observation directions, which could
cause directional impacts on the intrinsic spectrum compared with Nadir observations [45]. Therefore,
the RossThick-LiSparse (RTLS) bidirectional reflectance distribution function (BRDF) model was
further used to rectify vegetation indices to normalize the data into uniform sun-sensor geometry
and minimize the directional effects. The BRDF model, which comprises RossThick volumetric and
LiSparse geometric kernels, depicts the reflectance as the linear superimposition of multiple basic
BRDF shapes [46]. Its specific formulation is given in [47].

2.2.2. SIF and Vegetation Index Retrieval from Ground Data

The three Fraunhofer line discrimination (3FLD) algorithm [48] was used to retrieve far-red SIF
for the O2-A band near 760 nm in this study. Wand et al. [49] suggests that the SIF can be accurately
extracted in the O2-A band near 760 nm rather than the O2-B band near 687 nm when the spectral
resolution is 3.3 nm. Compared with the FLD [50] and the improved FLD (iFLD) algorithm [51], 3FLD
can get more accurate SIF values [52] and is more robust than the iFLD, which appears to be highly
sensitive to noise [53,54]. In this approach, three spectral channels are required for each absorption line,
and the changes of fluorescence and reflectance in and out of the absorption line within a very narrow
band are hypothesized to be linear. The radiance at a single outer channel is expressed as the weighted
mean calculated from the two sides of the absorption valley (at the left and right wavelengths close to
the absorption band). The weight factors (w) of the two outer channels are as follows [48]:

wleft =
λright − λin

λright − λleft
and wright =

λin − λleft

λright − λleft
, (1)
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where λ is the wavelength, and the subscripts, left and right, represent the shorter and longer
wavebands close to the Fraunhofer lines, respectively. The subscript, in, indicates the wavelength of
the absorption band. The SIF can then be determined by [48]:

SIF =
Lin ×

(
Ileft ×wleft + Iright ×wright

)
− Iin ×

(
Lleft ×wleft + Lright ×wright

)(
Ileft ×wleft + Iright ×wright

)
− Iin

, (2)

where I is the solar irradiance, and L is the canopy radiance. The 760 nm was used as the absorption
band and then the left and right wavelengths were looped through to determine the optimal shorter
and longer channels. Finally, 757 and 772 nm were taken as the left and right wavelengths, respectively,
which are close to those in [55].

The normalized difference vegetation index (NDVI) and Vogelmann red edge index (VOG) were
used in this study to compare SIF values over the growing stages of summer maize in 2015. The NDVI
is retrieved from the reflectance difference of red and near-infrared bands and is calculated as [56]:

NDVI =
R850 −R680

R850 + R680
. (3)

The VOG can be derived based on the simple reflectance ratio of the red edge portion (680–750
nm) [57]. The equation is:

VOG =
R742

R722
, (4)

where Rxxx in Equations (3) and (4) denotes the reflectance at wavelength xxx in nm.

2.3. OCO-2 SIF Data and Processing

OCO-2 is a sun-synchronous satellite that has a 16-day repeat cycle, and its local overpass time is at
13:30. The OCO-2 SIF data are retrieved from three grating spectrometers using the O2-A band (FWHM
of around 0.042 nm) based on the Fraunhofer line infilling at 757 and 771 nm [8], similar to the methods
employed for GOSAT SIF retrievals [7]. Each spectrometer measures eight independent cross-track
spectra, with each spectra having a spatial resolution of approximately 1.29 × 2.25 km2 at Nadir, which
together cover a maximum range ~10 km wide full swath [11]. In the repeat cycles of measurements,
OCO-2 switches between Nadir and Glint observation modes, and Target viewing mode is opened
when the satellite overpass the ground validation sites, acquiring thousands of observations with
different viewing zenith angles (VZA). The Nadir mode follows the same ground track to provide a
relatively reliable dataset for the detection of variations over time, while certain varying east-west
offsets of the ground tracks exist in the Glint mode’s repeat cycles. It was pointed out in [11] that,
over land, Glint measurements are likely to underestimate SIF values compared with those by Nadir,
given that a more shaded fraction of the canopy may be measured (denoted as a vegetation dark-spot).
Therefore, compared with the Glint mode, the Nadir mode’s SIF measurements generally provide a
more consistent dataset over land, and the effects of viewing geometries of the Glint mode should be
taken into consideration when combining them together [1,8,11].

The OCO-2 v8 product (v.B8100r) that stores the daily lite files in netcdf (network common data
form) was used in this study. The SIF Lite files only include the soundings that passing the initial quality
standard thresholds and contain a significant SIF calibration program which uses non-fluorescent
surfaces, including oceans and deserts [7,8]. Unless otherwise specified, the mean values of SIF at
757 nm and 771 nm were used in this study, and the SIF value at 771 nm was multiplied by a factor of
1.5. Sun et al. [11] suggests that the fundamental for averaging the two wavebands is to reduce the
retrieval error (by about 1.4 times) through doubling the number of soundings and to improve the
robustness of the data analysis, considering the retrievals of the two micro-windows are influenced by
different uncertainties.
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Finally, the averaged OCO-2 SIF data on Glint mode were used to examine the influence of
different observation geometry on the SIF values and the relationship between SIF and GPP, and then
the data with those on Nadir mode were combined in the SIF-based model for comparison with the
LUE-based models. The land cover of the Huang-Huai-Hai Plain where the flux tower is located is
known to be one of the three largest croplands in China. Therefore, the SIF data retrieval radius from
the flux tower was broadened to 150 km [36] to increase the number of available soundings over the
study period. Additionally, only those SIF data with a cropland proportion greater than 80% were used
to establish the GPP–SIF function. For the comparison of the SIF model and the LUE-based models
at different temporal aggregation levels, the daily correction factor provided in the SIF Lite files was
applied to convert the mid-day SIF to daily SIF, and then to aggregate to a monthly average.

2.4. Leaf Area Index Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2 leaf area index (LAI)
product was used to drive the LUE models. This dataset is an 8-day composite with a 1 km spatial
resolution and was downloaded from the website (https://ladsweb.modaps.eosdis.nasa.gov/search/

order/4/MOD15A2H/). MOD15A2 LAI data from a 2-year period—from 1 January 2015 to 31 December
2016—were used. The projection of these data is sinusoidal, and the MODIS Reprojection Tools
(MRT) was used to reproject them into a Universal Transverse Mercator/ World Geodetic System 1984
(UTM/WGS 84) projection. The resulting LAI time series was further smoothed using the locally
adjusted cubic-spline capping (LACC) method [58] to remove unrealistically short-term abrupt changes
in the LAI caused by contamination of the measurements by clouds.

