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Abstract: In this paper, a novel unsupervised band selection (BS) criterion based on maximizing
representativeness and minimizing redundancy (MRMR) is proposed for selecting a set of informative
bands to represent the whole hyperspectral image cube. The new selection criterion is denoted as the
MRMR selection criterion and the associated BS method is denoted as the MRMR method. The MRMR
selection criterion can evaluate the band subset’s representativeness and redundancy simultaneously.
For one band subset, its representativeness is estimated by using orthogonal projection (OP) and
its redundancy is measured by the average of the Pearson correlation coefficients among the bands
in this subset. To find the satisfactory subset, an effective evolutionary algorithm, i.e., the immune
clone selection (ICS) algorithm, is applied as the subset searching strategy. Moreover, we further
introduce two effective tricks to simplify the computation of the representativeness metric, thus the
computational complexity of the proposed method is reduced significantly. Experimental results on
different real-world datasets demonstrate that the proposed method is very effective and its selected
bands can obtain good classification performances in practice.

Keywords: unsupervised feature selection; dimensionality reduction; hyperspectral image;
orthogonal projection; evolutionary algorithm

1. Introduction

Hyperspectral images contain large amounts of bands, which brings several problems, such
as the heavy computational burden and storage cost. In addition, there is high correlation among
the hyperspectral bands due to the high resolution of spectrum, using all the bands is unnecessary.
Therefore, it is necessary to perform dimensionality reduction (DR) for processing the hyperspectral
data effectively. The commonly used DR techniques include feature extraction and band selection
(i.e., feature selection). Feature extraction reduces the feature space by extracting a few new features
from the original features through some function mapping, this kind of methods include principal
component analysis (PCA) [1,2], nonnegative matrix factorization (NMF) [3], and so on [4–7]. Different
from feature extraction, band selection directly selects a subset of features from the original ones.
For hyperspectral imagery, band selection (BS) is preferable because the selected bands still have
the physical meaning and preserve the relevant original information in the data. BS methods can
be broadly split into the supervised and unsupervised methods in terms of the prior knowledge
availability. Supervised BS methods try to find the most informative bands with respect to the available
prior knowledge [8,9], whereas unsupervised methods do not use any object information [10,11].
Because the prior knowledge is often unavailable in practice, developing unsupervised BS techniques
is necessary.
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Many unsupervised band selection methods have been proposed in these years. Some of them
use different information criteria to measure the importance of hyperspectral bands, then all the
bands are sorted and several top ranked bands would be selected. These kind of methods include
information divergence BS (IDBS) [10], linearly constraint minimum variance (LCMV) [10], constrained
band selection (CBS) [10], mutual information [12], maximum-variance principal component analysis
(MVPCA) [13] and so on [14]. Other band selection methods take bands’ correlation into consideration.
For instance, the maximum ellipsoid volume (MEV) based methods [15–18] measure the importance
of band subsets by calculating the ellipsoid volume of band subsets, and it has been proved that this
kind of methods can well consider the correlation among bands [19]. Recently, some BS methods
based on orthogonal projection (OP) are proposed [19–22], these methods use OP to select the bands
with low redundancy and they have shown good performances in practice. Additionally, many BS
methods based on advanced machine learning algorithms are also proposed, these methods include
the clustering-based methods [23–27], manifold ranking (MR) [28], sparsity based BS methods [29,30],
graph theory based BS [11] and so on.

Through analyzing the selection criteria of these BS methods, it can be found that, generally,
band-ranking based methods mainly consider bands’ information but neglect the correlation among
selected bands [10,21]; although the correlation-based methods pay sufficient attention on band
correlation, their selected bands are not always highly representative and thus the classification
performances are not very satisfactory [11,20,21]; clustering-based methods and some other advanced
methods may take into account information and correlation implicitly, but their computational burden
is usually heavy and there is still a large room for improvement in the selection criteria [21,28].
Therefore, we aim to design a new BS method which explicitly considers the bands’ information and
redundancy simultaneously.

In this paper, we proposed a novel BS selection criterion based on maximizing representativeness
and minimizing redundancy, which is denoted as the MRMR selection criterion. Combine the MRMR
selection criterion with the immune clone selection (ICS) [31], a new method named the MRMR
BS method is obtained. The MRMR selection criterion is based on orthogonal projection (OP) [19]
and it provides a novel perspective for evaluating the importance of band subsets; The MRMR
selection criterion consists of two metrics, i.e., the representativeness metric and the redundancy
metric. The orthogonal projection is used to evaluate the representativeness of a band subset, and
the average of the Pearson correlation coefficients among the bands in the band subset is used to
measure the redundancy of this band set. By combining these two metrics properly, the MRMR
selection criterion can evaluate the importance of each candidate band subset. After the selection
criterion has been determined, the BS task is reduced to be a subset searching problem, namely, we
need to traverse all the candidate band subsets to find the satisfactory one. Since exhaustive searching
strategy is impractical, we have to apply a suboptimal group searching strategy. In this paper, a simple
but effective evolutionary searching algorithm, i.e., the immune clone selection (ICS) algorithm, is
applied as the subset searching strategy. ICS ensures that the BS algorithm can obtain the desired band
subset in a reasonable time. Furthermore, to ease the huge computation burden caused by orthogonal
projection, two efficient tricks are introduced to simplify the computation of representativeness metric,
and these tricks may be also helpful for reducing the computational complexity of other similar
OP-based methods. The major contribution of this paper can be summarized as follows: (1) A new
perspective, that is, the selected features should not only well represent the whole feature set but also
have low redundancy among themselves, is provided for measuring the importance of feature subset
in unsupervised feature selection. (2) Based on the above basic idea for designing selection criteria,
the OP and mean correlation coefficient are respectively used for evaluating the representativeness
and redundancy of feature subsets, and the MRMR selection criterion is proposed. (3) Two ways are
introduced to accelerate the proposed method, and these tricks may be also helpful for reducing the
computational complexity of other similar methods.
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The remainder of this paper is organized as follows: Section 2 introduces some related works
associated with the proposed method, and Section 3 specifically explains the proposed method.
Section 4 presents experiments on different real-world hyperspectral images. Finally, Section 5 gives
some concluding remarks.

