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Abstract: Studies of the spatial extent of surface urban heat island (SUHI or UHISurf) effects require
precise determination of the footprint (FP) boundary. Currently available methods overestimate or
underestimate the SUHI FP boundary, and can even alter its morphology, due to theoretical limitations
on the ability of their algorithms to accurately determine the impacts of the shape, topography,
and landscape heterogeneity of the city. The key to determining the FP boundary is identifying
background temperatures in reference rural regions. Due to the instability of remote sensing data,
these background temperatures should be determined automatically rather than manually, to eliminate
artificial bias. To address this need, we developed an algorithm that adequately represents the decay of
land surface temperature (LST) from the urban center to surrounding rural regions, and automatically
calculates thresholds for reference rural LSTs in all directions based on a logistic curve. In this study,
we applied this algorithm with data from the Aqua Moderate Resolution Imaging Spectroradiometer
(Aqua/MODIS) 8-day level 3 (L3) LST global grid product to delineate precise SUHI FPs for the Beijing
metropolitan area during the summers of 2004–2018 and determine the interannual and diurnal
variations in FP boundaries and their relationship with SUHI intensity.

Keywords: surface urban heat island; footprint; threshold; boundary; logistic model; MODIS

1. Introduction

Urbanization results in land use change from non-urban to urban land, and is accompanied by
increases in anthropogenic heat release [1–3]. Consequently, city energy and water balances are altered
through the reduction of latent heat flux and the rise in sensible heat flux, which further affect regional
and even global climates [4–7]. Among these impacts, the urban heat island (UHI), a phenomenon
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characterized by significantly higher air and land surface temperatures (LSTs) in urban areas than
in suburban areas, negatively affects the health and comfort of urban dwellers and greatly increases
energy consumption [8–12]. The UHI can be divided into four types, subsurface urban heat island
(UHISub), surface urban heat island (SUHI), canopy layer urban heat island (UHIUCL), and boundary
layer urban heat island (UHIUBL), according to temperature differences in urban and rural cooling
and warming rates at the surface, in the substrate and in the air [13]. In general, SUHI for cities or
regions is easily estimated by means of satellite and aircraft sensors, which could be used to retrieve
the differences between the interface of the outdoor atmosphere with the solid materials of the city and
equivalent rural air to ground interface [13]. More importantly, the area affected by a SUHI is much
larger than the area of the city [14–17]. Therefore, SUHI has gained considerable research interest
during the past several decades [18–24].

UHI intensity (UHII), a well-known indicator of SUHI, is calculated as the temperature difference
between urban land and a reference rural region [14,25–32]. Although UHII quantitative and
spatiotemporal characteristics, as well as SUHI sources/sinks [8,33–35], have been characterized for
many cities worldwide using multiple algorithms [14,25–32], in-situ station observations [36–40],
and remote sensing techniques [41], the results of these studies lack stability and generalizability.
The magnitude and extent of the SUHI can be biased by the selected reference rural regions,
including a few specific observation stations or pixels, one or several types of land use, all areas within
the buffer at a certain distance from the city boundary, etc. [42,43]. Therefore, accurate quantification of
SUHI requires the selection of appropriate reference rural regions and relevant temperature thresholds
for these regions.

The footprint (FP) of the UHI effect is a relatively new index that quantifies the area affected
by the SUHI, by defining the extent of increased temperature with respect to the reference rural
region [17,44–47]. This comprehensive index considers both the magnitude and spatial extent of the
SUHI effect [17,46]. Gaussian surface models have been widely applied to calculate the FP due to its
good performance in SUHI modeling [46,48–50]. A single exponential decay model has also been used
to extract the FP by examining obvious urban/rural temperature “cliffs” [17]. In these previous studies,
topographical factors and the SUHI sink (e.g., water or green land) were determined to eliminate
the effects of abnormally low-temperature objects on the SUHI [35,51]. However, most studies have
adopted the shape of the city as a default basis for the SUHI FP, with buffer zones being stretched from
the border of the urban area [17]. These approaches appear not to have accounted for differences in the
effects of land use types or landscape heterogeneity on LSTs outside of the urban area, and can impact
the SUHI FP extent in multiple directions [52–56]. Therefore, the objective of this study was to develop
a new method to determine LSTs threshold for reference rural regions in all directions, with the aim of
determining a more precise boundary of the SUHI FP in a metropolitan region. The proposed new
method will be more reasonable than previous methods in that it minimizes the effects of the city’s
shape, topography, or landscape heterogeneity.