2.5. Analysis

We first examined the effects of VZA at Glint mode on the SIF values and their relationship with
tower GPP. We further compared the consistency of Glint and Nadir SIF observations with the tower
SIF, which was retrieved from the spectrum measurements during the growing period of summer
maize on a daily timescale. Then, we optimized the parameters of the SIF model, the SL-LUE model,
and the TL-LUE model with different temporal aggregation levels to examine the stability of their key
parameters. SL-LUE was developed based on the concept of radiation transformation efficiency [59]
and can be defined as:

GPP = εmax ×APAR× f (VPD) × g(Ta), (5)

where εmax means the maximum LUE (gC MJ−1), depending on different plant functional types,
and εmax × APAR is the potential GPP. g(Ta) and f (VPD) are efficiencies and range from 0 to 1.
They represent the adjusting scalars of the minimum air temperature (Ta) and vapor pressure deficit
(VPD), which are used to constrain εmax to the real LUE value. They can be expressed as:

g(Ta) =


0 Ta ≤ Tmin

Ta−Tmin
Tmax−Tmin

Tmin < Ta < Tmax

1 Ta ≥ Tmax

, (6)

f (VPD) =


0 VPD ≥ VPDmax

VPDmax−VPD
VPDmax−VPDmin

VPDmin < VPD < VPDmax

1 VPD ≤ VPDmin

, (7)

where VPDmax, VPDmin, Tmax, and Tmin are biome-dependent parameters [11,27].
SIF can be likewise calculated as:

SIF = SIFyield ×APAR× fesc, (8)

https://ladsweb.modaps.eosdis.nasa.gov/search/order/4/MOD15A2H/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/4/MOD15A2H/
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where SIFyield is the LUE for SIF, and fesc denotes the proportion of SIF photons that escapes from the
canopy in the viewing angle of the satellite sensor [19]. By combining Equations (5) and (8), a linear
GPP–SIF model can be theoretically expressed as:

GPP = ε/
(
SIFyield × fesc

)
× SIF ≈ ε/SIFyield × SIF, (9)

where fesc ≈ 1 can be set when far-red SIF data are used from cropland and grassland [54] because
these land types have a lower leaf absorptance in the far-red waveband, a higher LAI, and a simpler
canopy structure compared with other ecosystems [19,60]. The TL-LUE model divides GPP into two
components, sunlit and shaded leaves, by combining the algorithm of the SL-LUE model and the new
generation of the dynamic land model (DLM) [32]:

GPP = (εmsu ×APARsu + εmsh ×APARsh) × f (VPD) × g(Ta), (10)

where εmsu and εmsh represent the maximum LUE of sunlit and shaded leaves, respectively. APARsu

and APARsh denote the PAR absorbed by sunlit and shaded leaves. They are calculated as:

APARsh = (1− α) × [(PARdif − PARdif,u)/LAI + C] × LAIsh, (11)

APARsu = (1− α) × (PARdir × cos(β)/cos(θ) + (PARdif − PARdif,u)/LAI + C) × LAIsu, (12)

where α is the canopy albedo related to a given vegetation type and was set to 0.23 for cropland
in this study [11]; PARdif and PARdir are the diffuse and direct components of incoming PAR,
respectively. PARdif,u is the diffuse PAR under the canopy and was calculated according to [61],
(PARdif − PARdif,u)/LAI, which represents the diffuse PAR per unit leaf area within the canopy; C
quantifies the contribution of multiple scattering of the total PAR to the diffuse irradiance per unit leaf
area within the canopy; β is the mean leaf–sun angle and was set at 60◦ for a canopy with a spherical
leaf-angle distribution [61]; and θ is the solar zenith angle. More detailed information about the
SL-LUE model and the TL-LUE model is in [5].

LAIsu and LAIsh are the LAI of sunlit and shaded leaves. They are computed as [28,61]:

LAIsu = 2× cosθ× (1− exp(−0.5×Ω × LAI/ cosθ)), (13)

LAIsh = max(0, LAI − LAIsu), (14)

where θ is the solar zenith angle; LAI is the leaf area index; Ω represents the vegetation clumping index
according to different vegetation types and was set to 0.9 for cropland in this study [62].

The key parameters of the three models (ε/SIFyield, εmax, εmsu, and εmsh) were optimized by
applying a Bayesian approach that combines the Bayesian theory with the Markov chain Monte Carlo
(MCMC) estimator using the 2015 training dataset.

Additionally, to evaluate the extent to which the model is affected by the integrated meteorological
conditions independent of temporal aggregation, we calculated the meteorological condition index
(ECI) by combining APAR, air temperature, and VPD [3]. We first took the normalized transformation of
the three variables based on the maximum-minimum observations throughout the season. A minimum
that accounted for 95% of the minimum observation was used for each variable to get a positive
transformed value of the observed minimum. Taking APAR as an example, the scaled APAR at the
time that OCO-2 passes over can be expressed as follows:

Si
APAR =

APARi
−APARmin

APARmax −APARmin
, (15)

where APAR denotes the APAR observations when OCO-2 overpasses from the mid-day timescale
to the monthly timescale (corresponding to the superscript “i”), and APARmin and APARmax are the
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minimum and maximum APAR acquired during the transit of OCO-2 throughout the season’s different
temporal aggregation levels, respectively. In [3], it is suggested that whole canopies are prone to
experiencing exposure to excess light when the ECI is greater than 0.8 compared with when the ECI
is lower. Therefore, we used 0.8 as a threshold value at which the ECI values were fitted to these
models separately.

Finally, GPP estimations derived from the 2016 testing dataset were used to validate the SIF-based
model with that of the LUE-based models for mid-day, daily, and monthly timescales, respectively.

2.6. Accuracy Assessment of Models

The fluctuations in the parameters were quantified using the coefficient of variation (CV) [63].
For example, the CV of εmax can be defined as:

CV =

√∑n

i=1

(
εmaxi − εmax

)2
/(n− 1)/εmax × 100%. (16)

The capability of different model simulations was evaluated through statistical analyses at different
temporal aggregation levels for each estimation–observation pair, for which the degree of mismatch
was assessed by the coefficient of determination (R2), bias, the root-mean-square error (RMSE), and
the relative/normalized RMSE (RRMSE) [64,65]:

RRMSE =


√

1
N

∑N

i=1
(GPPsim(i) −GPPobs(i))

2/
(
GPPobsmax −GPPobsmin

)× 100%, (17)

where the subscripts, sim and obs, represent the simulations and observations of GPP, and the subscripts,
obsmax and obsmin, mean the maximum and minimum GPP observations, respectively.