2. Related Works

The proposed MRMR method aims to find the band subset that can best represent the whole image
dataset. Some similar methods can be found in [10], in which the linearly constraint minimum variance
based methods (LCMV) are proposed. The LCMV-based methods design a finite impulse response
(FIR) filter for bands, and by minimizing the averaged least squares filter output, the band selection
is transferred to an optimization problem that is similar to the constrained energy minimization
(CEM) [32]. LCMV can find the bands that best represent the whole image, but it tackles each band
individually and does not consider the band redundancy among the selected bands, so the bands
obtained by this kind of methods may be highly correlated with each other. In practice, the high
correlation among selected features often deteriorates the performances of classification, so a good band
selection method should consider band correlation for obtaining good classification performances.

For the MRMR method, we use OP to measure the representativeness of a subset relative to the
whole image cube. Namely, for a candidate band subset, we orthogonally project each remaining
band (all the bands excluded in this subset) to the vector space spanned by the bands of the subset,
then the sum of all the remaining bands’s distances to their OPs can reflect the representativeness of
this band subset. Some methods based on similar processes have been proposed, for instance, the
orthogonal-projection-based BS method (OPBS) [19] , the OSP based BS method (OSP-BSVD) [21],
and the volume-gradient-based BS method (VGBS) [20]; all these methods can be considered as the
BS methods based on OP. OPBS and OSP-BSVD have almost the same selection criterion, but they
are derived independently from different perspectives. Since OPBS and OSP-BSVD are quite similar,
for convenience, we only compare the OPBS method with the proposed method in the following.
The OPBS method applies sequential forward search (SFS) [33] as the searching strategy, so it selects
one band for each time. For the OPBS method, at each round of lookup, the band that has the maximum
OP onto the orthogonal complement of the vector space spanned by the currently selected bands
would be regarded as the target band and added into the selected band set [19]. VGBS is similar to
OPBS, but it removes one band from the original band set iteratively, until the desired number of
bands retain [20]. These similar OP-based methods mainly consider the redundancy of bands but pay
insufficiently attention on the representativeness of bands, so the selected bands obtained by these
methods usually have low redundancy but may not represent the whole dataset well [19,20].

The major differences between the proposed MRMR method and these similar methods could be
summarized as follows:

(1) When compared with the the LCMV-based methods; although both the LCMV-based methods
and the MRMR method evaluate the representativeness of bands, their explicit selection criteria
are totally different. The LCMV-based methods measure one band’s representativeness relative
to the whole dataset by using a finite impulse response (FIR) filter [10]. The MRMR method
evaluates the representativeness of a band subset relative to the remaining bands by using OP.
Moreover, LCMV cannot consider redundancy among selected bands [10,19], but the MRMR
method can achieve it.

(2) When compared with the existing OP-based methods like OPBS, OSP-BSVD and VGBS; although
both these similar methods and the MRMR method use OP to measure the relationship among
bands, their objectives are totally different. For the OPBS, OSP-BSVD and VGBS methods,
OP is used to evaluate the redundancy or the dissimilarity between a candidate band and
the currently selected bands [19–21]; while for the MRMR method, OP is used to measure the
representativeness of a band subset relative to the remaining unselected bands. The existing
OP-based mainly consider the redundancy among selected bands but do not pay sufficient
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attention on the selected bands’ representativeness [19], in contrast, the MRMR method can well
consider both the redundancy and the representativeness of the selected band subset.

(3) Finally, all the LCMV, OPBS, OSP-BSVD and VGBS methods are point-wise band selection
methods, namely, the desired bands are obtained individually [10,19–21]; whereas the MRMR
method is a group-wise method, in which the desired bands are obtained simultaneously. Because
the selected bands actually works together in the applications like pixel classification, the effect
of the selected bands should be considered jointly. The group-wise methods are usually more
effective than the point-wise methods, since the group searching strategy is more suitable for
evaluating the joint effect of multiple bands.

3. The Proposed Method

3.1. Background of OP

The selection criterion of the MRMR method is associated with the vector space. In linear algebra,
a vector space is defined as a set that is closed under finite vector addition and scalar multiplication [34].
Suppose that there is a set of column vectors which is denoted as A = [x1, x2, · · ·, xm] ∈ RN×m, where
N and m represent the numbers of elements and vectors, respectively, then the vector space spanned
by all the column vectors of A can be denoted as follows:

W = Span{A} = {x : x =
m

∑
i=1

ai · xi, ai ∈ R} (1)

where ai could be any scalar. Assume that there is another column vector x0, if we want to evaluate its
relationship with the vector set A, we can compute the distance of x0 to the vector set A. The distance
can be obtained by orthogonally projecting the vector x0 onto the vector space W. In linear algebra,
W is also a linear subspace (or a linear manifold) of the vector space spanned by the vector set
{x0, x1, x2, · · ·, xm} (note that this set includes x0), so W can be considered as a hyperplane relative to
the latter [34]. The orthogonal projection of x0 onto the hyperplane W can be computed by:

P = A(AT A)−1 AT (2)

x̂0 = P · x0 = A(AT A)−1 AT · x0 (3)

where x̂0 is the orthogonal projection (OP) of x0 onto W, and P is called the orthogonal projector. Then,
the squared distance of x0 to the hyperplane W is

d = ‖x0 − x̂0‖2 (4)

The squared distance d is also the squared norm of the orthogonal projection of x0 onto the
orthogonal complement of W [19].

From the perspective of the linear regression, the orthogonal projection x̂0 is also the linear
estimate or prediction of x0 using the vectors in A, and the distance d evaluates the prediction
error [19]. More specifically, it is easy to find that the term (AT A)−1 ATx0 in (3) is an m× 1 vector and
thus can be denoted as follows:

α = [α1, α2, · · · , αm]
T = (AT A)−1 ATx0 (5)

where αi is a scalar, then the OP x̂0 is rewritten as

x̂0 = A× α =
m

∑
i=1

αi · xi (6)
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Obviously, the OP x̂0 is a linear combination of the vectors in A, and (AT A)−1 ATx0 is the weight
vector that determines how each vector affects the prediction. In fact, it can be proved that the term
(AT A)−1 ATx0 is exactly a least squared solution [19]. Therefore, the distance d is the linear prediction
error and it reflects how difficult it is to use the vectors in A to estimate the single vector x0. It is
evident that, the smaller the distance d is, using the vectors in A to linearly represent x0 is easier.
For instance, Figure 1 shows an intuitive example in 3-D. In Figure 1a, the vector x0 cannot be totally
linearly represented by the vectors x1 and x2, in other words, x0 does not belong to the vector space W,
and correspondingly, the distance d does not equal zero; whereas in Figure 1b, the vector x0 belongs to
the vector space W and thus it can be linearly represented by other vectors completely; in this case,
the distance d equals zero. It can be found that, the distance of a vector to the hyperplane spanned by
other vectors actually reflects the similarity between this single vector and a set of vectors. In band
selection, if each band image is reshaped into a column vector, we can use OP to compute a band’s
distance to a band set for measuring the relationship between this single band and a set of bands.
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Figure 1. An intuitive explanation of orthogonal projection. (a) The vector x0 cannot be linearly
represented by the vectors x1 and x2. (b) The vector x0 can be linearly represented by the vectors x1

and x2.

