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Abstract: Models constitute the primary approaches for predicting terrestrial ecosystem gross
primary production (GPP) at regional and global scales. Many satellite-based GPP models
have been developed due to the simple algorithms and the low requirements of model inputs.
The performances of these models are well documented at the biome level. However, their
performances among vegetation subtypes limited by different environmental stresses within a biome
remains largely unexplored. Taking grasslands in northern China as an example, we compared
the performance of eight satellite-based GPP models, including three light-use efficiency (LUE) models
(vegetation photosynthesis model (VPM), modified VPM (MVPM), and moderate resolution imaging
spectroradiometer GPP algorithm (MODIS-GPP)) and five statistical models (temperature and greenness
model (TG), greenness and radiation model (GR), vegetation index model (VI), alpine vegetation
model (AVM), and photosynthetic capacity model (PCM)), between the water-limited temperate
steppe and the temperature-limited alpine meadow based on 16 site-year GPP estimates at four
eddy covariance (EC) flux towers. The results showed that all the GPP models performed better in
the alpine meadow, particularly in the alpine shrub meadow (R2

≥ 0.84), than in the temperate steppe
(R2
≤ 0.68). The performance varied greatly among the models in the temperate steppe, while slight

intermodel differences existed in the alpine meadow. Overall, MVPM (of the LUE models) and VI
(of the statistical models) were the two best-performing models in the temperate steppe due to their
better representation of the effect of water stress on vegetation productivity. Additionally, we found that
the relatively worse model performances in the temperate steppe were seriously exaggerated by drought
events, which may occur more frequently in the future. This study highlights the varying performances
of satellite-based GPP models among vegetation subtypes of a biome in different precipitation years
and suggests priorities for improving the water stress variables of these models in future efforts.
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1. Introduction

Gross primary production (GPP), defined as the sum of photosynthetic carbon uptake by vegetation,
is the first step in the input of atmospheric CO2 to terrestrial ecosystems [1,2]. An accurate estimation
of GPP is essential for a better understanding of the ecosystem carbon cycle [3–5]. The eddy covariance
(EC) method is an important tool for measuring land-atmosphere CO2 exchange and thus the GPP
of terrestrial ecosystems [6]. However, the applications of such a method are largely impeded
by the limited number of flux tower sites and the limited spatial representativeness of their GPP
estimates (i.e., footprint area) [7]. Models therefore constitute the primary approaches for predicting
terrestrial ecosystem GPP over large areas [8,9].

Numerous models have been developed to estimate GPP from local to global scales [10,11].
Overall, these can be grouped into two broad types: process-based biogeochemical models
and satellite-based models. The first simulates the full biogeochemical fluxes (e.g., carbon, water,
and nitrogen cycles) on the basis of calculating key ecological processes, such as canopy interception
and evaporation, transpiration, photosynthesis, growth and maintenance respiration, carbon allocation
above and below-ground, litterfall, decomposition, and nitrogen mineralization [12]. They are usually
driven by data, such as climate, soil, and land cover/use or vegetation specific parameters [13]. They have
been widely used to simulate and predict carbon dynamics at different spatial scales [14]. However, such
models may be subject to large errors, primarily due to (1) missing biogeochemical processes, (2) complex
model structures, and (3) the uncertainties associated with the input data and parameters [15,16].
In contrast, satellite-based models simulate GPP based on simple algorithms [13,17]. They are mainly
driven by satellite observations, which are only available historically and thus cannot predict future
GPP [14,17]. Such models require few model inputs and parameters and can effectively address
the spatial and temporal dynamics of GPP over large areas [17,18]. With advancements in remote
sensing and spatial science, satellite-based models have been increasingly used to estimate GPP
at various spatial scales in recent decades [9,17,18].

Many satellite-based GPP models have been developed and can be generally classified
into two categories based on GPP algorithms: light-use efficiency (LUE) and statistical models.
The LUE models were developed based on Monteith’s production efficiency concept [19,20]
and include the Carnegie-Ames-Stanford Approach (CASA) [21], the global production efficiency
model (GLO-PEM) [22], the moderate resolution imaging spectroradiometer GPP algorithm
(MODIS-GPP) [23,24], the vegetation photosynthesis model (VPM) [25,26], and the eddy
covariance-light use efficiency (EC-LUE) model [27]. The modeled GPP corresponds to the product of
the incident photosynthetically active radiation (PAR), the fraction of PAR absorbed by vegetation
canopy (fPAR), the potential LUE without environmental stress (εmax), and the reduction in LUE
relative to εmax due to environmental stresses (e.g., air temperature stress and water availability)
(f ). Different f scalars are usually used by different LUE models [9]. In contrast, statistical models
estimate the GPP by its statistical relationship with greenness indices and/or environmental variables,
and include the temperature and freenness (TG) model [28], the greenness and radiation (GR) model [29],
and the vegetation index (VI) model [8]. These models often differ according to the environmental
variables used.

The contrasting model structures and/or parameters result in large uncertainties in GPP estimates
across the models and ecosystems [17,18,30,31]. For example, the environmental scalars of these
GPP models were usually generated by the best-fit relationships between environmental indicators
and the estimated GPP in a limited number of eddy flux sites [9,25,27,32,33]. They may not fully
capture the actual relationship between a specific factor (e.g., moisture) and the GPP over a large
area with substantial spatial heterogeneity [34]. In particular, the environmental stresses on GPP may
vary considerably in a given biome under contrasting climate conditions [5]. In addition, a single
environmental scalar cannot address the diverse responses of vegetation to environmental stresses,
especially water stress, over large areas [3,17,33,34]. Moreover, the satellite-based GPP models do not
consider interrelated physiological and ecological processes, and thus tend to neglect the exacerbated
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effects of ecosystem responses during extreme climate events [35,36]. A comparison analysis of these
models is critical for their effective application in estimating ecosystem GPP over large areas.

Previous efforts have focused mostly on the comparison of model performances among
biomes [9,17,18,37,38]. The model performances were usually assumed to be the same among
vegetation subtypes in a biome [38,39]. In fact, the carbon fixed by photosynthesis has varied
considerably within biomes, and may be larger than that among different biomes [40], suggesting
that the model performances may vary substantially inside a biome. This is especially true for
the vegetation subtypes limited by contrasting environmental stresses. Although some studies have
evaluated satellite-based GPP models at a vegetation subtype level, they have primarily concentrated
on individual vegetation subtypes for specific research objectives [4,33,36,41–44]. In addition, previous
studies have typically calibrated and evaluated the models by in situ observations during normal
precipitation years [3,8,25,26,39]. A recent study highlighted that the biases in GPP estimates from
the satellite-based models are governed by drought effects [45], indicating that model performances
might have been overvalued in previous studies, particularly for areas experiencing frequent drought
events. A systematic comparison of model performances among vegetation subtypes in different
precipitation years is urgently needed for a better understanding of the satellite-based models,
and would contribute to a better application of these models in global carbon cycle research.

Grasslands, occupying approximately one-fifth of the global land area [40], play a vital role in
providing numerous ecosystem services such as regulating the global carbon cycle and supporting
plant and animal biodiversity [46]. For example, grassland ecosystems store about 20% of total
global carbon [47]. The status and distribution of grasslands therefore have gained strong interest
from scientists and decision-makers and has been the subject of active research [46]. With the rapid
advancement of space science and remote sensing techniques, satellite data have been widely used in
grassland monitoring/observation, such as the grazing intensity, pasture quality and status, community
classification, and carbon sequestration [46,48–52]. Among these, the GPP of grasslands has received
considerable attention in recent decades due to its significance in understanding the ecosystem carbon
cycle and the simplicity of satellite-based GPP models.