3. Results

3.1. Effects of Viewing Zenith Angle in OCO-2 Glint Mode on SIF Observations

We intended to combine SIF values from Glint and Nadir observation modes to increase the
number of available SIF observations, but the SIF retrievals on Glint mode were measured at different
VZAs over time, which may affect the magnitude of SIF values and the relationship between SIF
and GPP. Consequently, we first extracted the mid-day SIF data in Glint mode from a circular region
with a radius of 150 km centering on the flux tower for the period from January 2015 to December
2016 (Table 1, sorted by ascending VZAs). The mid-day SIF averages of all soundings without VZA
restriction and those with varying spacings of VZAs were further compared to explore how the VZA
affected the SIF values, as well as the relationship between SIF and GPP (Figure 1). The VZA was
separated into three intervals [1] (VZA ≤ 20◦; 20◦ < VZA ≤ 40◦; and VZA > 40◦) and these three
intervals accounted for 27.1%, 36.0%, and 36.9% of the soundings, respectively. The sensitivity analysis
showed that differences of the SIF values only existed in the threshold value, which had few soundings
(1 and 8), resulting in large uncertainties (bold in Table 1, green oval in Figure 1a). Accordingly, the
differences were negligible between the averaged SIF retrievals with and without VZA restrictions
(Figure 1a). In addition, we also found that the viewing geometries in Glint mode varied with seasons.
For example, low SIF values with high VZA (>40◦) occurred in the non-growing/cold season (Figure 1a,
blue circle, from November to February) and high SIF values with low VZA (≤20◦) appeared in the
late stages of winter wheat and the early growth period of summer maize (Figure 1a, red and black
circles). The corresponding SIF values with VZA ≤ 20◦ exhibited slightly higher values compared with
those VZA > 40◦. However, the GPP–SIF function was not greatly affected in terms of the R2 of 0.90
(±0.01) and the fitted slope of 23.74 (±1.88) (Figure 1b). In this case, SIF retrievals and the GPP–SIF
relationship are only slightly different with varying VZAs on Glint mode in this flux tower.
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Table 1. Specific information of the 35 SIF (sun-induced chlorophyll fluorescence) measurements
retrieved by OCO-2 (Orbiting Carbon Observatory-2) in Glint mode within a circular area of a 150 km
radius from the Yucheng flux tower (from January 2015 to December 2016).

No. Year Date Day of
Year

Count of
Soundings

Cropland LC
Percent (%)

Local Time of
Overpass

Viewing Zenith Angle
at Overpass (deg)

1 2015 30-Jun 181 157 89.2 13:14:49 14.86
2 2016 07-Jul 168 1114 97.0 13:20:55 14.99
3 2015 16-Jun 188 982 93.1 13:14:03 14.99
4 2015 05-Jun 156 1196 92.7 13:20:48 15.77
5 2016 18-Jul 200 44 93.6 13:13:48 16.02
6 2015 29-May 149 36 97.3 13:14:32 16.48
7 2016 25-Jul 207 114 87.7 13:19:49 16.56
8 2016 22-May 143 427 96.0 13:20:25 16.85
9 2015 01-Aug 213 42 85.7 13:14:36 17.87
10 2016 15-May 136 543 93.8 13:14:41 18.29

11 1 2015 08-Aug 220 547 87.2 13:20:45 18.93
12 1 2015 08-Aug 220 1 100.0 13:21:15 20.00
13 2015 18-Apr 108 488 97.4 13:21:22 22.84
14 2016 20-Apr 111 96 100.0 13:21:00 22.93
15 2016 26-Aug 239 1231 97.1 13:20:06 23.38
16 2016 13-Apr 104 1204 93.3 13:14:32 24.28
17 2015 02-Sep 245 538 93.2 13:14:40 25.00
18 2015 11-Apr 101 714 83.6 13:15:42 25.18
19 2016 19-Mar 79 849 95.9 13:20:52 30.50
20 2016 20-Sep 264 958 96.4 13:13:55 30.57
21 2015 17-Mar 76 119 100.0 13:21:47 31.81
22 2015 27-Sep 270 725 84.7 13:08:36 32.85
23 2015 10-Mar 69 1260 95.5 13:15:40 33.57
24 2016 16-Feb 47 519 97.4 13:20:53 38.96

25 1 2015 13-Feb 44 331 93.5 13:21:41 39.54
26 1 2015 13-Feb 44 8 100.0 13:21:49 40.04
27 2016 09-Feb 40 1297 96.3 13:15:02 41.33
28 2016 02-Feb 33 725 90.1 13:09:04 43.10
29 2016 16-Nov 321 368 98.4 13:09:00 45.85
30 2015 14-Jan 14 732 85.4 13:09:02 45.87
31 2016 23-Nov 328 817 99.9 13:14:49 45.93
32 2016 08-Jan 8 1303 95.7 13:15:20 46.89
33 2015 30-Nov 334 555 98.4 13:09:19 47.50
34 2016 18-Dec 353 1207 89.7 13:09:02 47.96
35 2016 01-Jan 1 97 97.0 13:09:23 48.01

1 The threshold values between different VZAs intervals.Remote Sens. 2019, 11 FOR PEER REVIEW  11 
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field SIF, with the higher slope of 1.21. However, both SIFnadir and SIFglint showed a strong linear 
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Figure 1. Effects of varying view zenith angle (VZA) on OCO-2 Glint SIF observations and the gross
primary production (GPP)–SIF correlation at the mid-day timescale: (a) the differences between SIF
with and without VZA restrictions: VZA ≤ 20◦; 20◦ < VZA ≤ 40◦; and VZA > 40◦; (b) the relationships
of ground GPP and SIF under various intervals of VZAs: VZA ≤ 20◦; 20◦ < VZA ≤ 40◦; VZA > 40◦; and
no restriction (0◦ < VZA ≤ 50◦). The data points are averages of the sounding for each point in the time
referring to Table 1 and the error bar represents ±1σ statistical uncertainty estimations of OCO-2 SIF.