3.2. MRMR Selection Criterion

The objective of the proposed method is to find the band subset with the maximum
representativeness and the minimum redundancy. In this section, we would introduce how the
selection criterion considers these two factors simultaneously.

For the representativeness of a band subset, we use the OP to measure it. Specifically, considering
that the BS process would drop most of the original bands, we want that the selected bands can preserve
the information of the whole dataset as much as possible. Therefore, for a band subset, we orthogonally
project all the remaining bands (i.e., all the bands excluded in this subset) onto the hyperplane spanned
by the bands of the subset, then the sum of distances to the hyperplane can be used to measure the
representativeness of this band subset. Suppose that the total dataset is D ∈ RN×L, where N and L
represents the numbers of pixels (samples) and total bands (features). Assume that we want to select
n bands out of the total bands, and a candidate subset of D is denoted as X = [x1, x2, ..., xn] ∈ RN×n,
then the correspondingly remaining band subset is denoted as Y = [y1, y2, ..., yL−n] ∈ RN×(L−n).
Obviously, we have the relationship that D = X ∪ Y , then the representativeness of X is computed bySrp(X) =

L−n

∑
i=1
‖yi − ŷi‖2

ŷi = X(XTX)−1XT · yi

(7)

where Srp(X) denotes the representativeness of X relative to Y , and the term ŷi is the OP of yi onto
the hyperplane spanned by X.
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According to the analysis of Section 2, the term Srp(X) can be explained as the difficulty of using
the bands of X to represent the bands of Y , thus, the larger the term Srp(X) is, the representativeness
of X is lower. For instance, Figure 2 shows an intuitive example. If all the bands’ distances to the
hyperplane equal zero, any band of Y can be linearly represented by using the bands of X, in this case,
the bands that are not included in X can be abandoned because they are totally redundant (in fact,
this occasion almost never happens, because the hyperspectral dataset D ∈ RN×L is usually a matrix
of rank L). Therefore, we can consider that the subset with small Srp(X) is highly representative.

 

hyperplane 

𝑦𝑖 

Figure 2. A 3-D example for illustrating the rationality of Equation (7). The round marks denote the
bands of the remaining subset Y , and the hyperplane is spanned by X.

On the other hand, for band selection, the redundancy among selected bands should be also
considered. The hyperspectral bands usually have significant correlation with each other, so if the
selected bands are highly correlated with each other, the much redundancy would cause that the
selected bands cannot provide sufficiently useful information for further applications. Furthermore,
just using the metric (7) may have the risk that the selected bands are similar to each other, because
if one band in X is highly representative, its neighboring bands may be also highly representative.
Therefore, our proposed selection criterion further take into account the redundancy among selected
bands by designing an explicit redundancy metric. In this paper, we compute the average of the
Pearson correlation coefficients of the bands in a band set to measure the redundancy. For instance,
for the band subset X, its redundancy is computed by

Srd(X) =
2

n(n− 1)

n

∑
i=1

n

∑
j=i+1

ci,j

ci,j =
(xi − µi)

T(xj − µj)

σiσj

(8)

where Srd(X) represents the redundancy of X, and ci,j denotes the correlation coefficient between xi

and xj; µi and µj respectively denote the mean of the bands xi and xj; σi and σj represent the standard
deviations of xi and xj, respectively.

Obviously, when Srd(X) is large, the bands of X are highly correlated, and thus the redundancy
of X is high. In practice, repetitively computing ci,j for different subsets is inefficient, we can construct
the correlation coefficient matrix of the total bands of D before BS, then any band pair’s correlation
coefficient can be conveniently acquired from the correlation coefficient matrix of D.

Consequently, the two metrics for constructing the selection criterion have been introduced. Since
the objective is to find the band subset with the maximum representativeness and the minimum
redundancy, we should minimize both Srp(X) and Srd(X) as much as possible. Therefore, the MRMR
selection criterion is defined as follows:

S(X) = −Srp(X)− λ · Srd(X) (9)
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where S(X) is the score of the band subset X; λ is a nonnegative real number and it controls the
effects of two metrics; the value for λ can be set adaptively according to the value of Srp(X), and these
contents will be introduced in Section 3.4. The score is larger, the band subset is more important, so our
objective is to find the band subset with the maximum score, i.e.,

Xbest = arg max
X

[S(X)] (10)

Then, we need a subset searching method to traverse over candidate subsets for finding the one
with the largest score.

3.3. Subset Searching Strategy

When dealing with the hyperspectral datasets, exhaustive strategies cannot be used because there
are a huge number of feasible band combinations. In this case, many suboptimal searching methods
such as greedy methods and evolutionary methods have been widely used in band selection [33,35–38].
In greedy methods, the desired bands are obtained gradually, these methods include sequential
forward search (SFS) [33], sequential backward search (SBS) [33], beam search [39] and so on. As for
the evolutionary methods, the desired bands are obtained simultaneously, these methods include
genetic algorithm [37], immune clone selection (ICS) [31], particle swarm optimization (PSO) [40] and
so on. Generally, the greedy methods like SFS are sensitive to the initial feature set and they tackle the
candidate bands individually. Considering that our proposed method needs to compute the scores of
band subsets, greedy methods cannot be applied. Among the commonly used evolutionary methods,
ICS is chosen as the searching strategy because it is easy to be implemented and has a satisfactory
performance. It should be pointed that although we use ICS in this paper, other group searching
methods like PSO can be also combined with the proposed MRMR selection criterion.

Immune clone selection is motivated by the immunology and is a typical paradigm of artificial
immune systems [31]. In the biological immune system, when a new type of antigens has invaded,
the organism can perform immune clonal multiplication to evolve the high-affinity antibody for
defense [31]. This process mainly involves three procedures, i.e., clone, mutation and selection.
Correspondingly, ICS selects the desired antibody through these three operators. In this paper, an
antibody denotes a candidate subset, then some candidate subsets are chosen to construct the antibody
population X = {X1, X2, ..., Xm}, where m is heuristically set to be 10. It should be noted that the
bands of each initial antibody Xi are not directly randomly chosen from the total bands. Instead, if Xi

contains n bands, we divide all the bands into n groups on average according to their band indices,
and then randomly choose one band from each group to construct a initial candidate subset, repeat this
process m times for acquiring the initial antibody population X. This initialization may be helpful for
the ICS algorithm to find the satisfactory subset in a shorter time. Once the initial antibody population
X is obtained, it will undergo the procedures as follows:

X(t) TC−→ X′(t) TM−→ X′′(t) TS−→ X(t + 1) (11)

where TC, TM and TS respectively denote the clone, mutation and selection operators; X′(t), X′′(t) and
X(t + 1) are the associated evolved antibody population.