Using grasslands in northern China as an example, this study evaluated the performances
of eight widely used satellite-based GPP models (VPM, MVPM, MODIS-GPP, TG, GR, VI, AVM,
and PCM) using in situ GPP estimates at four EC flux towers covering two typical Chinese grassland
subtypes (temperate steppe and alpine meadow). We hypothesized that the model performances
were largely determined by their powers to explain environmental limitations. The specific objectives
were to compare the model performances (1) between the temperate steppe and alpine meadow
and (2) between the drought and non-drought years in the temperate steppe. The grasslands in
northern China are ideal for comparisons of satellite-based GPP models among vegetation subtypes.
First, they play an important role in both the global and China’s national carbon budget due to their large
area of coverage (33% of the total land in China) [40,53,54]. The northern China grasslands have been
estimated to store 3.3%–10.1% of global grassland carbon [40,55] and approximately 7.1% of Chinese
terrestrial carbon [56]. Second, the vegetation growth of temperate grassland and alpine grassland,
the two major grassland types in northern China [57], are mainly controlled by water availability [58,59]
and temperature [58,60], respectively. Third, the temperate grassland has experienced frequent
extreme drought events during the past decades [61,62], and more severe droughts due to decreasing
precipitation are projected in the next 30–90 years (e.g., the Palmer Drought Severity Index is
projected to decrease by 0–7) [63,64]. Finally, the Chinese Terrestrial Ecosystem Flux Observation
and Research Network (ChinaFLUX) [65] provides continuous carbon flux data in different grassland
types, facilitating model comparisons among different grasslands and years. Our analyses will provide
important insights for future efforts to improve satellite-based models in predicting terrestrial GPP
at both regional and global scales.
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2. Materials and Methods

2.1. Model Overview

The eight satellite-based GPP models, including three LUE models and five statistical models,
are listed in Table 1. All these models have been applied in grassland ecosystems at either local
and/or regional scales [3,4,9,38]. The EC-LUE model [27] was not included because the latent heat flux
and sensible heat flux data required by the model were not available in this study. The CASA [21]
and GLO-PEM [22] models were also not included in this study since the soil moisture data they
require are difficult to obtain over large areas via either remote sensing or modeling methods [27].

Table 1. Model structures and parameters of the eight satellite-based gross primary production (GPP)
models. LUE, light use efficiency.

Model Type fPAR PAR LUE(εg) Calibrated
Parameters Input Data

Vegetation photosynthesis model (VPM) [25] LUE EVI PAR εmax×ft×fw εmax, Tmin, Topt, Tmax EVI, PAR, Ta, LSWI

Modified VPM (MVPM) [9] LUE EVI PAR εmax×min(ft, fw) εmax, Tmin, Topt, Tmax
EVI, PAR, Ta, VPD,

LSWI

MODIS-GPP algorithm (MODIS-GPP) [66] LUE MODIS-fPAR PAR εmax×ft×fw
εmax, Tminmax,

Tminmin, VPDmax,
VPDmin

MODIS-fPAR, SWrad,
Tmin, VPD

Temperature and greenness model (TG) [28] Statistical f (EVI) — f (LST) m EVI, LST
Greenness and radiation model (GR) [29] Statistical EVI PAR — m EVI, PAR

Vegetation index model (VI) [8] Statistical EVI PAR EVI m EVI, PAR
Alpine vegetation model (AVM) [33] Statistical f (EVI) — f (Ta) m, Tmin, Tmax EVI, Ta

Photosynthetic capacity model (PCM) [39] Statistical f (EVI) — f (LSTan)×fw — EVI, LST, LSWI

PAR, incident photosynthetically active radiation; fPAR, the fraction of PAR absorbed by vegetation canopy; EVI,
enhanced vegetation index; εmax, potential LUE without environmental stress; ft, effects of air temperature on εmax;
fw, effects of water availability on εmax; Tmin, Topt, and Tmax represent minimum, optimum, and maximum air
temperatures for photosynthetic activities, respectively; Ta, air temperature; LSWI, satellite-derived land surface
water index; VPD, vapor pressure deficit; Tminmax, the daily minimum temperature at which εg = εmax; Tminmin,
the daily minimum temperature at which εg = 0; VPDmax, the daylight average VPD at which εg = εmax; VPDmin,
the daylight average VPD at which εg = 0; m is a scalar determined by the model calibration; SWrad, the incident
shortwave radiation; LST, land surface temperature; LSTan, mean annual nighttime LST.

2.1.1. The Vegetation Photosynthesis Model (VPM)

VPM [25,26] assumes that the leaf and forest canopies consist of photosynthetically active
vegetation and nonphotosynthetic vegetation that has been successfully used to simulate GPP in
different ecosystems, including tropical evergreen forest [67], temperate deciduous forest [26], evergreen
needleleaf forest [25], and cropland [68] at a site scale. The GPP in VPM is estimated as follows:

GPP = PAR× f PAR× εg (1a)

f PAR = EVI (1b)

εg = εmax × f t× f w (1c)

f t =


(Ta−Tmin)(Ta−Tmax)

(Ta−Tmin)(Ta−Tmax)−(Ta−Topt)
2 (Tmin < Ta < Tmax)

0 (Ta< Tmin or Ta >Tmax)
(1d)

f w =
1 + LSWI

1 + LSWImax
× Ps (1e)

Ps =

{ 1+LSWI
2 (before leaf full expansion)
1 (after leaf full expansion)

(1f)

where εg represents the actual LUE, ft represents the effect of air temperature (Ta) on εmax, and fw
illustrates the water stress on εmax. Tmin, Tmax, and Topt represent the minimum, maximum,
and optimum air temperatures for photosynthetic activities, respectively. EVI is the enhanced vegetation
index, LSWI is the satellite-derived land surface water index, LSWImax is the maximum LSWI during
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the growing season [25,26], and Ps indicates the phenology effect on εmax [69]. In this study, Ps is set
to 1.0 because the grassland canopies have new leaves emerging throughout the growing season [4].
LSWI is calculated via near-infrared (NIR, 841–875 nm) and shortwave infrared (SWIR, 1628–1652 nm)
bands of MODIS images as follows:

LSWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(1g)

2.1.2. The Modified VPM (MVPM)

Zhang et al. [9] suggested that VPM can be further improved by structural optimization. The MVPM
was found to be better than the original VPM model for a wide range of ecosystem types [9]. The GPP
in MVPM is expressed as follows:

GPP = PAR× f PAR× εg (2a)

εg = εmax ×min( f t, f w) (2b)

f w = Ws ×VPDs (2c)

VPDs =

{ VPDmax−VPD
VPDmax

(VPD > 0.5 kPa)
1 (VPD ≤ 0.5 kPa)

(2d)

where Ws and VPDs represent the effects of soil moisture and atmospheric moisture conditions on GPP,
respectively. fPAR and ft are the same as those in VPM (Equations (1b) and (1d)), and Ws is the same
as fw in VPM (Equation (1e)). VPDmax is set to 3 kPa.

2.1.3. The MODIS GPP Algorithm (MODIS-GPP)

The latest MODIS-GPP product (MOD17A2H, version 6) [70] is driven by daily MODIS land
cover, fPAR, leaf area index (LAI), interpolated surface meteorology, and the global vegetated land
surface [66]. The MODIS-GPP is calculated as:

GPP = SWrad × 0.45× f PAR× εg (3a)

εg = εmax × f (Tmin) × f (VPD) (3b)

f(Tmin) =


0 Tmin < Tminmin

Tmin−Tminmin
Tminmax−Tminmin

Tminmin < Tmin < Tminmax

1 Tmin > Tminmax

(3c)

f(VPD) =


0 VPD > VPDmax

VPDmin−VPD
VPDmax−VPDmin

VPDmin < VPD < VPDmax

1 VPD < VPDmin

(3d)

where SWrad represents the incident shortwave radiation and f(Tmin) and f(VPD) illustrate the minimum
temperature stress and atmospheric moisture stress on GPP, respectively. Tminmax is the daily minimum

temperature at which εg = εmax, Tminmin is the daily minimum temperature at which εg = 0, VPDmax is

the daylight average VPD at which εg = εmax, and VPDmin is the daylight average VPD at which εg = 0.
The values of εmax, Tminmax, Tminmin, VPDmax, and VPDmin varied among land use types and were

obtained from the biome properties lookup tables. SWrad, Tmin, and VPD were obtained from

an updated version of the daily Global Modeling and Assimilation Office (GMAO) meteorological
data, and fPAR were obtained from the MODIS LAI/fPAR products (MOD15A2).