Remote Sens. 2019, 11, 1328 11 of 27

The consistency of tower GPP with the OCO-2 SIF on Glint and Nadir modes, the tower derived
SIF and vegetation index, retrieved from the spectral measurements in the 2015 growing period of
summer maize at the CN-YuC site, was further examined (Figure 2a). Maize photosynthesis began
in the middle of June, with GPP rising rapidly, and ended in mid-October, with GPP close to zero
(Figure 2a). Overall, the discontinuous OCO-2 SIF, tower derived SIF, NDVI, and VOG can reasonably
capture seasonally photosynthetic dynamics. They all first increased and then decreased throughout
the growing season of summer maize, consistent with the tower calculation of GPP. Compared with
NDVI and VOG, the tower SIF especially captured better fluctuation details for the early (“green-up”),
elongation, and later (senescence) phases (Figure 2a, Orange dotted box). In addition, Figure 2b further
shows the relationship of the OCO-2 SIF values obtained from Glint and Nadir modes and the tower
derived SIF. Compared with SIFglint, SIFnadir tended to overestimate the field SIF, with the higher
slope of 1.21. However, both SIFnadir and SIFglint showed a strong linear relationship with tower
derived SIF. The R2 values were consistently higher than 0.70. These analyses suggest again that it may
be reasonable to combine data from Glint and Nadir observation modes to increase the number of
available observations for further comparison of the GPP–SIF and GPP–LUE models.
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Figure 2. The consistency of OCO-2 SIF in Glint and Nadir observation modes with the tower derived
SIF: (a) Seasonal dynamics of tower gross primary production (GPP), normalized difference vegetation
index (NDVIBRDF), Vogelmann red edge index (VOGBRDF), tower sun-induced chlorophyll inflorescence
(SIF), and OCO-2 SIF; (b) the relationship between OCO-2 SIF in Glint and Nadir modes and the tower
SIF at the CN-YuC site over the 2015 growth period of summer maize. There are only six data points on
Glint mode and seven data points on Nadir mode for both satellite overpassing and tower observing at
the same time. The missing observations from 17 August 2015 to 1 September 2015 were due to an
equipment failure.

3.2. Comparison of Parameter Stability of the SIF and LUE Models across Multiple Temporal Aggregation Levels

We optimized the key parameters (ε/SIFyield, εmax, εmsu, and εmsh) of the SIF model, SL-LUE
model, and TL-LUE model on mid-day, daily, and monthly timescales, respectively, to explore the
stability of these parameters (Figure 3, Table 2). In general, the goodness of fit in these three models
was better on the daily and monthly timescales than on the mid-day timescale, which is consistent with
the results reported by [37] and [1]. Across all temporal aggregation levels, the TL-LUE model was
better than the SIF model and the SL-LUE model at capturing and explaining the seasonal fluctuations
of GPP. The corresponding R2 were 0.70, 0.90, and 0.93 for the mid-day, daily, and monthly timescales,
respectively, slightly higher than those of the SIF model by 4.3%, 7.8%, and 4.3%, and much higher
than those of the SL-LUE model by 27.1%, 10%, and 14.0%. However, it is noteworthy that the
posterior estimations of ε/SIFyield in the SIF model and εmax in the SL-LUE model was relatively
convergent across all temporal aggregation levels (Table 2). The CV of ε/SIFyield and εmax were 6.1%
and 4.1%, which were on average 13.5% (±0.97%) and 34.3% (±1.28%) lower than those of εmsu and
εmsh. These analyses indicate the existence of both a robust GPP–SIF linear relationship and a good
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ability to capture seasonal variation in GPP across multiple temporal aggregation levels in the SIF-based
model, compared with LUE-based models.Remote Sens. 2019, 11 FOR PEER REVIEW  13 
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Figure 3. Fitting results of parameters for different models on different timescales in 2015. The columns
from left to right show the mid-day, daily, and monthly timescales, respectively. The rows from
top to bottom indicate the SIF model (GPP ≈ ε/SIFyield × SIF), the one-leaf light-use efficiency
(SL-LUE) model (GPP = εmax × APAR × f (VPD) × g(Ta)), and the two-leaf LUE (TL-LUE) model
(GPP = εmsu ×APARsu × f (VPD)× g(Ta) + εmsh ×APARsh × f (VPD)× g(Ta)), respectively. There are
39 data points for mid-day and daily time scales and 12 data points for monthly time scale. The unit of
tower GPP is gC m−2 day−1, the unit of OCO-2 SIF is W m−2 µm−1 sr−1, and the unit of APAR × f(VPD)
× g(T) is MJ m−2 day−1 (1 MJ = 106 J).

Table 2. The posterior estimations of ε/SIFyield (gC m−2 day−1 (W m−2 µm−1 sr−1) −1) in the SIF model,
εmax (gC MJ−1) in the SL-LUE model, εmsu (gC MJ−1) and εmsh (gC MJ−1) in the TL-LUE model, and
the coefficient of variation (CV, equal to 100% × standard deviation divided by the mean) of these
optimizing parameters from mid-day to monthly timescales in 2015. All correlations were statistically
significant (p < 0.001).

Models and Model
Parameters

Mid-Day Daily Monthly
CV (%)

Fitted Values R2 Fitted Values R2 Fitted Values R2

OCO-2 SIF
model

ε/SIFyield 26.31 (±3.89) 0.67 29.70 (±2.70) 0.83 28.43 (±2.60) 0.89 6.1

SL-LUE
model εmax 2.51 (±0.47) 0.51 2.33 (±0.21) 0.81 2.50 (±0.32) 0.80 4.1

TL-LUE
model

εmsu 2.70 (±0.99)
0.70

2.15 (±0.51)
0.90

1.88 (±1.07)
0.93

18.6

εmsh 4.30 (±3.95) 4.80 (±1.95) 8.58 (±4.96) 39.7
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3.3. Comparison of Parameter Sensitivity of the SIF and LUE Models under Multiple Meteorological Conditions