2. Materials and Methods

2.1. Study Area

The study area is the Beijing metropolitan region, China (Figure 1). This metropolitan region was
selected for several reasons. The city has a sub-humid warm temperate continental monsoon climate
and four distinct seasons, with a hot and humid summer. The phenomenon that there is an obvious
summer SUHI intensity in Beijing has been widely observed through multi-source remote sensing
data [35]. Meng et al. pointed out that the maximum value of the mean SUHI intensity can reach
5.88 ◦C and 2.46 ◦C in day and night, respectively, during 2003–2015 [57]. Mountains and plains are
distributed to the northwest and southeast of Beijing, respectively, which is important for eliminating
the effects of terrain on the SUHI FP and validating the proposed method.
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Figure 1. Location of the study area and land use types in Beijing metropolitan region (2015).

2.2. Data Source

The moderate resolution imaging spectroradiometer (MODIS), which has fine spatiotemporal
resolution and data accuracy, is widely used in the study and simulation of SUHI processes and
mechanisms [11,12,35,58]. In this study, we used the Aqua MODIS 8-day level 3 (L3) LST global
product (MYD11A2), which has a spatial resolution of 1 km, for the summers of 2004–2018 (June, July,
and August). Its overpass times are around 13:30 (local solar time) in descending mode and 1:30 in
ascending mode, representing daytime and nighttime LST observations, respectively. The dataset
includes 12 data periods per year. Each period can be further divided into daytime and nighttime
LST. The attached quality control (QC) files were used to exclude low-quality pixel values affected by
clouds or other noise.

Land use datasets were used to remove pixel values affected by cold sources (e.g., ponds, lakes,
rivers, parks, or golf courses) in urban areas. The 30-m-resolution dataset of the period of 2005 and
2015 was manually interpreted via Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper
(ETM) images at the Chinese Academy of Sciences and was found to have high classification accuracy
based on massive field sampling [59]. The Beijing metropolitan region comprises six types of land
use, including cropland, forest, grassland, water, urban land, and rural settlement in the dataset.
The land use of 2017 with 10-m-resolution comes from Finer Resolution Observation and Monitoring
of Global Land Cover (http://data.ess.tsinghua.edu.cn/fromglc2017v1.html) [60]. The dataset includes
cropland, forest, grassland, shrubland, wetland, water, impervious surface, and bare land in the Beijing
metropolitan region.

A digital elevation model (DEM) with a spatial resolution of approximately 90 m was downloaded
from the Space Shuttle Radar and Topography Mission (SRTM) and used to take into account terrain
effects [12].

2.3. Method

To quantify UHII, we first defined the reference rural LST background field. The LST background
field must be relatively stable and unaffected by the urban area. However, depending on the topography
and landscape heterogeneity, the selection of different reference points can result in different LST
background fields and SUHI intensity values [37]. We assumed different reference points for different
directions, setting the urban center (or center of gravity) as the polar coordinate origin. Thus, the LST
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of each pixel and the reference rural LST in a certain direction can be expressed as TS(θ,r) and Tref(θ).
The UHII for each pixel, noted as UHII(θ,r), can thus be calculated as follows.

UHII(θ, r) = TS(θ, r)−Tre f (θ), (1)

We first determined the center (or center of gravity) of the study area. Buffer rings were then
drawn from the urban center to the surrounding rural region (Figure 2).

Figure 2. Buffer rings, land surface temperature (LST), and a schematic showing how reference rural
LST is calculated using the logistic model (daytime, 26 June 2018).

To ensure equal sampling, we used buffer rings of equal area. In repeated experiments, the initial
radius r1 was set to 5 km, with each subsequent ring area Si equal to the initial ring area S1.
Thus, the radius ri of each subsequent ring was determined as 5

√
i km, where i is the number of the

buffer ring. The average LST within each buffer ring was then calculated as follows.