Remote Sens. 2019, 11, 1333 6 of 28

2.1.4. The Temperature and Greenness model (TG)

The TG model [28] assumes that daytime land surface temperature (LST) was correlated with Ta,
VPD, and PAR, and estimates GPP with EVI and LST as follows:

GPP = (scaledLST × scaledEVI) ×m (4a)

scaledLST =

 min
[(

LST
30

)
, (2.5− (0.05× LST))

]
(0 < LST < 50)

0 (LST< 0 or LST >50)
(4b)

scaledEVI = EVI − 0.1 (4c)

where the scaledLST is defined as the minimum of two linear equations. ScaledLST reaches a maximum
of 1.0 when LST = 30 ◦C and a minimum of 0 when LST declines to 0 ◦C or increases to 50 ◦C.
The scaledLST accounts for the drought conditions with high temperature and high VPD stress [28]. m is
a scalar determined by the model calibration (the same for the other statistical models). The calculation
method of m is detailed in Section 2.3.

2.1.5. The Greenness and Radiation Model (GR)

The GR model estimates GPP by EVI and PAR [29]. The basic assumption of the model is that
EVI and PAR can represent the correlation between GPP and total canopy chlorophyll content [71–73].
The model has been successfully applied in irrigated and rainfed maize croplands [29,72], wheat
croplands [74], and forests [75]. The GR model can be expressed as follows:

GPP = (EVI × PAR) ×m (5)

2.1.6. The Vegetation Index Model (VI)

The VI model estimates GPP using EVI and PAR and assumes that EVI is related to LUE
and fPAR [8,29,74]. The model has been used in maize croplands and deciduous forest [8,74]. The VI
model can be expressed as follows:

GPP = (EVI × EVI × PAR) ×m (6)

2.1.7. The Alpine Vegetation Model (AVM)

AVM was developed by Li et al. [33] to estimate the GPP of alpine vegetation, which performs
better than the VPM, TG, and VI models in alpine ecosystems. The AVM can be expressed as:

GPP = m× EVIscaled × Tscaled (7a)

EVIscaled = EVI − EVIbase (7b)

Tscaled =
T − Tmin

Tmax − Tmin
(7c)

where EVIscaled is used to represent the variance in fPAR, Tscaled is the temperature stress factor,
and EVIbase is the mean value of EVI over time when the temperature is below the minimum
temperature for photosynthetic activity (i.e., Tmin). The photosynthetic process is expected to cease
when the temperature falls below Tmin.

2.1.8. The Photosynthetic Capacity Model (PCM)

PCM developed by Gao et al. [39] follows the logic of the LUE model and is driven by EVI
and LSWI. The PCM model can be expressed as follows:

GPP = PCmax × scaledEVI × f w (8a)
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PCmax = 0.1346× LSTan + 2.7522 (8b)

f w = (1 + LSWI)/2 (8c)

where PCmax stands for the maximum photosynthetic capacity for a certain region (g C m−2 d−1),
scaledEVI represents the variability of photosynthetic capacity, and LSTan is the mean annual nighttime
LST during the study period. The scaledEVI is the same as that in the TG model (Equation (4c)).

2.2. Data

2.2.1. Study Sites

Four EC tower sites covering the temperate steppe (NM and XL) and alpine meadow (GCT and SD)
were selected for this study (Figure 1 and Table 2). The NM and XL sites are located at the Inner
Mongolia Grassland Ecosystem Research Station (IMGERS) in the eastern Inner Mongolian Plateau,
which has a semiarid continental climate. These two sites represent the typical grassland type in
Inner Mongolia. The mean annual temperature (MAT) and precipitation (MAP) are 2 ◦C and 350 mm,
respectively. Chestnut and dark chestnut soils were the zonal soil types found in this region [76].
Soil moisture is 0.18–0.26 m3 m−3 and 0.05–0.07 m3 m−3 are the field capacity and wilting point,
respectively (http://www.chinaflux.org/). The GCT and SD sites are situated in the Haibei Alpine
Meadow Ecosystem Research Station (HBAMERS) in the eastern Tibet-Qinghai Plateau, which has
a plateau continental climate (MAT = –1.7 ◦C and MAP = 600 mm). These two sites represent the typical
grassland type in the northeastern Tibet-Qinghai Plateau. The growing season temperature at these
two sites (5–7 ◦C) is much lower than that in the temperate steppe (13 ◦C). Alpine shrub meadow (GCT)
is distributed on mountain shadow slopes and dominated by mollic cryic cambisol soil with a high soil
water content. Distributed in surface depressions, alpine swamp meadow (SD) is dominated by orthic
spodosol soil, the soil surface of which is waterlogged with a water depth of approximately 0–5 cm
during the growing season [77]. All four sites are member stations of the Chinese Terrestrial Ecosystem
Flux Observational Network (ChinaFLUX), and detailed site information is available in Hao et al. [61],
Chen et al. [78], and Li et al. [4].

http://www.chinaflux.org/
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Figure 1. Geographic distribution and characteristics of the four grassland eddy flux tower sites in
northern China.

Table 2. General information on the four grassland eddy flux tower sites in northern China.

Site Lat, Lon, Alt
(◦N, ◦E, m) Data Period Vegetation Type Dominant Species Land Use Reference

NM 43.55, 116.68, 1189 2004–2005 Temperate steppe
Leymus chinensis,

Stipa grandis,
Agropyron cristatum

Fenced since 1979 Hao et al. [61]

XL 43.55, 116.67, 1250 2006–2011 Temperate steppe Stipa grandis,
Artemisia frigida

Overgrazed before
and fenced since 2005 Chen et al. [78]

GCT 37.67, 101.33, 3293 2003–2006 Alpine shrub
meadow

Potentilla fruticosa,
Kobresia humilis,

Festuca ovina,
Elymus nutans

Grazed in winter Li et al. [4]

SD 37.61, 101.33, 3160 2003–2006 Alpine swamp
meadow

Kobresia tibetica,
Pedicularis longiflora Grazed in winter Li et al. [4]

2.2.2. GPP and Meteorological Data

The daily GPP and meteorological data (Ta, VPD, and PAR) at the four sites were acquired
from the ChinaFLUX website (http://www.chinaflux.org/) [65,79]. These data represent the region of
the footprint area of the flux sites (ca. 250 × 250 m). The daily GPP was calculated as the sum of the net
ecosystem CO2 exchange and ecosystem respiration. More information can be found at Yu et al. [65]
and Chen et al. [78]. The daily GPP and meteorological measurements were averaged to an eight-day
interval to match the temporal resolution of the MODIS data. The model comparisons of this study
were conducted in the growing season only, to exclude possible spurious satellite observations during
the nongrowing season [80,81]. The growing seasons for the four sites were defined by the phenology
observation data at nearby meteorological stations (Figure 1). The meteorological data were obtained
from the China Meteorological Data Service Center (http://data.cma.cn/). The years 2005, 2006, and 2009
were identified as drought years in the temperate steppe according to Guo et al. [60]. Guo et al. [60]

http://www.chinaflux.org/
http://data.cma.cn/
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identified these drought years based on the characteristics of precipitation events (e.g., size, frequency,
interval, and seasonal distribution of precipitation events). The drought years can also be identified
from MODIS evapotranspiration (ET) observations (MOD16A2, 500 m, version-6) [82]. For example,
the growing season ET in 2005, 2006, and 2009 was clearly lower than that in the other years for
the two temperate steppe sites (NM and XL) (Figure 2). The growing season lengths were similar
for the drought (176 ± 23.6 days) and non-drought (171 ± 19.3 days) years in the temperate sites,
suggesting that the growing season length had little influence on the annual GPP.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 30 