The sensitivity of environmental factors in the SIF and LUE models was further independently
analyzed at mid-day, daily, and monthly timescales. The ECI well summarized the information
contained in the three environmental variables (APAR, air temperature, VPD) (Figure 4) and provided
an objective and simple criterion to describe the extent of meteorological conditions experienced by the
vegetation and photosynthetic devices. Across all temporal aggregations, we found that ECIs higher
than 0.8 occurred in the later growth phase of wheat, the early growth stage of maize, and over the
whole growth phase of summer maize from early July to early October (Figure 4). The high ECI values
of wheat were mainly due to high air temperature and VPD, with high VPD occurring at the beginning
of the growing phase of summer maize. This might be due to the lack of sprinkler irrigation during
this period with high temperature, leading to higher VPD values, because the irrigation in the CN-YuC
site is mainly used during the growth period of wheat. The high ECI values of the maize were mostly
due to exposure to an environment with high light and high air temperature. This could be explained
by the precipitation being concentrated between June and August, thus keeping sufficient water vapor
content in the air. Therefore, the corresponding VPD values were lower even though the temperature
was high during this period.Remote Sens. 2019, 11 FOR PEER REVIEW  15 
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Figure 4. Seasonal dynamics of normalized meteorological conditions (scaled within 0–1), including
normalized meteorological condition index (ECI), air temperature, VPD, and APAR at the (a) mid-day
timescale, (b) daily timescale, and (c) monthly timescale. The solid grey lines refer to the threshold
value of ECI values. The whole canopies are prone to experiencing exposure to excess light when the
ECI is greater than 0.8 compared with when the ECI is lower.
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Figure 5 and Table 3 further show the fluctuations of parameters in the SIF and LUE models
under a range of different meteorological conditions using 0.8 as a threshold value of ECI values to fit
separately. Overall, the relationship remained linear without significant nonlinearity, though there is
one point at which large ECI values deviated from the linear relationship on the mid-day timescale (the
left panel of Figure 5a,d), which agrees with the results reported by [3]. However, all curves showed
a slight change in the direction of their slopes with different values of air temperature, APAR, and
VPD at individual timescales. For all three models, we noted that the posterior estimations of their
parameters had the smallest CV values on the daily timescale, while larger fluctuations occurred on
both the mid-day and monthly timescales. A detailed comparison is shown in Table 3. The values of
ε/SIFyield were relatively constant, with CV values ranging from 5.7% at the daily timescale to 22.5%
at the monthly timescale, about one-half of the εmax CVs and one-quarter of the εmsu and εmsh CVs.
These results thus enhance the confidence of using SIF to simulate ecosystem-scale GPP under varying
meteorological conditions.Remote Sens. 2019, 11 FOR PEER REVIEW  16 
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Figure 5. The fluctuations in the parameters of the SIF model and the LUE models for a range of
meteorological conditions, where 0.8 is the threshold value at which ECI values are fitted separately.
The columns from left to right show the mid-day, daily, and monthly timescales, respectively. The rows
from top to bottom indicate the SIF model (GPP ≈ ε/SIFyield × SIF), SL-LUE model (GPP = εmax ×

APAR × f (VPD) × g(Ta)), and TL-LUE model (GPP = εmsu × APARsu × f (VPD) × g(Ta) + εmsh ×

APARsh × f (VPD) × g(Ta)), respectively. The unit of tower GPP is gC m−2 day−1, the unit of OCO-2
SIF is W m−2 µm−1 sr−1, and the unit of APAR × f(VPD) × g(T) is MJ m−2 day−1 (1 MJ = 106 J).
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Table 3. The posterior estimations and the coefficients of variation (CV = standard deviations/mean
× 100%) of ε/SIFyield (gC m−2 day−1 (W m−2 µm−1 sr−1) −1) in the SIF model, εmax (gC MJ−1) in the
SL-LUE model, and εmsu (gC MJ−1) and εmsh (gC MJ−1) in the TL-LUE model, with ECI values greater
than 0.8 and less than 0.8 on the mid-day, daily, and monthly timescales, respectively. The “M” in gC
MJ−1 equals 10−6.

Time Scales Parameters ECI < 0.8 ECI > 0.8 CV (%)

mid-day

ε/SIFyield 23.09 (±4.67) 29.28 (±7.6) 16.7
εmax 1.89 (±0.57) 3.30 (±0.74) 38.4
εmsu 1.05 (±1.04) 3.79 (±2.08) 80.0
εmsh 7.75 (±3.46) 1.23 (±10.60) 102.8

daily

ε/SIFyield 28.18 (±2.99) 30.56 (±3.92) 5.7
εmax 2.11 (±0.34) 2.48 (±0.30) 11.5
εmsu 1.64 (±0.95) 2.28 (±0.73) 23.0
εmsh 5.70 (±3.22) 4.63 (±2.91) 14.7

monthly

ε/SIFyield 22.61 (±10.69) 31.16 (±5.04) 22.5
εmax 1.26 (±0.49) 1.97 (±0.84) 31.0
εmsu 1.09 (±2.33) 0.75 (±0.88) 26.6
εmsh 5.11 (±10.68) 9.39 (±4.20) 41.8

3.4. Validation of LUE-Based and SIF-Based Models

The estimation performances of the LUE models and the linear SIF model were finally evaluated
using the testing dataset from the year 2016 at the CN-YuC site. Maize photosynthesis started around
mid-June with a rapid rise in GPP and ended in mid-October with GPP approaching zero, while wheat
photosynthesis started around late February after the overwintering period and ended in mid-June.
In general, GPPSL-LUE, GPPTL-LUE, and GPPSIF captured the seasonal variations and magnitude of
tower GPP well, except for some underestimation for the growth stage of maize on the mid-day
timescale (Figure 6a). By contrast, the SIF model and the TL-LUE model could better describe the
trajectory of the whole growing period of summer maize and winter wheat, and especially better
described the fluctuation details for the early (“green-up”) and late (senescence) phases compared
with SL-LUE (Figure 6a–c).

As a result, the SIF model and TL-LUE model had higher values of R2 and lower values of RMSE
than the SL-LUE model across all temporal aggregation levels (Figure 6; Table 4), which is consistent
with the fitted coefficient of determination using the training dataset in Table 2. The averaged changing
trajectory of GPP explained by the SIF model and TL-LUE model was 77% and 83%, respectively.
The averaged R2 values were better than that of the SL-LUE model by 15.5% and 23.9%, and the
corresponding average RRMSE values decreased by 2.9% and 2.9%, respectively (Table 4). Although
the averaged biases of the SL-LUE model were lower than the biases of the SIF and TL-LUE models, its
fluctuations in bias values were much greater. The small biases of the SL-LUE model might be due to
bias items with opposite signs that cancel each other. Overall, the model performance in predicting
GPP was ranked in three tiers as: TL-LUE > SIF model > SL-LUE. Moreover, the cross-validation
and prediction results show that the SIF model and the TL-LUE model both have good stability
and powerful prediction ability. These results indicate that the performance of the SIF models was
comparable to the LUE models and actually better than the SL-LUE model, even though the SIF models
were completely based on SIF and did not contain any ancillary data (e.g., temperature, radiation, VPD).
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Table 4. R2, bias (observations minus simulations), root-mean-square error (RMSE), and
relative/normalized RMSE (RRMSE) of the mid-day, daily, and monthly GPP (in gC m−2 d−1) in
2016 for the SIF model, SL-LUE model, and TL-LUE model, respectively. The units of bias and RMSE
are both gC m−2 d−1. The unit of relative RMSE is %.