TS(r) =
1

2π

∫ 2π

0
TS(θ, r)dθ, (2)

Theoretically, the air temperature should follow a relatively well-defined spatial pattern radiating
from the urban center to the suburbs [17,47]. Although the LST would show a certain fluctuation
because of the surface properties, including geometric, radiative, thermal, moisture and aerodynamic,
during the radiation process (see the blue points in Figure 2), the overall performance of the fitted
logistic curve (see the red line in Figure 2) could reflect the similar decline trend compared to air
temperature [61–63]. When these regions are far enough away from the urban center, the LST should
remain relatively stable as it is no longer affected by the SUHI effect. During the process of LST
decline, abnormal values can occur when LST is affected by topography, small cold sources (e.g., ponds,
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lakes, rivers, parks, and golf courses), or clouds. An algorithm must be developed to eliminate these
abnormal values prior to the fitting process.

T′S(r) =
1

2π

∫ 2π

0
TS(θ, r)·g(DEM, water, greenland, cloud)dθ, (3)

After the removal of outliers, the logistic model was finally applied to fit the Tref(θ) curve.

Tre f (θ) = f
(
T′S(r)

)
, (4)

The blue points in Figure 2 indicate average LST values the buffer rings, extracted after the outlier
removal. These LST points were fitted to the smoothed LST series curve (red solid line) using the
logistic algorithm. This algorithm was applied to characterize the LST series using the most important
transition point derived from the LST spatial series data, i.e., Tref(θ), which is the location where the
LST becomes relatively stable. The peripheral area at this location is no longer the SUHI FP.

The change in the LST data for a single urban structure can be modeled as follows:

f
(
T′S(r)

)
=

c
1 + ea+br

+ d, (5)

where r is the buffer ring number, f
(
T′S(r)

)
is the LST value at buffer ring r, a and b are the parameters

of the logistic curve that require fitting. The sum of c and d represents the highest LST value among all
buffer rings, and d is the lowest LST value among all buffer rings.

Mathematically, these transition points can be calculated using the rate of change of the curvature
(K) curve (Figure 2, black dotted line) of the fitted LST series curve. Values of K for Equation (5) at
different buffer rings can be calculated as follows:

K =
dβ
ds

= −
b2cz(1− z)(1 + z)3[
[1 + z]4 + [bcz]2

]3/2
, (6)

where z = ea+br, β is the angle of the unit tangent vector at buffer ring r along a differentiable curve,
and s is the unit length of the curve. The K’ value, which represents the rate of change of the curvature
curve, can be calculated as follows.

K′ = b3cz

3z{1− z}{1 + z}3
[
2[1 + z]3 + b2c2z

]
[
[1 + z]4 + [bcz]2

]5/2
−

{1 + z}2
{
1 + 2z− 5z2

}
[
[1 + z]4 + [bcz]2

]3/2

, (7)

As the LST decreases from the urban area to the surrounding area, three extreme values of K’ in
the LST fitted curve can be inferred from Equation (7). The last minimum point (black) corresponds to
the location of the reference rural region. Tref(θ), the average LST in the reference ring, was identified
as the reference rural LST, and the difference between the maximum LST and Tref(θ) is the UHII at an
angle of θ. Thus, each pixel can be considered part of the SUHI FP based on whether the LST in the
pixel is greater than the threshold Tref(θ) (Figure 3).
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Figure 3. The boundary of surface urban heat island footprint (SUHI FP) in Beijing metropolitan region
(daytime,26 June 2018).

To avoid the impact of remote sensing data instability, we further explored the probability of
seasonal SUHI FP for each pixel via Equation (8), such that higher probability indicated a greater
likelihood that the pixel was part of the SUHI FP during that season.

ProbFP(θ, r) =
NumFP(θ, r)

Numlogistic(θ, r)
× 100%, (8)

where ProbFP(θ, r) means that the probability of seasonal SUHI FP for each pixel. NumFP(θ, r) means
that the number of the pixel being judged as the SUHI FP in summer. Numlogistic(θ, r) means that the
number of the pixel passed the significance test through the logistic fitting. For the 8-day MODIS LST
product, the value of Numlogistic(θ, r) should range between 0 and 12. This probability was calculated
only if the logistic fit was found to be significant within the 8-day MODIS LST product.

UHI capacity was introduced to characterize the degree of UHI effect in the UHI FP.