 

ecosystem CO2 exchange and ecosystem respiration. More information can be found at Yu et al. [65] 
and Chen et al. [78]. The daily GPP and meteorological measurements were averaged to an eight-day 
interval to match the temporal resolution of the MODIS data. The model comparisons of this study 
were conducted in the growing season only, to exclude possible spurious satellite observations 
during the nongrowing season [80,81]. The growing seasons for the four sites were defined by the 
phenology observation data at nearby meteorological stations (Figure 1). The meteorological data 
were obtained from the China Meteorological Data Service Center (http://data.cma.cn/). The years 
2005, 2006, and 2009 were identified as drought years in the temperate steppe according to Guo et al. 
[60]. Guo et al. [60] identified these drought years based on the characteristics of precipitation events 
(e.g., size, frequency, interval, and seasonal distribution of precipitation events). The drought years 
can also be identified from MODIS evapotranspiration (ET) observations (MOD16A2, 500 m, version-
6) [82]. For example, the growing season ET in 2005, 2006, and 2009 was clearly lower than that in the 
other years for the two temperate steppe sites (NM and XL) (Figure 2). The growing season lengths 
were similar for the drought (176 ± 23.6 days) and non-drought (171 ± 19.3 days) years in the 
temperate sites, suggesting that the growing season length had little influence on the annual GPP. 

 
Figure 2. MODIS evapotranspiration (ET) observations for the two temperate steppe sites (NM and 
XL) during the growing season from 2004 to 2011. 

2.2.3. MODIS Products 

Version-6 MODIS eight-day surface reflectance composite data (MOD09A1, 500 m) [83], LST 
product (MOD11A2, 1000 m) [84], and GPP products (MOD17A2H, 500 m) [70] were used in this 
study. The pixel values in which the flux towers were located were acquired from MODIS Land 
Product Subsets at ORNL DAAC (https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl). The 
surface reflectance composite data were utilized to calculate LSWI as Equation (1g) and EVI as 
follows: 𝐸𝑉𝐼 = 2.5 × 𝜌ேூோ − 𝜌ோ௘ௗ𝜌ேூோ + 6 × 𝜌ோ௘ௗ − 7.5 × 𝜌஻௟௨௘ + 1 (9) 

where ρBlue and ρRed are the surface reflectance values of blue (459–479 nm) and red (620–670 nm), 
respectively. The daytime (10:30 am) and nighttime (10:30 pm) LST digital number (DN) values were 
converted to temperature (°C unit) using the equation below: 𝐿𝑆𝑇 = 𝐷𝑁 × 0.02 − 273.15 (10) 

The GPP products were generated by the Numerical Terradynamic Simulation Group (NTSG), 
University of Montana (UMT) [70]. The algorithms are presented in Section 2.1.3. The missing or 
unreliable values with the “F” flag due to failed quality control (QC) criteria were temporally filled 
in by the linear interpolation method [18,85,86]. 

2.3. Model Calibration 

All models required calibration, except for PCM. Site-specific data were used to calibrate them. 
Calibration of the VPM and MVPM models involves the estimations of εmax, Tmin, Topt, and Tmax. The 

Figure 2. MODIS evapotranspiration (ET) observations for the two temperate steppe sites (NM and XL)
during the growing season from 2004 to 2011.

2.2.3. MODIS Products

Version-6 MODIS eight-day surface reflectance composite data (MOD09A1, 500 m) [83],
LST product (MOD11A2, 1000 m) [84], and GPP products (MOD17A2H, 500 m) [70] were used
in this study. The pixel values in which the flux towers were located were acquired from MODIS Land
Product Subsets at ORNL DAAC (https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl). The surface
reflectance composite data were utilized to calculate LSWI as Equation (1g) and EVI as follows:

EVI = 2.5×
ρNIR − ρRed

ρNIR + 6× ρRed − 7.5× ρBlue + 1
(9)

where ρBlue and ρRed are the surface reflectance values of blue (459–479 nm) and red (620–670 nm),
respectively. The daytime (10:30 am) and nighttime (10:30 pm) LST digital number (DN) values were
converted to temperature (◦C unit) using the equation below:

LST = DN × 0.02− 273.15 (10)

The GPP products were generated by the Numerical Terradynamic Simulation Group (NTSG),
University of Montana (UMT) [70]. The algorithms are presented in Section 2.1.3. The missing or
unreliable values with the “F” flag due to failed quality control (QC) criteria were temporally filled in
by the linear interpolation method [18,85,86].

2.3. Model Calibration

All models required calibration, except for PCM. Site-specific data were used to calibrate them.

Calibration of the VPM and MVPM models involves the estimations of εmax, Tmin, Topt, and Tmax.

The values of Tmin, Topt, and Tmax vary among vegetation types [25]. The Tmin, Topt, and Tmax in

the temperate steppe (NM and XL) were set to −2, 20, and 35 ◦C, respectively [87], and those in

the alpine meadow (GCT and SD) were set to 0, 20, and 35 ◦C, respectively [4]. The site-specific εmax is

usually estimated by the nearly instantaneous (e.g., half-hourly scale) net ecosystem CO2 exchange
(NEE) and photosynthetic photon flux density (PPFD) during the peak growth stage [26,88,89]. We used
εmax values of 0.30 g C mol−1 PPFD, 0.41 g C mol−1 PPFD, and 0.38 g C mol−1 PPFD for the NM, GCT,

https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl
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and SD sites, respectively [4,36]. To stay in accordance with the other sites, the εmax value for the XL
site was estimated by one week of half-hourly flux data during peak growth periods (16–22 July 2011).
The one-week period was selected based on the maximum daily NEE during 2006–2011. The εmax was
calculated using the Michaelis–Menten function [89] as follows:

NEE =
εmax × PPFD×GPPmax

εmax × PPFD + GPPmax
−Rdark (11)

where GPPmax is the maximum canopy CO2 uptake rate at light saturation, and Rdark is the mitochondrial

CO2 respiration in the dark. εmax, GPPmax, and Rdark are the fitted parameters with half-hourly observed
NEE and PPFD data using nonlinear regression analysis (Figure 3). The εmax was estimated to be 2.1 g
CO2 mol−1 PPFD or 0.57 g C mol−1 PPFD for the XL site.
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Calibration of the TG, GR, VI, and AVM models primarily involves the estimation of the scalar
m. In practice, they can be calibrated using a half-data method (with the remaining data for
model validation) [28,72] or an all-data method (all the data are used for both the model calibration
and validation) [18,90]. In this study, we used the all-data calibration since the half-data method
may result in large uncertainties in the model performances if using short-term observations [18,90].
For example, only two years of flux data are available for the NM site. In addition, the half-data
method would make the LUE and statistical models noncomparable due to the different amounts of
validation data.

2.4. Evaluation of Model Performance

The predicted GPPs were evaluated against the EC estimates (GPP_tower) at an eight-day interval
during the growing season. The alpine shrub meadow (GCT) and alpine swamp meadow (SD) sites
were analyzed separately due to their highly contrasting soil conditions. The model performances
in the two temperate steppe sites (NM and XL) were evaluated together due to (1) their similar
environmental conditions and (2) the limited EC observations in the NM site. The correlation coefficient
(R2), root mean squared error (RMSE, %) [38], percent bias (PBIAS, %) [91], and corrected Akaike
Information Criterion (AICc) [80,92] were used to evaluate the model performance. The higher the R2,
and the lower the RMSE and AICc, the better the model performance. The RMSE, PBIAS, and AICc are
calculated as follows:

RMSE =
100

O
×

√∑
(Mi −Oi)

2

N
(12)

PBIAS =

∑
(Mi −Oi) × 100∑

Oi
(13)
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AICC = N × ln(
RSS
N

) + 2K +
2K × (K + 1)

N −K − 1
(14)

where O is the average of the observed values, Oi and Mi represent the observed and modeled GPP,
respectively, and N indicates the total number of estimates at the study site. The optimal value of
PBIAS is 0, while positive and negative values suggest an underestimation and an overestimation of
GPP, respectively. K is the number of parameters fit by the regression plus 1, and RSS is the residual
sum of squares of the model. Since the AICc is an estimator of the relative quality of statistical models
for a given set of data, it was only applied to examine the inter-model differences in this study.