Models

Scale Mid-Day Daily Monthly

R2 RMSE RRMSEBias R2 RMSE NRMSEBias R2 RMSE RRMSEBias

SIF model 0.59 9.23 15.61 0.55 0.77 2.50 13.49 0.84 0.94 0.59 4.06 0.98
SL-LUE 0.42 11.32 19.15 0.31 0.71 2.82 15.21 0.63 0.84 1.10 7.57 0.63
TL-LUE 0.68 9.03 15.28 0.50 0.83 2.51 13.54 0.75 0.98 0.65 4.47 0.91

4. Discussion

4.1. Effects of Viewing Zenith Angle in OCO-2 Glint Mode

The robustness of the GPP–SIF relationships is affected by the quality of SIF retrievals, the accuracy
of the carbon fluxes, as well as the homogeneity of the studied ecosystems. Because of OCO-2’s high
discrete coverage, the SIF data in this study were obtained within a radius of 150 km centered at the
flux tower to increase the number of soundings. Although only the SIF data with a cropland fraction
greater than 80% were used to establish the SIF–GPP function (Table 1), this could also cause a footprint
mismatch between the OCO-2 SIF and tower observations to some extent.

On the other hand, Sun et al. [11] has suggested that the effects of VZAs should be considered
when using OCO-2 Glint or Target modes. We found that there is little difference between SIF values
with and without VZA restriction except for two threshold values (Figure 1a), while the slope of the
GPP–SIF relationship with VZA ranging between 20◦ and 40◦ exhibited slightly higher values than
those with other VZAs (Figure 1b). The circumstances are not exactly the same as the directional effect
on the SIF emission in Target mode that was reported by [1]. Li et al. [1] showed that the averaged
SIF values and GPP–SIF relationship were almost unaffected when VZA was less than 40◦, while the
averaged SIF with VZA greater than 40◦ exhibited slightly higher values than those with all VZAs and
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the resulting GPP–SIF relationships were slightly different from those with smaller VZAs. This might
be due to the VZA changes in different ways between the Target mode and Glint mode. In the Target
mode, a great amount of measurements at different VZA values was acquired when the satellite
focused on the ground sites during the overpass time. However, the viewing geometry of the Glint
mode changed as the position of the land dark-spot varies over the season from east to west. That is,
the average SIF with 20◦ < VZA ≤ 40◦ occurred in the growing season of winter wheat, while the SIF
with 0◦ < VZA ≤ 20◦ appeared at the ripening stage of winter wheat and the early stage of summer
maize, and the SIF with VZA > 40◦ appeared at the seedling stage of winter wheat. The corresponding
SIF values with VZA ≤ 40◦ exhibited slightly higher values compared with those VZA > 40◦ (Figure 1a),
and consequently, the GPP–SIF function had certain deviations with the SIF soundings with high VZA
values (Figure 1b). The slope of the GPP–SIF is inconsistent between VZA ≤ 20◦ and 20◦ < VZA ≤
40◦, which had similar SIF values, which may be mainly because of the different cropland types (C3
winter wheat–fix and reduce inorganic CO2 into organic compounds using only the C3 pathway in
photosynthesis and C4 summer maize) in this study site. Therefore, the difference in the slopes of the
GPP and SIF functions in this study may partly be attributable to the combining of the SIF Glint and
Nadir mode observations and cropland types. There is still much to learn, and further validations with
more flux sites are still needed to address the specific effects of VZAs in Glint mode on SIF values and
on the relationship between SIF and GPP at different spatial scales and other ecosystems, as well as the
mechanism between them.

4.2. Temporal Scaling Effect on the SIF-Based and LUE-Based Models

There was no evidence of obvious nonlinearity or changes in the slope (ε/SIFyield) direction of
the SIF-based model across the mid-day to monthly timescales (Figure 3; Table 2), which is consistent
with previous results [13,37,66]. Guanter et al. [13] points out that the responses of GPP to light at
the ecosystem-scale display low saturation levels when considering the mid-day (half-hourly) data
and become further linearized with increasing spatial or temporal aggregation. Similar results were
demonstrated in [37], and the GPP–SIF relationship remained consistent from mid-day to monthly
timescales for both the maize and landscape ecosystem (Table 5). The linear correlation between
GPP and SIF tends to converge across different timescales and may primarily depend on the fact that
SIF is only emitted from photosystems and is closely linked to the fraction of PAR absorbed by the
chlorophyll in all leaves of the canopy ( f PARchl) [38,67]. Zhang et al. [38] derived an estimation of
the f PARchl, which defined by SIF/cos(SZA) from 127 flux tower sites, and found that the light use
efficiency (ε) showed a spatial-temporal convergence using chlorophyll-absorbed light (PARchl) to fix
carbon dioxide. Moreover, both theoretical and experimental investigations have suggested that the
two terms (ε and SIFyield) in the SIF model covary and the ratio of one to the other tends to be constant
under high light intensities [67,68]. In this case, it is possible to conserve the GPP–SIF relationship
across space and time.

Table 5. The slope, R2, and the coefficients of variation (CV = standard deviations/mean × 100%) of the
linear GPP–SIF model in this study, from Wood et al. [37].