CUHI =
x

D

UHII(θ, r)dσ, (9)

where CUHI is UHI capacity, i.e. the cumulative amount of UHII in the UHI FP (shown in the shaded
part in Figure 2). The unit is ◦C·km2. D is the UHI FP area. UHII(θ, r) is the UHII in each pixel.

3. Results

3.1. Spatiotemporal Variation in the FP

3.1.1. Daytime Spatiotemporal Variation in the FP

Spatially, high-probability (>70%) summer SUHI FPs were mainly concentrated in urban centers,
including Dongcheng, Xicheng, Haidian, Chaoyang, Shijingshan, Fengtai Districts, the northern edge
of Daxing District, and the Capital International Airport in Shunyi District (Figure 4). The summer
SUHI FPs showed significant expansion between 2004 and 2018, especially from the northern edge
to the center in Daxing District, from the southern edge to central Changping District, and outward
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from the Capital Airport. Even in the southern parts of Miyun and Huairou Districts, there were large
patches of high-probability summer SUHI FPs in the last few years of the study period.

Figure 4. The spatial probability of summer SUHI FPs in daytime in Beijing metropolitan region.
(a–e) 2004–2008, (f–j) 2009–2013, (k–o) 2014–2018.

Medium-probability (30–70%) summer SUHI FPs were distributed at the periphery of the
high-probability summer SUHI FPs, mainly concentrated in the eastern part of Fangshan District,
the southwestern part of Daxing District, the central parts of Tongzhou and Changping Districts,
the northern part of Shunyi District, and the southern parts of Miyun and Huairou Districts.
Distinct expansion of medium-probability FPs was observed in the eastern part of Fangshan District,
the southwestern part of Daxing District, and the southern part of Tongzhou District, and there were
clear conversions from medium-probability to high-probability FPs in the central part of Changping
District, the northern part of Shunyi District, and the southern parts of Miyun and Huairou Districts.

Low-probability (<30%) summer SUHI FPs were mainly distributed in Yanqing, Huairou, Miyun,
Pinggu, Mentougou, and Fangshan Districts at the periphery of the Beijing metropolitan area. There was
no significant spatiotemporal evolution between 2004 and 2018.

Low-probability summer SUHI FPs had the largest area, followed by medium-probability
and high-probability FPs (Figure 5). A 5.5:1:1 ratio was observed among the three types of FPs.
Overall, low-probability SUHI FPs remained generally stable, accounting for approximately 72% of
the total Beijing metropolitan area. The area of medium-probability FPs was basically the same as
that of high-probability FPs, but with different trends during the period 2004–2018. The proportion of
medium-probability SUHI FPs declined from a maximum of 18.96% in 2007 to a minimum of 9.85% in
2016. The proportion of high-probability SUHI FPs increased from a minimum of 9.64% in 2005 to
a maximum of 18.77% in 2017. These increases mainly resulted from the highest-probability (>90%)
SUHI FPs. These areas accounted for most of the high-probability SUHI FPs.
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Figure 5. The area percentages of the different probabilities of summer SUHI FPs in daytime.

3.1.2. Nighttime Spatiotemporal Variation in FPs

Spatially, high-probability (>70%) summer SUHI FPs were also concentrated in urban centers,
including Dongcheng, Xicheng, Chaoyang, Shijingshan, and Fengtai Districts, the eastern part of
Haidian District, the northeastern part of Fangshan District, and the northern part of Tongzhou District
(Figure 6). The area of high-probability summer SUHI FPs was significantly smaller than that in
the daytime. Notably, there were no high-probability summer SUHI FPs in the northern part of
Daxing District or the northern and central parts of Haidian District. However, a large portion of
the summer SUHI FPs appeared around the Miyun Reservoir in the nighttime. From 2004–2018,
the nighttime high-probability summer SUHI FPs showed a weaker expansion trend than that in the
daytime. There were four significant expansions of nighttime high-probability FPs. The largest of these
was located in the northern part of Daxing District, with additional contiguous expansion between
Fengtai and Fangshan Districts, and between Chaoyang District and the Capital International Airport
in Shunyi District. Notably, high-probability summer SUHI FPs expanded around the Miyun Reservoir
during the nighttime.
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Figure 6. The spatial probability of summer SUHI FPs in nighttime in Beijing metropolitan region.
(a–e) 2004–2008, (f–j) 2009–2013, (k–o) 2014–2018.