In the clone stage TC, antibodies conduct self-replication, and the clone number of each antibody is
determined by its affinity [31]. The affinity of the antibody (candidate band subset) Xi is computed by

A(Xi) = eS(Xi) (12)

where S(Xi) is the score of the subset (i.e., antibody) Xi and it is computed by using (9). Consequently,
the clone number of Xi is computed as follows:
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NC(Xi) = Round

m · A(Xi)

max
j∈[1,m]

A(Xj)

 (13)

where Round(·) is a rounding-up function.
In the mutation stage TM, mutation enriches the diversity of antibodies. We randomly choose

some elements from each copied antibody and replace them with equivalent quantity of other candidate
bands. Note that the candidate bands for an antibody refer to all the bands that are not included in this
antibody. For the copied antibody X ′i , we set the mutation number NM(X ′i ) to be a random number
ranging from 1 to min[NC(Xi), n], where NC(Xi) and n represent the clone number of the parent
antibody Xi and the number of the bands in each antibody, respectively. Obviously, the mutation
number of bands is also related with antibodies’ affinities.

Then, in the selection stage TS, we preserve the antibodies with the highest affinities as the new
parent antibody cells [31]. The number of preserved antibodies is also equal to m. Repeat these three
procedures until the relative change rate in the largest score S during the last Nstep steps falls below a
predefined tolerance τ [31]. In this paper, Nstep and τ are set to be 50 and 10−4, respectively. In the end,
the ICS will find a subset with a satisfactory score, and this subset is exactly our final selected band set.

3.4. Practical Considerations

3.4.1. Adaptive Determination of λ

For the selection criterion shown in (9), we need to set a suitable value for λ to control the effects
of representativeness and redundancy. Generally, the value for the first term Srp is quite small, e.g.,
about 10−4; whereas the value for Srd is much larger, e.g., about 0.5. Since the value for Srd is usually
much larger than that of Srp, we should set λ as a quite small value for limiting the influence of Srd.
In this paper, the value for λ is set adaptively according to the value for Srp. Specifically, during the
ICS, the value for λ is set according to the minimum Srp of antibodies in the previous generation
(after clone, mutation and selection have been conducted, a new generation of antibody population is
generated). For instance, denote the minimum Srp in the previous generation as min_Srp , then λ can
be set as follows:

λ = β ·min_Srp (14)

where β is another parameter. We can influence the value for λ by changing β. In this paper, β is set as
0.5 in default, therefore, we have λ = 0.5 ·min_Srp (the initial min_Srp is set as 10−5). The key idea
of (14) is to set λ to be a value that is close to Srp, then both the two terms in (9) would have similar
effects on the values of antibodies’ scores.

3.4.2. Accelerating Tricks of Computing Srp

Another problem of the proposed method is the heavily computational burden of computing
Srp(X). According to (7), it can be found that the computation of ŷi is quite computationally complex.
For instance, for one candidate subset X, the computational complexity of computing ŷi is about
O(nN2), then the complexity of computing Srp(X) is about O(nLN2). For a hyperspectral image,
it usually has hundreds of bands (L) and only tens of bands (n) are to be selected, whereas the pixel
number N is often larger than 105. Considering that there are thousands of candidate subsets to be
tested, the total complexity is too heavy. Therefore, we introduce two tricks to reduce the computational
complexity of (7).

The first way is to compute the Gram matrix of all the bands in D, then (7) can be easily computed
by acquiring elements from the Gram matrix. Likewise, for the raw dataset D ∈ RN×L, it is split
into two portions: X ∈ RN×n and Y ∈ RN×(L−n). According to (7), the OP of the band yi can be
obtained by
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ŷi = X(XTX)−1XT · yi (15)

For convenience, the term X(XTX)−1XT is denoted as P, and it is worth noting that P is
symmetric and idempotent, i.e.,

P = PT (16)

P = P2 (17)

Then, the term ‖yi − ŷi‖2 in (7) equals

‖yi − ŷi‖2 = (yi − ŷi)
T(yi − ŷi)

= yT
i yi − 2yT

i ŷi + ŷT
i ŷi

= yT
i yi − 2yT

i Pyi + (Pyi)
TPyi

= yT
i yi − yT

i Pyi

(18)

It is easy to find that the first term yT
i yi is exactly the squared norm of the band yi and is exactly

one of the diagonal entries of the Gram matrix of D, i.e., DT D [34]. As for the second term yT
i Pyi,

it can be further written as follows:

yT
i Pyi = yT

i X(XTX)−1XTyi

= (XTyi)
T(XTX)−1(XTyi)

(19)

Obviously, (19) demonstrates that yT
i Pyi is also related with the Gram matrix DT D. All the entries

of XTX and XTyi can be acquired from the matrix DT D, since both X and Y are the subsets of D.
Therefore, we can rewrite (7) as follows:

Srp(X) =
L−n

∑
i=1

[yT
i yi − (XTyi)

T(XTX)−1(XTyi)] (20)

where all the terms, i.e., yT
i yi, XTyi and XTX can be directly acquired from DT D, thus the computation

of Srp(X) is simplified significantly. In this way, the complexity of computing Srp(X) is only about
O(n3L), which is much smaller than the original complexity of O(nLN2).