Ecosystem Time Scale Slope R2 CV of the Slope

This study maize–wheat rotation Mid-day 26.31 (±3.89) 0.67 6.1
Daily 29.70 (±2.70) 0.83

monthly 28.43 (±2.60) 0.89
Wood et al. [37] Corn Mid-day 23.2 (±2.8) 0.81 9.0

Daily 19.9 (±0.88) 0.97
monthly 23.5 (±1.15) 0.98

Landscape Mid-day 15.6 (±2.1) 0.79 5.8
Daily 14.8 (±1.81) 0.82

monthly 13.9 (±1.3) 0.92
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By comparison, the values of the εmax in the SL-LUE model were similarly robust as ε/SIFyield
and considerably more stable than εmsu and εmsh in the TL-LUE for all temporal aggregation levels.
As for the SL-LUE model, at the site scale, the photoresponse of an unstressed canopy is generally
more linear for the variation in light absorption, along with canopy depth [69], and the slope of this
photosynthesis–APAR relationship is the εmax. The εmax value at the satellite overpass time (e.g.,
mid-day) is close to that of the daily average [70,71], and the relative similarity between the mid-day
and daily εmax values also appears on the annual scale. As for the TL-LUE model, two possibilities exist
for the large fluctuations of εmsu and εmsh. First, the diffuse and direct radiation were partitioned using
the exponential model with default parameters [72], which would result in uncertainty in the estimates
of sunlit and shaded GPP. Additionally, it should be noted that any deviation of the parameter may also
be related to biases in the GPP simulations [11]. The second possibility to consider is that no unique
solution for εmsu and εmsh occurs at different spatial or temporal scales. The boundary conditions of
εmsu and εmsh were set according to their observations and previous research results to separate their
contribution, but lacked the specific constraint functions between them for the current study. Although
previous studies (e.g., [5,28,31]) have shown that a linearly relationship exists between either εmax

and εmsu or εmax and εmsh based on a number of statistical results, but is not clear yet, thus there is
no unified equation of them in LUE models so far. These analyses suggest that the existence of both
robust parameters and a good ability to capture seasonal variation in GPP may be in the SIF model,
compared with the SL-LUE model, which has a robust argument, but poorer performance, and the
TL-LUE model, which has unstable arguments, but better performance.

4.3. Environmental Restrictions on the SIF-Based and LUE-Based Models

The parameters of these three models all showed fluctuations to some extent under different ECI
values of which contained the information of the air temperature, APAR, and VPD. However, the CV
values of ε/SIFyield in the SIF model were relatively small under different ambient conditions in each
independent temporal aggregation compared with those values in the SL-LUE and TL-LUE models
(Figure 5; Table 3). It was also found by [3] that the GPP–SIF relationship in grassland tended to remain
linear at the canopy scale with different meteorological conditions. Physiological stress caused by
excessive light is known to affect the photochemical yield and fluorescence [73,74]. For the SIF model,
the values of ε/SIFyield showed the greatest change with a CV of 16.7% and 22.5% at the mid-day and
monthly timescales, which is possibly attributable to the dramatic changes in the slope as the ECI values
change (Figure 7a,c). Moreover, at the mid-day and daily timescales, the linear relationship between
ε and SIFyield changed from a strong correlation (average R2 value of 0.70) to a weak correlation
(average R2 value of 0.30) as the ECI values increased (Figure 7a,b). Therefore, the weakening of
covariation between the ε and SIFyield is likely the cause of the small fluctuations in the slope in the SIF
model. Furthermore, fluorescence, photochemical quenching (PQ), and non-photochemical quenching
(NPQ) are mutually exclusive and competing pathways. Changes in the efficiency of one affects the
efficiency of the other two pathways [75]. The stress-induced closing down of photochemical traps
in photosystem-II increases the fluorescence yield as the lifespan of an excited electron lengthens,
while stress-induced opening up of extra NPQ pathways causes the fluorescence to decrease [76].
Nevertheless, both the shutdown of photosynthetic reaction centers and the opening of NPQ pathways
cause the photochemical yield to drop. The influences of an increasing NPQ on ε and SIFyield are not
necessarily proportional [3]. That is, the nonlinear effects of NPQ on ε and SIFyield are complex, which
may also be a reason for the distinct response of these models to the different meteorological conditions.
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Figure 7. Relationship between SIF yield (SIF/APAR, SIFyield) and light-use efficiency (ε) at the satellite
overpass time throughout 2015 at the CN-YuC cropland site in northern China, where 0.8 is the threshold
value at which ECI values are fit separately for the mid-day, daily, and monthly timescales, respectively.
The whole canopies are prone to experiencing exposure to excess light when the ECI is greater than 0.8
compared with when the ECI is lower.

Additionally, sunlit leaves receive both direct and diffuse radiation and should have higher
temperatures than shaded leaves, resulting in greater temperature gradients between the surrounding
air and sunlit leaves. A former study has suggested that the different temperatures of sunlit and
shaded leaves should be considered in the parameter optimization procedure in the TL-LUE model [31].
Moreover, it is also noted that the differences in leaf temperature can also cause disparities in the
VPD of sunlit and shaded leaves. In the LUE-based models, the application of the same VPD and
air temperature scalars to the whole canopy may also be a source of uncertainty in the optimized
parameters and estimated GPP [30]. Therefore, although we partitioned the efficiency (ε) term of the
LUE-based models into fixed parts (εmax, εmsu, and εmsh) that depict the optimal efficiency and variable
components that represent the effects of light, temperature, and water stress (e.g., VPD), the sensitivity
of the LUE models to the ECI may be the main cause of the larger fluctuations in the parameter values.

4.4. Estimation Performances of the SIF-Based and LUE-Based Models

The performances of the three GPP models were highly consistent in their predictions of
the magnitudes and seasonal dynamics of GPP, as validated using GPP observations (Figure 6).
The performance of the SIF model was better than that of the SL-LUE model and was only slightly
poorer than that of the TL-LUE model. Similar to this study, previous research (see Table 6) indicates
that the models performed better at the daily timescale compared to the mid-day and half-hour
timescales. Furthermore, the goodness of fit in the process-based two-leaf model provides the best
simulation, and the GOME-2 SIF linear model is also better than the big-leaf LUE model used in the
MOD17A2 product.
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Table 6. The estimation performance among different GPP models in this study, from Cui et al. [4] and
Wagle et al. [44]. The unit of RMSE is gC m−2 d−1.

Ecosystem Models R2 RMSE

This study
(maize–wheat rotation)

OCO-2 SIF model
Mid-day 0.59 9.23

Daily 0.77 2.50
monthly 0.94 0.59

SL-LUE model
Mid-day 0.42 11.32

Daily 0.71 2.82
monthly 0.84 1.10

TL-LUE model
Mid-day 0.68 9.03

Daily 0.83 2.51
monthly 0.98 0.65

Cui et al. [4]
(Maize)

GPP–SIF760 Half-hour 0.62 20.74
GPP–SIF686 Half-hour 0.46 31.10

MuSyQ-GPP Half-hour 0.70 21.60
BEPS model Half-hour 0.87 12.96

Wagle et al. [44]
(Maize)