Medium-probability (30–70%) summer SUHI FPs were also distributed at the outer periphery
of the city, especially in the northern parts of Tongzhou and Daxing Districts near the urban area.
There was also a large medium-probability summer SUHI FP in the central to the southern part
of Fangshan District. From 2004–2018, medium-probability summer SUHI FPs showed the most
significant expansion trend, even compared with the overall daytime trend. Medium-probability
summer SUHI FPs sprawled rapidly to the south in Tongzhou, Daxing, and Fangshan Districts.
There was also a contiguous northwestern expansion trend in Haidian and Changping Districts.

Low-probability (<30%) summer SUHI FPs were the largest areas distributed far from the city center,
with no significant spatiotemporal evolution except for an area encroached by medium-probability
summer SUHI FPs between 2004 and 2018.

Nighttime low-probability SUHI FPs were larger than those in the daytime, accounting for 76.69%
of the total Beijing metropolitan area during the study period, reaching 84.13% in 2005 (Figure 7).
This result was mainly due to the decreased proportion of high-probability SUHI FPs compared to that
in the daytime. The proportion of high-probability SUHI FPs was 9.80% between 2004 and 2018, 4.10%
less than that in the daytime. The proportion of medium-probability SUHI FPs was similar to that in
the daytime. The area of medium-probability and high-probability SUHI FPs increased, whereas the
area of low-probability SUHI FPs decreased from 2004–2018. The proportion of low-probability SUHI
FPs declined from a maximum of 84.13% in 2005 to a minimum of 66.33% in 2017. This loss of area
was mainly due to encroachment by medium-probability SUHI FPs, which increased in area from
a minimum of 7.85% in 2005 to a maximum of 21.81% in 2017. High-probability SUHI FPs showed
a relatively stable growth trend. The highest-probability (>90%) SUHI FPs accounted for most of the
high-probability SUHI FPs.
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Figure 7. The area percentages of the different probabilities of summer SUHI FPs in nighttime.

3.2. Comparative Analysis of SUHI FPs Obtained by Gaussian Surface Model and Logistic Model

To validate the results from the proposed logistic method, we compared the derived UHI FPs
with those calculated from the Gaussian surface model, which is the most commonly used method
in the UHI FP literature [46]. Specifically, we used the 8-day SUHI FP in the summer of 2017 as an
example of the comparative analysis.

Overall, the spatial patterns of SUHI FPs based on the two models are different, as all the SUHI
FPs estimated by the Gaussian surface model were ovals that are continuous in space (Figure 8).
For the Gaussian surface model, although the centers of the ovals appear to be near the city center,
their morphological distributions greatly vary, as affected by the unstable LSTs retrieved from the remote
sensing images. However, the SUHI FPs by the logistic method does not show such oval patterns.

Figure 8. The spatial probabilities of SUHI FPs estimated by the Gaussian surface model in summer of
2017. (a) daytime, (b) nighttime.

Table 1 provides the areal percentages by the probability level of SUHI FP between the two
methods. The areas of high-probability SUHI FPs estimated by the two models are almost identical in
the daytime, accounting for 15.87% and 18.77% of the total area, respectively. In the nighttime, however,
the proportion of high-probability SUHI FP by the Gaussian surface model (19.17%) was significantly
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higher than that by the logistic model (11.86%). Moving onto the medium probability, the areas
of medium-probability SUHI FPs by the Gaussian surface model, for both daytime and nighttime,
were substantially smaller than that by the logistic algorithm. In particular, the SUHI FP estimated by
the Gaussian surface model in the daytime only accounted for 8.37% of the total study area, which was
the smallest type of SUHI FP and was only half of the SUHI FP by the logistic algorithm. Last, for low
probability, the nighttime SUHI FP areas by the two models are almost identical, accounting for 66.43%
and 66.33% of the total area, respectively. However, in the daytime, the proportion of low-probability
SUHI FP by the Gaussian surface model was 9.34% higher than the low-probability SUHI FP calculated
by the logistic algorithm.

Table 1. The areas of the probability levels of SUHI FPs estimated by the Gaussian surface model and
the logistic model (Unit: km2).