We also compared the modeled and observed GPP at an annual scale to evaluate the capability of
these models to capture the interannual patterns of GPP. Given that a single environmental scalar may
not fully capture the environmental stresses over the temperate steppe and alpine meadow, stepwise
multiple linear regressions were developed between the observed GPP and all the variables used
by these satellite-based models (i.e., EVI, Ta, LSWI, PAR, LST, and VPD) to calculate the independent
and total explanation powers of them with the GPP’s variability.

3. Results

3.1. Seasonal and Interannual Variations in Climate, GPP, and Vegetation Indices at the Four Flux Tower Sites

The climatic conditions differed dramatically between the temperate steppe sites (NM and XL)
and the alpine meadow sites (GCT and SD) (Figure 4). The temperate steppe sites were characterized
by a dry-warm climate, with a growing season precipitation and mean temperature of 219 mm
and 14 ◦C, respectively, whereas the alpine meadow sites were dominated by a humid-cold climate,
with precipitation and temperature of 465 mm and 6 ◦C, respectively. The drier climate in the temperate
steppe compared with that in the alpine meadow can also be viewed in terms of soil water content (SWC)
(0.12 vs. 0.26 m3 m−3, respectively) and vapor pressure deficit (VPD) (9.75 vs. 3.13 hPa, respectively).
In addition, precipitation and SWC varied greatly by year in the temperate steppe sites. For example,
the growing season precipitation in 2005 was less than half of that in 2004 (153.3 vs. 354.5 mm yr−1,
respectively) at the NM site. There were clearly more heavy rainfall events in the peak growing season
(180–240 days of year) in 2007, 2008, 2010, and 2011 than in 2006 and 2009 for the XL site.

The observed GPP, fPAR, EVI, NDVI, and LSWI were higher in the alpine meadow than in
the temperate steppe during the growing season (Figure 5). For example, the annual GPP and mean
EVI of the alpine meadows were 37.4% and 76.1% higher, respectively, than those of the temperate
steppe (453.5 vs. 330 g C m−2 yr−1, respectively, for the annual GPP, and 0.34 vs. 0.19, respectively,
for the mean EVI). Generally, the seasonal patterns of GPP were similar to those of the EVI, NDVI,
LSWI, and MODIS-fPAR in all four sites. However, none of the indices captured the sharp reduction in
GPP (Figure 5a,b) caused by the flash drought (almost no precipitation from late June to early July)
and warm temperatures during the peak growing season in 2004 at the NM site and in 2007, 2008,
and 2010 at the XL site. Inconstant patterns were also observed in the XL site during the drought
years (Figure 5b). For example, the observed GPP peaked more than one month earlier than that
shown by all the vegetation indices in 2006. Surprisingly, the alpine meadow sites showed clear dips
in MODIS-fPAR during some years, possibly due to the poor quality of data from the growing season.
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at the XL site. SWC was not measured at the SD site due to the waterlogged soil surface.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 30 

 

 

Figure 4. Seasonal and interannual variations in precipitation (Pre), air temperature (Ta), vapor 
pressure deficit (VPD), photosynthetically active radiation (PAR), and soil water content (SWC) at the 
(a) NM, (b) XL, (c) GCT, and (d) SD flux tower sites. SWC was measured at depths of 0–20 cm at the 
NM and GCT sites and 0–10 cm at the XL site. SWC was not measured at the SD site due to the 
waterlogged soil surface. 

 
Figure 5. Seasonal and interannual variations in the observed gross primary production (GPP_tower), 
fraction of the absorbed photosynthetically active radiation (fPAR), normalized difference vegetation 

Figure 5. Seasonal and interannual variations in the observed gross primary production (GPP_tower), fraction
of the absorbed photosynthetically active radiation (fPAR), normalized difference vegetation index (NDVI),



Remote Sens. 2019, 11, 1333 13 of 28

enhanced vegetation index (EVI), and land-surface water index (LSWI) at the (a) NM, (b) XL, (c) GCT,
and (d) SD flux tower sites.

Interannually, GPP in the temperate steppe sites showed much larger variation throughout
the year (Figure 5) and a closer relationship (p < 0.01) with the vegetation indices (i.e., EVI, NDVI,
and LSWI) (Figure 6) than that in the alpine meadow. However, GPP decreased more rapidly
than the other variables during the severe drought years (i.e., 2005, 2006, and 2009) in the temperate
steppe. For example, GPP in 2005 was 73.1% lower than that in 2004 when the EVI declined
by only 21.6%. Interestingly, no significant relationships were observed between GPP and climate
variables (e.g., Ta, Prec, VPD) in either of the grassland subtypes, possibly due to the limited
number of observation years. However, GPP was more closely related to the temperature-related
variables (Ta and LST) than the moisture-related indicators (Prec and SWC) in the alpine meadow
sites. The opposite relationships were found in the temperate steppe. These results partially prove
the dominant role of water stress and temperature stress on GPP in the temperate steppe and alpine
meadow, respectively [58–60,93].
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Figure 6. Correlations between the observed GPP (GPP_tower) and the climate variables or vegetation
indices throughout the year. The observations at the two temperate steppe sites (NM and XL) were
analyzed together since (1) they were observed in different years and (2) only two years of data were
available for the NM site. a, significant at the 0.01 level; b, significant at the 0.05 level.

3.2. Comparison of the Eight Satellite-Based GPP Models in Estimating GPP between the Temperate Steppe
and Alpine Meadow

All of the models performed much better in the alpine shrub meadow (R2
≥ 0.84) and alpine

swamp meadow (R2
≥ 0.70) than in the temperate steppe (R2

≤ 0.68) as compared with the site-level
observations (Table 3). The mean explanatory power of these eight models reached 89%, 82%,
and 61% in the alpine shrub meadow, alpine swamp meadow, and temperate steppe, respectively.
Additionally, the RMSEs of the alpine shrub meadow (25.8%) and alpine swamp meadow (35.9%) were
clearly smaller than that of the temperate steppe (56.7%).

The performance varied greatly among the models in the temperate steppe. The MVPM and VI
models with higher R2 and lower AICc were the two better-performing models (R2 = 68% and 67%,
respectively, and AICc = –40.4 and –54.7, respectively) of the LUE and statistical models, respectively.
The AVM, VPM, and PCM performed relative poorly (R2

≤ 60% and AICc ≥ 5.9). In contrast, slight
intermodel differences were observed in the alpine meadow. The MODIS-GPP and GR performed
relatively worse (R2

≤ 0.84, RMSE ≥ 24.5%) than the other LUE and statistical models (R2 = 0.88–0.91,
RMSE = 22.6%–27.4%), respectively. GPP estimates were close to the EC observations for most models
regardless of grassland type (|PBIAS| < 16.5%), except for a significant overestimation by the VPM in
the temperate steppe (54.2%) and by the PCM in the alpine swamp meadow (31.0%), and an obvious
underestimation by the PCM in the temperate steppe (40.6%). Overall, the performances of the LUE
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models (VPM, MVPM, and MODIS-GPP) were slightly worse than those of the statistical models
(TG, GR, VI, AVM, and PCM) (Table 3), with a mean R2 of 0.72 and 0.75, respectively. Nevertheless,
the best-performing LUE model (MVPM) and statistical model (VI) had similar modeling performance,
characterized by R2 values of 0.80 and 0.79, respectively, AICc values of –153.4 and –150.4, respectively,
and RMSE values of 36.5% and 36.9%, respectively.