The second way is using the singular value decomposition (SVD) to map original
high-dimensional bands into a low-dimensional space. Specifically, we can find that Srp(X) is actually
only related with the Gram matrix DT D, so if we can reduce the dimensionality of each band through
some function mapping and do not change the Gram matrix DT D, the computational complexity
would be reduced significantly. For the dataset D ∈ RN×L, where N and L are the numbers of the
pixels and total bands, it can be decomposed according to SVD, i.e.,

D = UΣV T (21)

where U is an N × N real or complex unitary matrix, Σ is an N × L rectangular diagonal matrix with
non-negative real numbers on the diagonal, and V is an L× L real or complex unitary matrix. Then,
substitute (21) into DT D and yield that

DT D = [UΣV T ]TUΣV T

= VΣ2V T

= (ΣV T)T(ΣV T)

(22)

which demonstrates that we can use ΣV T to replace the original D. Interestingly, we just need to use
the first L rows of Σ to compute ΣV T , this occurs because that the remaining N − L rows of Σ are all
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zero vectors. Therefore, the dimensionality of ΣV T is actually reduced to L× L, which means that the
bands of D have been mapped into an L-dimensional space. Then we can use the mapped dataset
D′ = ΣV T ∈ RL×L to compute Srp(X). It should be noted that only the first L non-zero row vectors
of Σ are used in this process. In practice, it is unnecessary to conduct the full SVD, including a full
unitary decomposition of the null-space of the matrix, to the matrix D. Instead, we can compute a
reduced version of the SVD named the thin SVD. Since D is an N × L matrix of rank L, the thin SVD
only calculates the L columns of U corresponding to the row vectors of V T , and the remaining column
vectors of U are not calculated, i.e.,

D = ULΣLV T (23)

The thin SVD is significantly quicker and more economical than the full SVD because N is much
larger than L for the hyperspectral datasets. Therefore, to simplify the calculation of (7), we can use
the thin SVD in (23) to obtain the mapped dataset D′ = ΣV T ∈ RL×L, then subsets X and Y are also
mapped into L-dimensional space, thus the computational complexity of Srp(X) is reduced to O(nL3),
which is also much smaller than the original complexity of O(nLN2).

We have introduced two ways to reduce the computational complexity of computing Srp(X).
The first method is to compute the Gram matrix DT D and acquire elements from DT D to compute
Srp(X) (using (20)). The second method is to perform the thin SVD to the matrix D and map it into a
low-dimensional space, then use the mapped dataset for computing Srp(X) (using (7)). Both the two
ways can reduce the computational complexity of computing Srp(X) significantly. It is worth noting
that the first way only computes DT D once, and likewise, the second way just perform the thin SVD
once, both these two preprocesses results in about the complexity of O(NL2). Because the first way is
a little more efficient, we use this method to simplify the calculation in this paper.

3.4.3. The Number of Selected Bands

Another issue of band selection is to determine the number of bands to be selected. In practice,
determining the number of the bands to be selected is a challenging problem for unsupervised band
selection. In most cases, the number of selected bands is determined by users manually, and it is also
reasonable to set the number of selected bands to be a value that is close to the number of classes in the
dataset [19,41]. Generally, the number of classes can be determined by using a virtual dimensionality
(VD) estimation approach proposed in [41], but this way also leads to additional computational burden
and the class number is sometimes not well estimated since choosing suitable values for the parameters
in VD is also difficult. Finally, the basic procedures of the proposed method are shown in Algorithm 1,
where the number of selected bands n is set by users manually or determined by the estimate value of
the class number in the dataset.

Algorithm 1 The MRMR Algorithm

Input: Observations D ∈ RN×L, the number of selected bands n.
Initialize: m, Nstep, τ and min_Srp.
Step1: Compute the Gram matrix G = DT D, then use it to compute subsets’ representativeness Srp
(using (20)) in the following processes.
Step2: Compute the correlation coefficient matrix of D, then use it to compute subsets’s redundancy
Srd (using (8)) in the following processes.
Step3: Establish the initial set of the antibody population, i.e., X = {X1, X2, ..., Xm}.
Step4:
while the stop criterion is not met do
1: Copy the antibodies according to their affinities.
2: According to the clone selection strategy, randomly select some bands from each copied antibody
and replace them with other candidate bands.
3: Select the m antibodies that have the highest affinities to construct the new antibody population.
end while
Step5: The antibody that has the largest affinity is regarded as the final selected band subset.
Output: n selected bands.
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4. Experiments

To observe the effectiveness of the proposed methods, some comparative tests are conducted
to evaluate the proposed method’s performance. Three different hyperspectral datasets and five
different types of unsupervised BS methods are used in our experiments. The competitor methods
include maximum-variance PCA (MVPCA)[13], LCMV band correlation constraint (LCMVBCC) [10],
LCMV band correlation minimization (LCMVBCM) [10], exemplar component analysis (ECA) [23],
and orthogonal-projection-based BS (OPBS) [19]. We would compare these methods in terms of three
aspects, i.e., pixel classification accuracy, band correlation and computing time. Two different classifiers,
i.e, support vector machine (SVM) [42] and K-nearest neighborhood (KNN) [43], are respectively used
for conducting pixel classification in our experiments. For the KNN classifier, the number of neighbors
is set as 3; for the SVM classifier, the Gaussian radial basis function (RBF) is used as the kernel
function, and the parameters of SVM is set by using grid search and cross validation, moreover, the
one-against-all scheme [44] is used for multi-class classification.

4.1. Indian Pine Dataset

The first hyperspectral image is the Indian Pines dataset, which has 145×145 pixels and 220 bands
with a wavelength range from 400 to 2500 nm (Figure 3). In our experiments, bands 1-3, 103-112,
148-165, and 217-220 were removed due to atmospheric water vapor absorption and low signal to
noise ratio (SNR) [14], leaving a total of 185 valid bands to be used. From the 16 land-cover classes
available in the original ground truth, seven classes can be removed because of a lack of sufficient
samples [14]. Thus, for the remaining nine classes (i.e., Corn-notill, Corn-mintill, Grass/Pasture,
Grass/Trees, Haywindrowed, Soybeans-notill, Soybeans-meantill, Soybeans-clean and Woods), we
randomly choose 10% of the samples from each class to generate the training samples and the remainder
are used as testing samples, then conduct classification experiments.

 (a)  (b)

Figure 3. Band 170 and the ground truth of the Indian Pine dataset. (a) Band 170. (b) The ground truth
map (label 0 denotes background).

4.1.1. Classification Results

In the classification experiments, we first select some bands (i.e., features) by using different BS
methods, then randomly split the samples into training and testing sets, and finally conduct pixel
classification. To minimize the effect of stochastic process, we conduct experiments for five times, and
the average results of the five runs are shown in Figure 4. Figure 4 shows the overall classification
accuracies of using different numbers of selected bands, and the selected band number ranges from 2
to 50. Additionally, in Figures 5 and 6, we provide the classification maps of using the fifteen bands
selected by different BS methods. It can be seen from these results that the MRMR method shows the
best overall classification performance among all the BS methods we used.
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Specifically, we can see from Figure 4 that, all the classification accuracies of all the BS methods
increase as the increase of the number of selected bands. When using the SVM classifier (Figure 4a),
the MRMR method obtains the best overall performance, followed by ECA, OPBS, LCMVBCM and
others. MRMR always outperforms the other competitors, and it obtains a significant increment on
the classification accuracy when compared with other methods. For instance, in most cases, when
compared with the second best method, i.e., ECA, the accuracy of MRMR is about 4% higher than
that of the ECA method. As for the KNN classifier (Figure 4b), likewise, the MRMR method obtains
the best overall classification results, followed by ECA, OPBS and others. When compared with ECA,
the classification accuracy of the proposed method is still about 3% higher than that of ECA.