The Probability Levels of SUHI FPs Gaussian Surface Model Logistic Model

Daytime Nighttime Daytime Nighttime

0.0–0.1 9823 6723 8128 5180
0.1–0.2 712 1678 934 2557
0.2–0.3 567 1083 672 1983
0.3–0.4 329 1014 614 1237
0.4–0.5 436 683 523 772
0.5–0.6 259 357 525 658
0.6–0.7 202 307 508 529
0.7–0.8 156 172 563 610
0.8–0.9 166 256 612 808
0.9–1.0 2004 2381 1575 320

To further analyze the reasons for the differences in SUHI FPs between the Gaussian surface
model and the logistic model, we calculated the area differences in different probability levels of SUHI
FPs by cross-classification tables (Tables S1 and S2 in Supplementary Information).

In the daytime, among all the probability ranges, the SUHI FPs with the highest (0.9–1.0) and the
lowest (0–0.1) have the highest agreement of recognition between the two models, with their agreement
percentages reaching up to 80.51% and 64.60%, respectively. However, for the other high-probability
ranges, namely 0.8–0.9 and 0.7–0.8, only 6.21% and 3.20% of the SUHI FPs recognized by the logistic
model were identified as the same level by the Gaussian surface model, with most being classified to
the highest level (i.e., 0.9–1.0) by the latter due to the continuity of its shape.

In the nighttime, the distribution of SUHI FP probabilities was generally consistent with the that
in the daytime. The agreement extent for the high-probability SUHI FPs between the two models is
74.91%, while 14.67% of the logistic model were classified to low-probability by the Gaussian surface
model. The agreement extent for the low-probability SUHI FPs between the two models is 80.06%,
while 6.94% of the logistic model were classified to low-probability by the Gaussian surface model.

We also analyzed the spatial differences of SUHI FPs between the two methods by overlaying
different probability levels of SUHI FPs with land use maps (Tables S3–S6 in Supplementary Information).
The major differences exist in cropland and impervious surface in the daytime, while in cropland,
water bodies, and impervious surface at night. During the day, 11.46%, 24.55%, and 63.99% of the
impervious surface were identified as low-probability, medium-probability, and high-probability SUHI
FPs estimated by the logistic algorithm, respectively. However, the proportion of the impervious surface
with high-probability SUHI FPs estimated by the Gaussian surface model is 51.09%, which is lower
than that by the logistic model. During the day, 39.57%, 33.26%, and 27.17% of cropland were identified
as low-probability, medium-probability, and high-probability SUHI FPs estimated by the logistic model.
However, the proportion of the cropland being low-probability SUHI FPs estimated by the Gaussian
surface model is 59.96%, which is also higher than that by the logistic model. In fact, many cropland
pixels have been proven to be a heat source for the city [35]. In the nighttime, the proportions of
impervious surface with high-probability SUHI FPs estimated by the Gaussian surface model and the
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logistic algorithm are 55.34% and 40.67%, respectively. Thus, the proportion of high-probability SUHI
FPs estimated by the logistic algorithm in cropland was smaller than that estimated by the Gaussian
surface model. However, the proportion of water bodies with high-probability SUHI FPs estimated
by the logistic model reaches 59.62% at night, which is far higher than that by the Gaussian surface
model. This is also consistent with the argument that the role of water could be a heat source for cities
at night [35].

3.3. Temporal Changes in UHII

We first calculated the threshold LST value of the reference rural region for each 8-day MODIS
LST product using Equation (4). Then, the UHII of each 8-day MODIS LST product was calculated
using Equation (1), and the summer average maximum UHII value was calculated for all 8-day MODIS
LST products for each year.