Table 3. Performances of the VPM, MVPM, MODIS-GPP, TG, GR, VI, AVM, and PCM in estimating
GPP over the temperate steppe and alpine meadow as reflected by R2, RMSE (%), PBIAS (%) and AICc
validation. N represents the number of data points.

Model
Type

Model Performance
Indices

Model
Temperate Steppe Alpine Shrub

Meadow
(N = 90)

Alpine Swamp
Meadow
(N = 90)

All Site Years
(N = 271)

Drought Non-Drought All
(N = 69) (N = 112) (N = 181)

LUE

R2

VPM 0.54 0.61 0.59 0.91 0.86 0.64
MVPM 0.50 0.75 0.68 0.91 0.81 0.80

MODIS-GPP 0.37 0.66 0.60 0.84 0.81 0.73
Average 0.47 0.67 0.62 0.89 0.83 0.72

RMSE (%)

VPM 140.2 65.9 83.5 27.4 30.4 54.9
MVPM 81.7 36.7 47.4 22.6 34.5 36.5

MODIS-GPP 88.4 41.9 52.9 31.6 37.6 42.2
Average 103.4 48.2 61.3 27.2 34.2 44.5

PBIAS (%)

VPM 108.7 37.4 54.2 16.5 6.2 16.0
MVPM 53.6 −1.5 11.5 5.7 4.3 4.2

MODIS-GPP 50.5 −2.5 10.0 −12.2 14.2 4.2
Average 70.9 11.1 25.2 3.3 8.2 8.1

AICc
VPM 74.2 99.0 162.3 −42.5 −49.4 138.6

MVPM 2.0 −29.8 −40.4 −75.1 −24.7 −153.4
MODIS-GPP 10.5 −2.6 −3.0 −16.8 −13.6 −52.9

Statistical

R2

TG 0.47 0.66 0.61 0.89 0.84 0.78
GR 0.50 0.65 0.61 0.89 0.70 0.74
VI 0.46 0.72 0.67 0.89 0.78 0.79

AVM 0.43 0.57 0.54 0.88 0.88 0.76
PCM 0.28 0.65 0.60 0.88 0.86 0.66

Average 0.43 0.65 0.61 0.89 0.81 0.75

RMSE (%)

TG 73.4 43.1 50.4 24.0 32.2 37.7
GR 72.0 43.5 50.4 24.5 43.9 41.0
VI 69.6 38.8 46.1 24.0 37.1 36.9

AVM 75.3 48.0 54.8 25.3 27.7 39.1
PCM 70.5 64.3 68.0 27.0 43.7 49.7

Average 72.2 47.5 53.9 25.0 36.9 40.9

PBIAS (%)

TG 34.5 −10.6 0.0 0.4 1.3 0.5
GR 36.2 −10.3 0.7 0.2 0.9 0.6
VI 26.9 −8.1 0.2 0.0 0.0 0.1

AVM 36.9 −11.0 0.3 0.0 0.0 0.1
PCM −25.1 −45.4 −40.6 −8.4 31.0 −11.4

Average 21.9 −17.1 −7.9 −1.6 6.6 −2.0

AICc

TG −19.7 −0.6 −24.7 −70.7 −46.3 −139.6
GR −22.4 1.6 −24.3 −67.0 9.6 −77.8
VI −24.9 −22.1 −54.7 −68.8 −18.5 −150.4

AVM −16.1 23.7 5.9 −61.2 −73.5 −111.8
PCM −25.2 89.1 84.0 −49.8 8.7 59.9

In addition, the performances of all the models were much poorer in drought years than in
non-drought years in the temperate steppe (Table 3). The mean R2 of all the models in non-drought
years was 32.6% higher than that in severe drought years. The explanatory powers of the two
best-performing models (MVPM and VI) were 33.3% and 36.1% lower in drought years than in
non-drought years, respectively. The RMSEs were also much larger in drought years than in non-drought
years for the MVPM (81.7% vs. 36.7%, respectively) and VI (69.6% vs. 38.8%, respectively) models.
All the models except the PCM overestimated the GPP significantly (26.9%–108.7%) in the drought
years. Furthermore, the relative qualities of these eight models in the drought years (as reflected
by AICc) were different from that during non-drought years (Table 3). For example, though the VPM
model had the highest R2, it was the worst because it had the largest RMSE.

On an annual scale, the GPP estimates differed greatly by model in the temperate steppe.
Only three models (MVPM, TG, and VI) could capture the interannual variations in GPP (R2

≥ 0.53,
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p < 0.05, N = 8) (Figure 7a). Overall, the percent biases of the VPM and PCM (|PBIAS| > 40.6%) were
much larger than those of the other models (|PBIAS| < 11.5%). The VPM and PCM overestimated
(18.8%–175.6%) and underestimated (28.1%–55.0%) the GPP substantially at the two temperate steppe
sites (i.e., NM and XL) during most of the study years. In addition, all the models overestimated
the annual GPP by 36.7%–215% in the two drought years (2005 and 2006), except for an underestimation
by the PCM in 2006. Notably, the estimates from the MODIS-GPP were as much as 2.1 times that of
the GPP_tower in 2005. As a result, the drought-induced reductions in the GPP were significantly
underestimated by all the GPP models. For example, the observed GPP decreased by 73.1% from 2004
to 2005, which was clearly larger than the decrease in the simulated GPP (24.6%–55.3%). Comparatively,
the annual GPP estimates from all the models varied slightly and were close to in situ observations
(|PBIAS| < 26.8%) at the two alpine meadow sites (Figure 7b,c). Notably, the observed GPP in the alpine
swamp meadow increased slightly by 6.2%, but the GPP estimated by the VPM, MVPM, GR, and VI
models decreased significantly by more than 14.5% in 2004 relative to 2003.
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Table 4 shows the comparison between the explanation rates of a single variable (to the GPP’s
fluctuations) derived from linear regressions and the independent explanation rate of each variable, as well
as the total derived from stepwise multiple linear regression. Results showed that the combination of
multiple variables explained the much higher variability of GPP than any single factor over the temperate
steppe and alpine meadow. For example, the total explanation power of EVI, Ta, LSWI, PAR, LST, and VPD
was 18.4% higher than that of the best predictor (i.e., EVI) (76% vs. 62%, respectively).

Table 4. Explanation rate (%) of a single variable of the GPP’s fluctuations derived from linear
regressions and the independent explanation rate and total explanation rate (%) of each variable derived
from stepwise multiple linear regression at the four grassland eddy flux tower sites. a, significant
at the 0.01 level; b, significant at the 0.05 level.

Variables EVI Ta LSWI PAR LST VPD Combined

Explanation rate 62 a 11 a 50 a 1 0 1 —
Independent explanation rate 66 a 5 a 2 a 1 a 2 a 1 b 76
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4. Discussion