Figures 5 and 6 show the classification maps of using the fifteen bands selected by different
methods. The results show that the classification results of MRMR are much better than other five
methods and further support the observations from Figure 4. Furthermore, Table 1 lists the overall
accuracy (OA) and average accuracy (AA) of classification. Overall accuracy is the ratio of correctly
classified samples versus total samples, and average accuracy is the average of each accuracy per class.
We can see from Table 1 that both the OAs and AAs of MRMR are much higher than those of other
methods, which further verifies that the proposed method is superior to other methods.

Therefore, the experimental results on the Indian Pine dataset demonstrate that, the proposed
method is an effective BS method and its selected bands can obtain much better classification
performance than other competitors. Thence, this experiment has verified that the proposed method
can select the band subset that well represent the whole image dataset and the selected bands are
informative for classification.

Table 1. Overall Accuracies and Average Accuracies of Using the Fifteen Bands Selected from the
Indian Pine Dataset. (The bold denotes the best result).

SVM KNN

OA (100%) AA (100%) OA (100%) AA (100%)

1.MVPCA 67.74 67.99 59.95 61.19
2.LCMVBCC 64.39 63.82 54.25 54.90
3.LCMVBCM 70.48 72.02 62.60 63.52
4.ECA 77.45 76.99 70.62 69.41
5.OPBS 75.90 76.15 68.70 67.86
6.MRMR 81.32 82.70 72.94 72.86
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Figure 4. Overall classification accuracies of using the bands selected by different BS methods from the
Indian Pine dataset. (a) SVM (b) KNN.
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 (a)  (b)  (c)  (d)  (e)  (f)

Figure 5. SVM classification maps of using the fifteen bands selected by different methods from the
Indian Pine dataset. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS (f) MRMR.

 (a)  (b)  (c)  (d)  (e)  (f)

Figure 6. KNN classification maps of using the fifteen bands selected by different methods from the
Indian Pine dataset. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS (f) MRMR.

4.1.2. Band Correlation Comparison

BS methods should also take the band correlation among selected bands into consideration,
because the high correlation among selected bands usually leads to much information redundancy
and then deteriorates the pixel classification performances. In this section, we compare the average
band correlation among the selected bands obtained by each BS methods. The overall band correlation
of one band subset is measured by the average of correlation coefficients (ACC) of all the band pairs in
this band set. Obviously, the larger the ACC is, the higher the band correlation is.

The ACCs of the fifteen selected bands of different BS methods are listed in Table 2, from which
we can see that the bands obtained by the MVPCA and LCMV-based methods are highly correlated,
while the ones obtained by the other BS methods are with much lower correlation. Among all the BS
methods, the OPBS method selects the bands with the lowest correlation, this occurs because that the
OPBS method selects the band that is the most dissimilar (i.e., the lowest correlated) to the currently
selected bands in each round. The bands selected by MRMR are also with low correlation, which
is quite close to the correlation of the bands selected by OPBS. This demonstrates that the selection
criterion of MRMR have well taken into account the band correlation among bands.

Furthermore, Figure 7 shows the 2D maps of the distribution of the bands along with the
marked selected bands. In Figure 7, each curve denotes a spectrum of one category across a range
of wavelengths, and the straight lines denotes the selected bands. For each category, the average
of samples is used to represent this category. The 2D maps demonstrates that most of the bands
selected by the MVPCA and LCMV-based methods are neighboring bands, while the ECA, OPBS
and MRMR methods select much fewer neighboring bands. The neighboring hyperspectral bands
are generally highly correlated with each other, so if a BS method selects many neighboring bands,
the correlation among these selected bands would be significant. This is exactly the reason that the
bands selected by the MVPCA and LCMV-based methods are with so high correlation. In practice, the
high correlation among selected bands leads to much redundancy, which deteriorates the classification
performances. For instance, we can observe from Tables 1 and 2 that, the bands with high correlation
usually corresponds to the low classification accuracies, and reducing the correlation among selected
bands is helpful for improving the classification accuracies. Additionally, although ECA and OPBS
select the bands that have quite low correlation, their classification performances are not as good as
that of the proposed MRMR method, this occurs because that the selected bands obtained by these two
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methods are less informative than the bands obtained by the MRMR method, which indicates that the
selection criterion of MRMR is more effective for finding the bands that have good representativeness.

To sum up, a good band selection method should pay sufficient attention on the band correlation
among selected bands, and the band correlation comparison has verified that the proposed method
can take into account the band correlation and select the bands with low redundancy.

Table 2. Average band correlation and computing time for selecting fifteen bands from the Indian
Pine dataset.

Band Correlation (ACC) Computing Time (s)

1.MVPCA 0.5950 0.2825
2.LCMVBCC 0.9816 3.0452
3.LCMVBCM 0.9882 2.5048
4.ECA 0.2988 1.6770
5.OPBS 0.1815 0.6376
6.MRMR 0.2179 1.7101

 

(a)
 

(b)
 

(c)

 

(d)
 

(e)
 

(f)

Figure 7. Spectrums of the categories on the Indian Pine dataset. The straight lines denote the bands
selected by different BS methods. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS
(f) MRMR.

4.1.3. Computing Time Comparison

The computing time of selecting 15 bands by different methods is also listed in Table 2, from
which we can see that the MVPCA method runs the fastest, followed by OPBS, ECA, MRMR and
other methods. Although the MVPCA method has better computational efficiency than the proposed
method, considering that the MRMR method can achieve much better classification accuracy, it is
acceptable that the MRMR method costs a little more time. When compared with the methods except
for MVPCA, the MRMR method costs the medium time, so it also has a satisfactory computational
efficiency and it enable to find the desired bands in a reasonable time. It should be pointed that,
because the Indian Pine dataset is an image with a small number of pixels (N = 145× 145 = 21,025),
the acceleration effect of the tricks introduced in Section 3.4 is not very significant. In fact, for the
following dataset of larger size, the superiority of the proposed method on the computational efficiency
would become more significant.