The average daytime maximum UHII was 4.27 ± 0.52 ◦C in summer, and the average nighttime
maximum UHII was 3.04± 0.23 ◦C (Figure 9). We further used the Mann–Kendall Test and homogeneity
tests to determine whether the day and nighttime series of interannual maximum UHII between 2004
and 2018 has a monotonic upward or downward trend. Results show that both the day and night time
series of interannual maximum UHII have an upward trend (Sen’s slopes are 0.5048 and 0.0286 for the
daytime and the nighttime, respectively). However, the upward trend for the daytime did not pass
the 90% significance test, but the slight upward trend for the nighttime passed the 99% significance
test. Radiation from the sun is the most important driver of climates near the ground [13]. In cities,
urbanization, human-made structures and impervious surfaces replace vegetation, greenery, and water,
altering radiation exchanges. The multi-faceted urban ‘surface’ that emits and reflects to itself can
generate myriad distinct radiation budgets. These complex urban surfaces also absorb and store large
amounts of solar shortwave radiation, while the reduction of sky-view factors decreases the loss of
longwave radiation. In addition, cloud affects the transmission and emission of incoming radiation
and increases the interception of outgoing radiation. Finally, air pollution may also affect the process
of radiation exchanges [13].

To further understand the temporal changes of UHII, we calculated the summer average LSTs of
high-probability SUHI FPs and the reference rural region between 2004 and 2018 (Figure 10).

There were increasing trends for the average LSTs of high-probability SUHI FPs and the reference
rural region both in the daytime and in the nighttime. The extent of increase in the LST of the reference
rural region was greater than that of the average temperature of SUHI FPs with the probability ranges
of 0.8–0.9 and 0.9–1.0. The difference between day and night exists in terms of the level of significance
of the increasing trend. The significant level for the daytime did not pass 90% significance test, but the
significant level for the nighttime passed 90% significance test. These results explain why the UHII did
not change significantly with the time between 2004 and 2018.
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Figure 9. Temporal changes of the maximum urban heat island intensity (UHII) between 2004 and
2018. (a) daytime, (b) nighttime.
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Figure 10. Temporal changes of the average LSTs of high-probability SUHI FPs and the reference rural
region between 2004 and 2018. (a) daytime, (b) nighttime.

3.4. Temporal Changes in UHI Capacity

Compared to UHII, UHI capacities revealed more distinct temporal trends for different levels
of UHI FPs. Generally, there were increasing trends for UHI capacities both in the daytime and in
the nighttime between 2004 and 2018 (Figure 11). In particular, the UHI capacity of the SUHI FP
with the highest probability range (0.9–1.0) has a more significantly increasing trend than the other
two probability ranges. For example, in the daytime, the slope of the increasing trend for highest
probability range is more than 15–27 times of those for the other two probability ranges, while in the
nighttime, the growth rates are similar among the three high-probability UHI FPs.
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Figure 11. Temporal changes in UHI capacities of high-probability SUHI FPs between 2004 and 2018.
(a) daytime, (b) nighttime.

4. Discussion

4.1. Elimination of Artificial Bias in Background Temperatures

With rapid economic development and population flow [64,65], many places in the world are
experiencing rapid urbanization [66], catalyzing the formation of the urban heat island (UHI) [3].
To capture the UHI FP is of critical importance in understanding the process of urbanization
and promoting sustainable urban development. In this study, we developed a new method for
determining the SUHI FP. SUHI parameters have been calculated in previous studies using a variety of
mathematical approaches, including the exponential decay and Gaussian function methods [17,44–47].
These approaches are generally limited by the method used of identifying the reference rural region,
which uses the urban built-up area as a core to develop buffers outward toward rural regions [17].
These methods tend to use the shape of the city as the default shape of the SUHI FP. However, there is
no consistent spatial relationship between these two shapes due to the impacts of topography and
landscape heterogeneity on the LST. Other methods typically choose specific points or land use types
as reference rural regions to calculate the UHII [42]. These methods ignore variation in LST attenuation
in different directions. The UHII can change due to randomness and contingency among the reference
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objects. Furthermore, the reference rural regions can be subject to land use and land cover change
through time [67], giving rise to further uncertainties. Therefore, determining the LST threshold in the
reference rural region in each direction is key to determining the SUHI FP for a metropolitan region.
In this study, we applied the polar coordinate system to determine different LST thresholds for each
direction, which no longer needs to consider the shape of the city in the model.