4.1. Varying Performances of the Eight Satellite-Based GPP Models between the Temperate Steppe
and Alpine Meadow

As expected, our results showed that all eight satellite-based GPP models performed better in
the temperature-limited alpine meadow than in the water-limited temperate steppe. The large
uncertainties in the GPP models in the dry climate were highly consistent with previous
findings [3,17,94,95], and can be mainly attributed to the poor representation of the effect of water stress
on GPP in these models [17,34,96]. First, the environmental variables (e.g., EVI, LST, Ta, LSWI, and VPD)
in these models cannot fully address the soil water content (SWC) dynamics that mainly determine
water availability to plants [53,59,60]. For example, the decreases in the EVI usually lag behind
the SWC when drought occurs [18,53]. The VPD (LSWI) is more closely related to atmospheric water
content [9,97,98] (leaf water content [25]) than to the SWC [27,99]. The LST and Ta may even increase
during extreme drought events [53]. Recent studies have indicated that solar-induced chlorophyll
fluorescence (SIF) and other improved vegetation indices (i.e., normalized difference drought index
and Normalized Multi-band Drought Index) are more sensitive to drought than EVI or LSWI [100–103],
which may serve as a potential direction for future model improvements. Second, the linear functions
in these models may not fully capture the complex photosynthetic responses to water stress in arid
regions [104]. These can be partially verified by the much weaker correlations between the observed
GPP and fPAR/LUE of the LUE models or by multiplication of the environmental factors of the statistical
models in the temperate steppe than in the alpine meadow (Figure 8). Furthermore, previous studies
have typically used a single function of environmental indicators to reflect the moisture stress for
all grassland types [3,38,39]. In fact, the responses of photosynthesis to moisture stress vary greatly
by grassland type [34,105]. For example, in the arid temperate steppe, vegetation with shallow roots
would experience stomatal closure to avoid water loss if soil water was limited [53]. In contrast,
humid alpine meadow vegetation would likely extract deep soil water by increasing the root length if
the surface soil moisture was limited due to drought occurrences and/or a period of warming (one or
more years) [106–108]. The function of environmental indicators was mostly generated by the best-fit
relationship between the environmental variables and GPP in the limited tower sites covering humid
or semihumid ecosystems [8,25,33], which would exaggerate the uncertainties of the GPP estimates in
the water-limited areas [34].
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and (c) GPP_tower vs. multiplication of environmental factors for the five statistical models in
the temperate steppe, alpine shrub meadow, and alpine swamp meadow (p < 0.01). The R2 value
between the GPP_tower and LUE for MODIS-GPP was not calculated due to the unavailability of
the LUE data used by the model. The multiplication of environmental factors for the TG, GR, VI, AVM,
and PCM are EVI × Scaled_LST, EVI × PAR, EVI × EVI × PAR, EVI × Ta, and EVI × LSWI, respectively.

In addition, most GPP models performed better in the alpine shrub meadow than in the alpine
swamp meadow. This phenomenon can be attributed to two factors. One is that these models cannot
reflect the slight depression of surface water on GPP in the alpine swamp meadow. The surface
water could decrease the amount of aerial biomass, which plays a key role in photosynthesis and thus
decreases CO2 uptake by the emergent plants [109]. However, all these GPP models assume a higher
GPP with more water. The other factor is that these GPP models may aggregate the effects of the PAR
on GPP, which was reported not to be a dominant factor in vegetation growth at an eight-day or
seasonal scale in the alpine swamp meadow [109,110]. For example, the observed GPP increased
slightly, although the PAR decreased significantly from 2003–2004 (Figures 4d and 5d). Given that
the PAR is an important parameter for most GPP models (Table 1), the calculated GPP from the VPM,
MVPM, GR, and VI showed significant decreasing tendencies in 2004 relative to 2003 (Figure 7c).
Such biases may also occur in the wetlands because their CO2 flux is mainly controlled by the water
depth instead of the PAR at an eight-day or seasonal scale [109].

4.2. Varying Performances of the Eight Satellite-Based GPP Models in the Temperate Steppe

We found large disparities in performance across models in the temperate steppe, agreeing
well with previous findings [9,17,18,37,38]. The mean soil water content (0.12 m3 m−3) was close to
the wilting point (0.05–0.07 m3 m−3) during the growing season, confirming the dominant role of
water stress on photosynthesis in the temperate steppe [58,59]. The relatively better performance of
the MVPM and VI can be attributed to their better representation of moisture conditions than the other
models [9]. The water stress in the MVPM was represented by both VPD and LSWI, reflecting
atmospheric water content [9,97,98] and leaf water content [25], respectively. The model performance
of the MVPM should therefore be better than that of the LUE models using only LSWI (VPM) or VPD
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(MODIS-GPP). For example, the mean value of the water stress scalar in the VPM was 29.4% higher
than in the MVPM (0.82 vs. 0.58, respectively), contributing to the overestimation of the modeled
GPP by the VPM from 2004 to 2011 (Table 3 and Figure 7a). The water stress in the VI model was
represented by the EVI, which was widely documented as the most comprehensive indicator of
photosynthetic capacity [39,111]. It thus performed better than the other statistical models using LST
(TG), air temperature (AVM), or LSWI (PCM). For instance, the correlation between the observed GPP
and the multiplication of environmental factors was also higher in the VI model than in the other four
statistical models by 7.8%–22.1% (Figure 8).

Similar to previous studies in grassland and agriculture ecosystems [18,38,88,94], our results
indicated that these satellite-based GPP models do not capture all the effects of frequent extreme
drought events on vegetation growth in the temperate steppe. The poor model performances in drought
years may be due to their failure to address water stress (as discussed above) and the exacerbated
effects of severe water stress [62,112]. The interannual variability of grassland carbon flux may be
generally caused by both abiotic factors (climate) and biotic factors (ecosystem responses) [113,114].
Severe drought events can amplify ecosystem responses to climate [114]. However, without considering
the interrelated physiological and ecological processes, these parametric satellite-based GPP models
tend to neglect the effects of ecosystem responses on GPP during drought years [35,36], which can be
partially proven by the lower reduction rates of the fPAR (i.e., EVI) and water stress indicators (i.e., LSWI,
VPD, and EVI) than the GPP_tower for the two best-performing models (MVPM and VI) during
drought years (Figure 4a,b and Figure 5a,b). Worse still, the late response of the vegetation indices
to drought-related changes in photosynthesis [100] may lead to an overestimation of the modeled
GPP during the periods after the drought events (Figure 5). Consequently, the GPP was clearly
overestimated even by these two better models during drought years (Table 3 and Figure 7a).
The overestimation would be further exaggerated if the models were calibrated using the normal-year
data only, as in previous efforts [8,25,29]. The GPP reduction caused by drought might have been
slightly underestimated at the XL site in this study due to ignorance of the possible vegetation recoveries
after grazing exclusion [115] (Table 2). It should be noted that although the current water stress
indicators, such as EVI, cannot fully capture the GPP responses to drought, they can still be used to
monitor the drought effects, especially over large areas where no other information is available [116].
Meanwhile, there is room for future studies to improve the water stress indicators of GPP in the area
with extensive data coverage.

4.3. Varying Performances of the Eight Satellite-Based GPP Models in the Alpine Meadow

Performance varied slightly by model in the alpine meadow, which might be related to the accuracy
of the input variables or the methods used to address the environmental stresses. For example,
the precision of the MODIS-GPP was the lowest in the alpine shrub meadow, primarily due to
the uncertainties in the model parameters, such as εmax and fPAR [31,117,118]. The MODIS-GPP
algorithm assumed the same εmax for all grassland types, which was 53.7% lower than the ground-based
εmax (0.19 vs. 0.41 g C mol−1 PPFD, respectively) in the alpine shrub meadow. The mean eight-day
MODIS fPAR was 33.2% higher than the fPAR (represented by EVI) used in the other seven models
from 2003–2006 (0.43 vs. 0.32, respectively). The performance of the MODIS-GPP algorithm could
therefore be greatly improved with site-specific optimized parameters [118]. The GR model exhibited
relatively poor performance in the alpine swamp meadow, most likely due to (1) the overweighting
of the PAR effects (as discussed in Section 4.1) and (2) the underweighting of environmental stresses
on GPP. The environmental stress in the GR model was represented by fPAR (EVI) only, while in all
the other models it was represented by both fPAR and LUE scalars. Overall, the intermodel differences
of the performances were smaller in the alpine meadow than in the temperate steppe, most likely due
to the lower sensitivity of the input variables to the land cover properties in the dense alpine meadow
than in the sparse temperate steppe [31,119–121]. For example, the MODIS fPAR tends to overestimate
the actual condition [31] of the sparse vegetation due to the background soil conditions.
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4.4. Comparisons with Previous Studies on Grassland

The relative model qualities in the alpine meadow, the temperate steppe during non-drought
years, and the all-site years from this study were generally consistent with previous studies (Table 5).
For example, Li et al. [33] and Niu et al. [122] showed that the AVM performed better than the VPM
and PCM in the alpine meadow. Jia et al. [3] and Liu et al. [38] found that the VI and AVM were better
than the other models such as the GR, MODIS-GPP, and VPM, in spite of grassland types over northern
China. The better performance of the MVPM than the VPM in this study agreed well with our previous
study at a global scale [9]. Nevertheless, our findings were different from the previous studies in
the temperate steppe during drought years. We showed that the VPM was poorer than the MODIS-GPP
and other models (as reflected by AICc), but Liu et al. [123] found the better performance of the VPM
than the MODIS-GPP (as reflected by R2). This may be due to the different indices being used to
measure model quality. For example, the VPM was also the best for the temperate steppe in terms of
R2 in this study (Table 3). The better quality of the VPM than the MODIS-GPP was even documented
in the global grassland [17]. Studies with more robust statistical measures and more EC observations
covering global grasslands are needed to solidify the findings from this study.