4.2. Pavia University Image

The second image is the Pavia University dataset, which is acquired by the ROSIS-3 optical sensor
(Germany). The dataset has 103 spectral bands and there are 610× 340 pixels. There are nine classes in
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this image and all the classes are used in our experiments (Figure 8). For this dataset, we also randomly
choose 10% pixels for training and the rest for testing.

 (a)  (b)

Figure 8. Band 50 and the ground truth of the Pavia University dataset. (a) Band 50. (b) The ground
truth (label 0 denotes background).

4.2.1. Classification Results

Likewise, different numbers of bands are selected from this dataset and the number ranges from
2 to 50. The average classification results of five runs are shown in Figure 9. Figures 10 and 11 also
show the classification maps of using the ten bands selected by different methods. It is evident that,
for this dataset, the proposed method is also superior to other competitors.

It can be observed from Figure 9 that, the MRMR method performs the best, followed by the
OPBS, ECA, MVPCA and LCMV-based methods. For the SVM classifier (Figure 9a), the MRMR
method achieves the highest overall accuracies. In the case of selecting a small number of bands, e.g.,
less than 12 bands, the accuracy of the MRMR method is about 3% higher than the accuracy of the
second best method (i.e., OPBS). When more bands are selected, the accuracy of the OPBS method
increases significantly and is sometimes slightly higher than that of MRMR. As for the KNN classifier,
likewise, MRMR achieves the highest classification accuracy, and OPBS also performs well. These
two methods show a significant superiority relative to the remaining four methods. We also notice
that when a large number of bands are selected, e.g., larger than 25 bands, most BS methods can
obtain good classification performances. Since the major purpose of BS is selecting a few informative
bands to improve the computational efficiency and ease the storage burden, fewer bands with a
good classification performance is encouraged. The proposed method achieves the best classification
performance and shows a significant superiority to other competitive methods when selecting quite
few bands (e.g., less than 15 bands), which indicates that the proposed method is valuable.

Furthermore, we can observe from Figures 10 and 11 that the classification maps of MRMR are
the most correct. Table 3 further lists the OAs and AAs of using the ten bands obtained by different
methods. Similar to the results on the Indian Pine dataset, MRMR again acquires the highest OAs
and AAs. These results further support the observations from Figure 9 and we can conclude that the
MRMR method is superior to others.
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Table 3. Overall Classification Accuracies and Average Classification Accuracies of Using the Ten
Bands Selected from the Pavia University Dataset. (The bold denotes the best result).

SVM KNN

OA (100%) AA (100%) OA (100%) AA (100%)

1.MVPCA 70.96 62.83 63.87 59.09
2.LCMVBCC 69.08 64.36 60.69 62.52
3.LCMVBCM 77.19 70.20 68.27 68.27
4.ECA 83.89 79.96 76.62 72.65
5.OPBS 86.58 83.62 80.87 78.38
6.MRMR 90.15 87.78 83.76 82.57
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Figure 9. Overall classification accuracies of using the bands selected by different BS methods from the
Pavia University dataset. (a) SVM (b) KNN.

 (a)  (b)  (c)  (d)  (e)  (f)

Figure 10. SVM classification maps of using the ten bands selected by different methods from the Pavia
University dataset. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS (f) MRMR.

 (a)  (b)  (c)  (d)  (e)  (f)

Figure 11. KNN classification maps of using the ten bands selected by different methods from the
Pavia University dataset. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS (f) MRMR.

4.2.2. Band Correlation Comparison

Table 4 lists the average band correlation of the ten selected bands. Similarly, for this dataset,
the bands selected by the MVPCA, LCMV-based methods are still highly correlated, whereas the other
BS methods select the bands with lower correlation. Figure 12 shows that the MVPCA, LCMV-based
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methods select many neighboring bands, while the other three methods select less neighboring bands.
It is worth noting that, although the bands selected by ECA and OPBS are not with high correlation, the
distributions of these two methods’ selected bands are more centralized than that of the MRMR method.
In other words, the distribution of the bands selected by MRMR is more dispersed. For instance, most
bands selected by ECA are distributed among the bands 1–10 and 65–85; and about one half of the
selected bands of OPBS belong to the bands 1–10; while the bands selected by MRMR are much more
isolated. By observing the spectrums of categories, we can find that, for ECA and OPBS, some selected
bands like bands 74 and 73 may be little useful for discriminating most categories in the dataset, and
some bands like bands 1–4 are actually similar to each other, which means some selected bands of
OPBS and ECA may be lowly representative (e.g., bands 73 and 74) or redundant (e.g., bands 1–4).
On the contrary, the distribution of the selected bands of MRMR is more dispersed, and each selected
band is useful for discriminating categories, so we can intuitively conclude that the selected bands
of MRMR is more useful for classification. Some similar results can be also observed in Figure 7.
Therefore, it can be concluded according to the classification results and band correlation comparison
that the selected bands obtained by the MRMR method are not only highly representative but also
lowly redundant.

Table 4. Average band correlation and computing time for selecting fifteen bands from the Pavia
University dataset.

Band Correlation (ACC) Computing Time (s)

1.MVPCA 0.9981 1.1549
2.LCMVBCC 0.9880 5.7662
3.LCMVBCM 0.9934 4.3998
4.ECA 0.6223 15.2934
5.OPBS 0.5267 2.5998
6.MRMR 0.5788 2.3671

 

(a)
 

(b)
 

(c)

 

(d)
 

(e)
 

(f)

Figure 12. Spectrums of the categories on the Pavia University dataset. The straight lines denote the
bands selected by different BS methods. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS
(f) MRMR.

4.2.3. Computing Time Comparison

Table 4 also gives the computing time of selecting ten bands by different methods. For this dataset,
MVPCA costs the shortest time, followed by MRMR, OPBS, and other methods. We can see that the
computing time of MRMR is only higher than that of MVPCA and is close to that of OPBS, this occurs
because that the Pavia University dataset is with a huge number of pixels (N = 610× 340 = 207,400),
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so the accelerating effect of the tricks introduced in Section 3.4 becomes more significant. When
compared with the results on the Indian Pine dataset, it can be concluded that the proposed method
has a more significant superiority in computational efficiency when dealing with large-scale images.
Therefore, the experimental results on this dataset further proves that the MRMR method has a
satisfactory computational efficiency, especially when processing the large-scale images.