4.2. Enhanced Reliability of Remote Sensing Data and Surface Attribute

Previous methods have had drawbacks in determining the spatiotemporal characteristics of SUHI
effects using remote sensing data. Differences among the SUHI characteristics determined in this
study, including maximum and reference LST values and SUHI intensity, on different dates within the
same season also demonstrate the instability of remote sensing data. Therefore, if only single-phase
remote sensing images or seasonal average LST data are used to study the UHII, it would lead to the
uncertainty of quantifying SUHI FP and UHII in the study [35]. Besides the application of remote
sensing data, we usually ignored much other information from the surface itself including walls,
facets, and windows. Since the surface temperature is extremely sensitive to different properties
(geometric, radiative, thermal, moisture and aerodynamic, etc.) that can change over time (day and
night, season, and year) or under certain weather conditions, the SUHI is not static in terms of time
or space. Considering these uncertainties resulting from remote sensing data and surface properties,
we do not propose an absolute SUHI FP, but rather the application of pixel statistical probabilities to
determine SUHI FPs.

4.3. Relationship Between SUHI FP and UHII

The average summer maximum UHII was 4.27 ± 0.52 ◦C and 3.04 ± 0.23 ◦C in the daytime and
nighttime between 2004 and 2018, respectively. The Mann–Kendall Test confirmed that the upward
trend (Sen’s slopes is 0.5048) did not pass the 90% significance test during the daytime. Although the
upward trend did pass the 99% significance test during the nighttime, the upward trend with the
Sen’s slopes value of 0.0286 was very slight. However, although there was no significant increase in
maximum UHII, why was the SUHI FP getting larger between 2004 and 2018? The maximum UHII
results were determined from the temperature difference between the maximum temperature in urban
area and the threshold temperature in reference rural regions since these are essentially areas unaffected
by the urban area. The reference rural region calculated by the logistic model means that the region
should remain a long-term stable temperature background field for the city. This means that the location
of the area affected by the city may change, but the temperature threshold for determining whether it
is affected by the city does not significantly change. According to the algorithm of deriving the UHI FP,
the UHI FP and the reference rural regions are all dynamically changing. Theoretically, the UHII of
each pixel in the UHI FP can be calculated, but such dynamic references make the calculated UHII
less meaningful than the UHI FP itself as well as the UHI capacity. Therefore, it is more important
to use the logistic model to quantitatively calculate the temperature threshold of the reference rural
region to accurately delineate the boundaries of the UHI FP. Both the UHI FP and the UHI capacity are
increasing resulting from these areas transforming from non-SUHI FP areas to SUHI FP that are mainly
derived from urbanization, i.e., natural surfaces are being replaced by urban structures (buildings,
impervious surfaces).

5. Conclusions

We developed a logistic method to determine the spatiotemporal evolution of SUHI FPs and
calculate the UHII in the Beijing metropolitan region during the summers of 2004–2018 using MODIS
8-day L3 LST global products. The logistic model well represented the trend of LST attenuation from
the urban center to the surrounding rural regions. The key transition point, calculated using the rate of
change in the curvature of the fitted logistic model, represented the LST threshold in reference rural
regions, and was used to further determine the SUHI FP in the study area. To avoid the influence
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of remote sensing data instability, we calculated the probability of each pixel as part of the SUHI FP.
The proposed method is relatively advantageous in that it minimizes the effects of the city’s shape,
topography, or landscape heterogeneity. Our results also show that low-probability SUHI FPs had the
largest area, followed by medium-probability and high-probability FPs. However, high-probability
SUHI FPs increased significantly during the study period. The area of daytime high-probability SUHI
FPs was larger than that in the nighttime. The daytime SUHI maximum intensity was higher than
that during the night. However, the trend fluctuated, with no regular increase or decrease during
either period.

If the rays can be used to fully represent the buffer rings from the urban center to the surrounding
rural region in all directions in future studies, then the accuracy of SUHI FP identification may be further
improved. Improving the accuracy of remote sensing data remains another issue for future study.

This research can be extended to different cities to automatically identify their SUHI FP and
calculate UHII. More importantly, this algorithm can accurately draw the boundaries of SUHI FP
for different UHII (1.5 °C or 2.0 °C, etc.). It is of great significance to study urban climate and its
mitigation measures in the context of global change. In addition, as the urban heat island footprint
boundary is confirmed, the results can be applied in the field of urban planning. Urban planning
aims at optimizing the allocation of land use in the urban region by scientific designing for new urban
development land and ecological protection zone [68,69], which would directly affect the urban climate.
Therefore, the scope of the SUHI FP provides a spatial decision reference for urban planning.
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