Table 5. Comparisons of the findings from this study and previous similar studies on grassland.

Grassland Types Time Periods Precipitation
Years Model Performances Model Performance

Indices Reference

Temperate steppe 2004–2011
Drought

PCM > VI > GR > TG >
AVM > MVPM >

MODIS-GPP > VPM
R2, RMSE (%), PBIAS

(%), AICc
This study

Non-drought
MVPM > VI >

MODIS-GPP > TG > GR
> AVM > PCM > VPM

All
VI > MVPM > TG > GR
> MODIS-GPP > AVM >

PCM > VPM

Alpine shrub meadow 2003–2006 Non-drought
MVPM > TG > VI > GR
> AVM > PCM > VPM >

MODIS-GPP

Alpine swamp meadow 2003–2006 Non-drought

AVM > VPM > TG >
MVPM > VI >

MODIS-GPP > PCM >
GR

Temperate steppe +
alpine meadow 2003–2011 All

MVPM > VI > TG >
AVM > GR >

MODIS-GPP > PCM >
VPM

Temperate steppe 2006–2007 Drought VPM > MODIS R2, SE Liu et al. [123]
Alpine meadow 2008–2009 Non-drought AVM > VPM > TG = VI R2 Li et al. [33]

Alpine swamp meadow 2009–2012 Non-drought AVM > PCM > VPM R2 Niu et al. [110]
Temperate steppe +

alpine meadow 2003–2005 Non-drought AVM > TG > VPM >
MODIS > GR R2, RMSE (%), BIAS Liu et al. [38]

Temperate steppe +
alpine meadow 2003–2013 Non-drought VI > TG > MODIS >

VPM > GR R2, ∆AIC Jia et al. [3]

Global grassland 2000–2007 All VPM > MODIS R2, RMSE Yuan et al. [17]
Global grassland 2001–2007 All MVPM > VPM R2, RMSE, BIAS Zhang et al. [9]

∆AIC: model’s AIC minus minimal AIC; SE, standard error.

4.5. Trade-Offs between Model Performance and Applicability at a Regional Scale

The comparisons conducted in this study are based on site-scale observations. However, the model
selection at a regional scale needs to consider both the model performance and the availability
and accuracy of the input data [27]. More parameters mean more requirements for data input and more
in situ data for model calibration, possibly accompanied by worse model performance [27]. Our results
showed that the MVPM and VI are the two best-performing models in the northern China grasslands.
The MVPM is a typical LUE model. εmax is a key parameter, which is usually represented by a constant
for one vegetation type or even an entire eco-region [3,38,86]. Wang et al. [124] suggested that the εmax

may vary substantially within a vegetation type due to different species compositions and climate
conditions. For example, the εmax at the XL site was 1.9 times that of the NM site, although they are



Remote Sens. 2019, 11, 1333 20 of 28

only 2 km apart (0.57 vs. 0.30 g C mol−1 PPFD, respectively). In contrast, the VI model is a typical
statistical model that requires in situ data to calibrate the site-specific scalar m (Equation (6)). Due to
the limited in situ data, the parameter m was usually indicated by a biome-specific constant [3] or
estimated by remote sensing products (e.g., LSTan) [28,90], which will lead to poor model performance.
For example, we found that the mean R2 of the VI decreased significantly, by 19.0% (0.79 vs. 0.64), if using
the same m (estimated from all the observations) for all four EC sites. Therefore, the choice of the MVPM
(LUE model) or VI (statistical model) model depends on the accuracy of εmax and the availability of
the EC flux data, respectively.

Further, the varying performance across vegetation subtypes and models confirmed that
a single environmental scalar cannot reflect the different responses of vegetation to environmental
stresses [3,17,33,34]. This can be further verified by the much-higher explanation ability of multiple
variables (76%) than a single factor such as EVI (62%) or LSWI (50%) of the total variance of the observed
GPP in the two grassland subtypes (Table 4). Multiple environmental scalars are recommended for
future regional applications of satellite-based GPP models, yet caution should be taken regarding
the possibility of more uncertainties associated with input environmental variables.

It should be noted that both the optimal models (MVPM and VI) performed relatively poorly in
the temperate steppe (R2 < 0.68) and cannot fully account for the effects of extreme drought, which is
predicted to occur more frequently in northern China in the future [63,64]. Improving water stress
variables to address drought effects, such as incorporating the drought index that can monitor drought
in both arid and humid regions [125], constitutes a valid topic worthy of future efforts. Stocker et al. [45]
found that model performances can be largely improved by incorporating an estimation of the effects
of soil moisture on LUE, particularly during drought years. Other variables and/or the improvements
in model structures may also be required due to the complex and nonlinear effects of drought on
GPP [9,126].

5. Conclusions

Instead of comparing model performance among different biomes, this study evaluated
the performance of eight widely used satellite-based GPP models in vegetation subtypes limited
by different environmental factors in a biome. Taking the grasslands in northern China as an example,
our results indicated that the performance of the satellite-based GPP models was obviously
higher in the temperature-limited alpine meadow than in the water-limited temperate steppe.
Additionally, performance varied considerably by model in the temperate steppe due to the different
methods being used to address the water stresses. The MVPM and VI in general performed better
than the other LUE and statistical models, respectively, owing to their better representation of moisture
conditions. The relatively worse model performance in the temperate steppe can be significantly degraded
by extreme drought events, regardless of model type. Comparatively, these remote sensing models
showed small differences between the alpine shrub meadow and the alpine swamp meadow, except for
the relatively worse performances of the MODIS-GPP in the alpine shrub meadow and the GR model in
the alpine swamp meadow. Our results highlight the contrasting performances of satellite-based GPP
models in grasslands limited by different environmental stresses and in different precipitation years in
water-limited areas. Given the varying environmental stresses of different vegetation subtypes [127–129]
and the increase in drought events worldwide [63], this study provides important insights for future
model improvements and applications. In particular, more effort should be focused on the quantification
of the effects of water stress on GPP in water-limited ecosystems and in drought years. Note that
the conclusions in this study are based on only four EC flux sites, and further studies incorporating data
at more flux sites are needed to see the generality of the findings from this study.
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Abbreviations

EC Eddy covariance
PPFD Photosynthetic photon flux density
NEE Net ecosystem CO2 exchange
Re Ecosystem respiration
GPP Gross primary productivity
VPM Vegetation photosynthesis model
MVPM Modified VPM model
MODIS-GPP Moderate Resolution Imaging Spectroradiometer GPP algorithm
TG Temperature and greenness model
GR Greenness and radiation model
VI Vegetation index model
AVM Alpine vegetation model
PCM Photosynthetic Capacity Model
LUE Light use efficiency
εmax Potential LUE without environmental stress
εg Actual LUE
ft Effects of air temperature on εmax

fw Effects of water availability on εmax

m Slope between GPP and environmental scalars
PAR Photosynthetically active radiation
fPAR Fraction of PAR absorbed by the vegetation canopy
Ta Air temperature
VPD Vapor pressure deficit
EVI Enhanced vegetation index
LSWI Land surface water index
LST Land surface temperature
LSTan Mean annual nighttime LST
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