4.3. Salinas Dataset

The third image was also collected by the 224-band AVIRIS sensor over Salinas Valley, California,
and was characterized by a high spatial resolution (3.7-meter pixels) (Figure 13) [45]. The dataset has a
medium size of 512× 217 pixels, and the spectral range is from 370 to 2507 nm. In our experiments,
all the 16 classes in the Salinas dataset are used.

 (a)  (b)

Figure 13. Band 100 and the ground truth of the Salinas dataset. (a) Band 100. (b) The ground truth
(label 0 denotes background).

4.3.1. Classification Results

The classification results on this dataset are shown in Figures 14–16 and Table 5. It is evident that,
for this dataset, the proposed method is also superior to other competitors.

The classification accuracy curves in Figure 14 shows all methods perform well for this dataset,
especially the MRMR, OPBS and ECA methods. Although OPBS and ECA performs quite well, we can
see that the proposed method still obtains the best results in most cases. We also notice that, for this
dataset, the proposed can obtain quite good classification performances when selecting quite a limited
number of bands (e.g., less than 5 bands). Furthermore, the results in Table 5 demonstrate that the
proposed method obtains the highest OAs and AAs for both the two classifiers, and correspondingly,
the associated classification maps of the proposed method is the most similar to the ground truth maps
among all the classification maps (Figures 15 and 16). Therefore, these classification results on Salinas
dataset further indicate that the proposed method is effective for finding the bands that are informative
for classification.

Table 5. Overall Classification Accuracies and Average Classification Accuracies of Using the Fifteen
Bands Selected from the Salinas Dataset. (The bold denotes the best result).

SVM KNN

OA (100%) AA (100%) OA (100%) AA (100%)

1.MVPCA 84.75 87.78 80.16 83.56
2.LCMVBCC 88.06 90.91 84.08 86.57
3.LCMVBCM 86.36 87.02 82.65 85.44
4.ECA 92.16 95.67 88.58 92.87
5.OPBS 91.72 95.34 84.54 88.77
6.MRMR 93.02 96.31 88.83 93.13
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Figure 14. Overall classification accuracies of using the bands selected by different BS methods from
the Salinas dataset. (a) SVM (b) KNN.

 (a)  (b)  (c)  (d)  (e)  (f)

Figure 15. SVM classification maps of using the ten bands selected by different methods from the
Salinas dataset. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS (f) MRMR.

 (a)  (b)  (c)  (d)  (e)  (f)

Figure 16. KNN classification maps of using the ten bands selected by different methods from the
Salinas dataset. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS (f) MRMR.

4.3.2. Band Correlation Comparison

Likewise, Table 6 lists the average band correlation of the fifteen selected bands. For this dataset,
the bands selected by the MVPCA, LCMV-based methods are still highly correlated, whereas the
other BS methods select the bands with lower correlation. For this dataset, the proposed method’s
selected bands have the lowest average correlation, and we can also see from Figure 17 that the
MVPCA, LCMV-based methods select many neighboring bands, while the selected bands of other
methods are more dispersed. It is worth noting that when compared with the OPBS and ECA methods,
the distribution of the bands selected by the proposed method is also more dispersed and it can be
intuitively seen that the bands selected by the proposed method are more reasonable.
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Table 6. Average band correlation and computing time for selecting fifteen bands from the
Salinas dataset.

Band Correlation (ACC) Computing Time (s)

1.MVPCA 0.9976 1.1549
2.LCMVBCC 0.6282 5.7662
3.LCMVBCM 0.7001 4.3998
4.ECA 0.4509 15.2934
5.OPBS 0.3728 2.5998
6.MRMR 0.3039 2.3671
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Figure 17. Spectrums of the categories on the Salinas dataset. The straight lines denote the bands
selected by different BS methods. (a) MVPCA (b) LCMVBCC (c) LCMVBCM (d) ECA (e) OPBS
(f) MRMR.

4.3.3. Computing Time Comparison

The computing time of selecting ten bands by different methods is also listed in Table 6. The Salinas
dataset has more pixels than the previous Indian Pine dataset, so the proposed method should show
good performance in terms of the computational efficiency. We can see that MVPCA costs the shortest
time, followed by MRMR, OPBS, and other methods. The computing time of MRMR is only higher than
that of MVPCA and is slighted shorter than that of OPBS, which further indicates that the accelerating
effect of the tricks introduced in Section 3.4 is effective. Therefore, the experimental results on this
dataset also proves that the MRMR method has a satisfactory computational efficiency, especially
when processing the large-scale images.

4.4. Summary

In the end, some important results can be summarized from all the experiments. In unsupervised
band selection, the BS methods should evaluate the representativeness and the correlation among
selected bands jointly. The proposed method explicitly designs two metrics for evaluating these
two factors and then combine them into an effective selection criterion. Experimental results have
verified that the selected bands obtained by the MRMR method are not only informative for pixel
classification but also with low correlation. Among all the methods we used, the MRMR method
shows the best performance of classification, it even outperforms the state-of-art methods like OPBS
and ECA. When compared with the similar methods, namely, the OPBS and LCMV-based methods,
the MRMR method is much superior to them, which demonstrates the effectiveness of the proposed
selection criterion. Furthermore, considering that BS is to select several bands to replace the whole
dataset, it is preferable that the BS methods select fewer bands but maintain a satisfactory classification
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performance. When selecting quite few bands, the MRMR method still obtains quite good classification
performances, so this method is valuable. Finally, thanks to the accelerating tricks for computing the
orthogonal projection, the MRMR method has a satisfactory computational efficiency. In conclusion,
the effectiveness of the proposed method has been verified.

5. Conclusions

In this paper, we proposed an unsupervised feature selection approach based on maximizing
representativeness and minimizing redundancy to select some important bands from hyperspectral
images. The MRMR method aims to find the band subset that has the maximum representativeness and
the minimum redundancy. The representativeness of one band subset is measured by the distances of
the remaining bands to their orthogonal projections onto the hyperplane which is spanned by the bands
of the subset. The redundancy of one band subset is measured by the average correlation coefficient
of the bands in this subset. To find the subset with good representativeness and low redundancy,
an effective evolutionary algorithm named the Immune Clone Selection (ICS) is applied as the searching
strategy. Moreover, to ensure that the proposed method can be used in practical applications, two
useful tricks are introduced to accelerate the computation of the subsets’ representativeness, any of
them can be applied to reduce the computational burden of the MRMR method. The experimental
results on three different datasets have verified that the proposed method is a highly effective BS
method with a satisfactory computational efficiency. Finally, our future research interest is to find
the other effective metrics to evaluate the representativeness and redundancy for improving the
performance of the proposed method.
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