GOME-2 SIF model 8-day 0.87 2.72
VPM model 8-day 0.91 2.27

SCOPE model 8-day 0.95 1.58
MOD17A2 8-day 0.47 5.30

Wagle et al. [44] demonstrated that SIF is more relevant to the PAR absorbed by the photosynthetic
parts of the maize canopy. That is, the components of PAR related with the SIF are mainly absorbed by
vegetation chlorophyll, while the SL-LUE model in this study uses the PAR absorbed by the plant canopy
( f PARcanopy) to estimate GPP. However, vegetation photosynthesis and chlorophyll fluorescence can
only be driven by the PAR absorbed by photosynthetic parts, not by non-photosynthetic parts, such
as branches, senescent foliage, and stems. This may be the reason that the SIF model has a better
performance than the SL-LUE model. Nonetheless, previous studies have indicated that remote
sensing SIF retrievals tend to represent the top layer of the vegetation canopy, which is primarily
composed of sunlit leaves, thereby causing deviation between the SIF-based simulation and the tower
observations [35,39]. Similar results were found when we analyzed the relationship between the
SIF and LAI, the latter including the LAI of both sunlit and shaded leaves. The values of R2 for
the relationship between the SIF and the LAI of sunlit leaves were all greater than 0.85, while the
values of R2 ranged from 0.62 to 0.70 and from 0.53 to 0.65 for the relationships between SIF and the
LAI of the whole canopy and between SIF and the LAI of shaded leaves across multiple temporal
aggregation levels, respectively (Figure 8). Although the f PARcanopy was also used in the TL-LUE
model, it explicitly considers the difference in the LUE and APAR of sunlit and shaded leaves within
the canopy. He et al. [28] illustrated that considering the entire canopy as a big extended leaf and
ignoring the difference in the LUE and APAR of leaves can cause biased values of the simulated GPP.
Consequently, the TL-LUE model can reduce the bias in GPP simulated by the SL-LUE model and the
SIF model. On the other hand, the LUE-based models depend on a set of biome-specific parameters
(εmax, εmsu, and εmsh) and also require different inputs, such as air temperature, PAR, and water or
soil moisture scalars, while the SIF-based models are completely based on SIF information without
requiring any other ancillary variables. In this case, using SIF to estimate GPP may save computational
resources and reduce the uncertainty in GPP estimates across spatial and temporal scales compared
with the LUE-based algorithm.
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sunlit/shaded/total leaf area index (LAIsu, LAIsh, LAI, m2/m2) on the mid-day, daily, and monthly
timescales, respectively.

In summary, there is a compelling amount of data that supports the existence of a linear relationship
between GPP and SIF for cropland that (1) is uniform for different temporal aggregation levels and
under different meteorological conditions, and (2) contains adequate information for modeling
ecosystem-level GPP. Additionally, whether our assessments are applicable to areas other than the
cropland (maize–wheat rotation) used in this study is a problem that needs to be addressed in future
research, and further studies are also needed to extend this analysis to other croplands, such as soybean,
for cross-site comparisons.

4.5. Suggestions for Remote Sensing SIF Applications in LUE-Based Modeling

Previous studies have demonstrated that remotely sensed SIF retrievals can not only offer another
approach to explore the seasonal variations in the photosynthesis, but can also restrict the parameters in
process-based models to improve GPP simulations [77]. On the one hand, the Soil-Canopy Observation,
Photosynthesis and Energy balance (SCOPE) model provides a theoretical method for modeling
canopy SIF and photosynthesis by constraining the estimates of the maximum carboxylation rate
(Vcmax) by coupling the soil-vegetation-atmosphere-transfer (SVAT) model with radiation transmission
models [77]. On the other hand, the SCOPE model can also combine the SIF data derived from satellites
to infer GPP from the land surface process model or carbon cycle data assimilation system [78,79].
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In addition to the advantages of SIF in process-based models, it is also beneficial to the development of
LUE-based models. Verma et al. [3] report that the correlation between the observed and simulated
LUE is improved slightly when the normalized PRI and SIF yield are combined as predictive factors in
the framework of multiple linear regression. Many studies have also shown that SIF comprises not
just the light absorption information, but also the LUE information [36]. Moreover, we found that the
values of ε/SIFyield and εmax tend to converge across time in this study, which may provide a basis for
combining the satellite products of PRI and SIF to track ecosystem LUE. Additionally, remote sensing
SIF retrievals tend to represent the top layer of the vegetation canopy, primarily composed of sunlit
leaves [35,39], which may provide information for further studies to determine the contribution of
the sunlit leaves and the structural sensitivity of SIF signals escaping the canopy to refine SIF-based
models. We also can assume that SIF observations can be used to constrain the maximum rates of
sunlit leaves in the two-leaf LUE model to improve the robustness of their estimates in future studies.

5. Conclusions

In this study, the effects of temporal aggregation and meteorological conditions on the parameter
robustness of OCO-2 SIF-based and LUE-based GPP models, as well as the models’ estimation
performances were examined and compared, respectively, at a maize–wheat rotation site in Yucheng,
China. The main findings are as follows:

(1) The values of ε/SIFyield in the SIF model and those of εmax in the SL-LUE model are similarly
robust and both are considerably more stable than those of εmsu and εmsh in the TL-LUE model across
all temporal aggregation levels. Under different meteorological conditions, all the parameters show a
certain degree of fluctuation and are most affected at the mid-day scale, followed by the monthly scale
and finally at the daily scale overall. Nonetheless, the averaged coefficient of variation of the ε/SIFyield

was relatively small and obviously lower than those of εmax, εmsu, and εmsh. Therefore, compared with
the LUE-based models, for different temporal aggregation levels and environmental restrictions in
cropland, the SIF-based model is a good predictor of GPP and its parameter is more likely to converge.
Moreover, the SIF models were completely based on SIF and did not contain any ancillary inputs, such
as air temperature, PAR, and VPD. This study thus strongly supports the continuous effort to take
advantage of SIF for improved monitoring of GPP.

(2) It is feasible to combine the OCO-2 SIF data of the Nadir observation mode with those of
the Glint observation mode after fully considering the viewing zenith effects of the latter on the
magnitude of SIF values and on the relationship between SIF and GPP. This enables the limitation
of sparse data to be alleviated and better exploration of the link between the ground-observed GPP
and remote-sensing-based SIF retrievals at the canopy scale to be achieved. Additionally, the OCO-2
SIF data are found to be more strongly correlated with the LAI of sunlit leaves. It indicates that SIF
observations may be useful to constrain the maximum photosynthetic rates of sunlit leaves in the
two-leaf LUE model, thus reducing the uncertainty of parameter estimates and improving the accuracy
of GPP prediction in future studies.
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