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Abstract: Soil mineralogy is an important factor affecting chemical and physical processes in the
soil. Most common minerals in soils—quartz, clay minerals and carbonates—present fundamental
spectral features in the longwave infrared (LWIR) region. The current study presents a procedure for
determining the soil mineralogy from the surface emissivity spectrum. Ground-based hyperspectral
LWIR images of 90 Israeli soil samples were acquired with the Telops Hyper-Cam sensor, and the
emissivity spectrum of each sample was calculated. Mineral-related emissivity features were
identified and used to create indicants and indices to determine the content of quartz, clay
minerals, and carbonates in the soil in a semi-quantitative manner—from more to less abundant
minerals. The resultant mineral content was in good agreement with the mineralogy derived from
chemical analyses.

Keywords: hyperspectral remote sensing; longwave infrared image; emissivity spectrum;
soil mineralogy

1. Introduction

Soil is a complex material that is extremely variable in its physical and chemical composition. It
consists of weathered rocks of the Earth’s crust and is continuously evolving and changing. The upper
layer is the most important part of the soil body, containing plant litter, water, roots, micro and
macro fauna, and minerals that are formed in situ or transferred to the area by runoff, dust storms,
or human activity. The soil surface is exposed to all remote-sensing methods. Hyperspectral remote
sensing, especially in the visible-short wavelength infrared region, 0.4-2.5 um, has been shown
to be an invaluable tool for determining and mapping soil properties, using laboratory, airborne,
and spaceborne sensors (e.g., [1-6]). However, recent studies have shown that the thermal infrared
region, in both the mid wavelength infrared (3-5 um) and the long wavelength infrared (LWIR, 8-12 um)
regions can provide quantitative information on soil properties, such as texture, carbon and nitrogen
content, and pH, especially when large datasets are processed with statistical models (e.g., [7-11]). Soil
mineralogy is an important factor in determining its properties, quality, and growth potential, and
is extensively used as a diagnostic criterion in comprehensive soil classification. The most common
minerals in soils, quartz, clay minerals, and carbonates, present with fundamental spectral features
in the thermal infrared, and mainly in the LWIR region due to the fundamental vibration modes of
the silicon—oxygen bond (S5i—O) in quartz and clay minerals, and the carbon-oxygen bond (C-O) in
carbonates. Recently, we presented a procedure that can be applied to hyperspectral LWIR images to
calculate surface emissivity, an important variable for mineral mapping, and to identify the dominant
minerals, quartz, feldspars, clay minerals, gypsum, and carbonates in rocks [12,13]. Nevertheless,
hyperspectral remote sensing in the LWIR region, although used with significant success for the
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mapping of the content of minerals on rock surfaces (e.g., [14,15]), has not been fully implemented for
the complex and dynamic soil material, and its potential has not yet been fully exploited.

The current study makes use of ground-based hyperspectral LWIR images, acquired with the
Telops Hyper-Cam hyperspectral sensor [16], to calculate the emissivity spectra of soil samples,
representing the soil’s chemical and physical properties, and then to analyze them to identify quartz,
clay minerals, carbonates, and their abundance, in each sample. The resultant mineral content
was correlated to the chemical elements’ abundance and the mineral composition as obtained from
chemical analyses.

2. Materials and Methods

2.1. Soil Samples and Chemical Analyses

Ninety soil samples from the legacy soil spectral library of Israel, representing different formation
conditions—climate, origin, and topography—were collected from the surface (0-5 cm depth) at
different sites in Israel. The soils were air-dried and gently crushed to a grain size of <2 mm. Elemental
analysis was carried out using the X-ray fluorescence (XRF) method [17]. X-ray powder diffraction
(XRD) patterns of the samples were obtained using a Philips Model 1010 X-ray diffractometer with
Fe-filtered CoKa radiation [18], to determine the mineralogy of each soil sample. The abundance of
silicon (Si, dominant in quartz and clay minerals), aluminum (Al, dominant in clay minerals) and
calcium (Ca, dominant in carbonates), and the mineral content in selected soil samples are given in
Table 1.

Table 1. Element abundance and mineralogy of soil samples.

Soil Element Abundance (%) Mineral Abundance (%)
(Symbol, USDA Name) Si Al Ca Quartz  Clay Minerals®  Carbonates P
E2, Rhodoxeralf 91.6 6.78 0.57 90 5 0
E7, Rhodoxeralf 87.2 10.5 0.30 75 15 1
C4, Haploxeroll 67.2 12.8 7.80 55 30 12
B8, Haploxeroll 42.0 17.8 17.3 30 40 31
A3, Rhodoxeralf 51.5 24.4 3.37 35 58 2
H2, Xerert 41.1 24.6 11.2 4 67 21
K2, Calciorthid 21.1 7.60 35.3 15 0 60
03, Torriorthent 26.4 8.04 31.3 25 10 59
P3, Torriorthent 25.3 5.76 36.5 25 7 68
H11, Haplargid 29.7 444 30.1 36 10 54
H14, Xerert 38.4 18.7 16.3 25 45 28
519, Torriorthent 354 11.9 26.0 47 10 43

2 Clay minerals refer to smectite, illite, and kaolinite. b Carbonates refer to calcite (mainly) and dolomite.
2.2. Spectral Measurements and Data Analysis

Ground-based images of the 90 soil samples were acquired with the Telops Hyper-Cam, covering
the LWIR spectral region (8.0-11.7 pm) with 122 bands and a spectral resolution of 4 cm™!. The samples
were placed at a distance of about 2 m from the sensor, exposed to the sun (with an outdoor air
temperature of ~30 °C) for about an hour, and then the LWIR images (see example in Figure 1a)
were taken. The at-sensor radiance at wavelength A (Ls) ) measured from each soil pixel in the image
consisted of two components (as explained in [19]):

Lsa = eaLpa(T) + (1 — ex)Laa 1)

where e)Lpx(T) is the surface emission at wavelength A with ¢ as the surface emissivity, and Ly, (T)
as the radiance from a blackbody at surface temperature T; (1-e5)Lg is the surface reflection of the
radiance incident on the surface from the atmosphere at wavelength A with Ly as the downwelling
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radiance. The emissivity spectrum of each pixel was calculated according to Equation (1), with
Ly, (T) as the fitted tangent blackbody radiation curve, applying the specialized algorithm described
in [19], and downwelling radiance (Lq) as the radiance measured from a gold plate [20] (Figure 1b).
The emissivity spectrum of each soil sample was analyzed to determine its mineral content.
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Figure 1. (a) Longwave infrared (LWIR) image (band 10.62 pum) of soil samples (each placed in a
17 x 22 cm box); soil C4 (pink square), and gold plate (yellow square). (b) At-sensor radiance (solid
pink curve) and fitted tangent blackbody radiation (dashed pink curve) of soil C4, at-sensor radiance of
gold plate (yellow curve) representing the downwelling radiance (left y-axis), calculated emissivity
of soil C4 (right y-axis) with the respective + standard deviation curves (gray). Each spectrum is the
average of tens of pixels in the image.

3. Results and Discussion

The content of the minerals quartz, clay minerals and carbonates in each sample was determined
based on the absorption features in the emissivity spectrum, as demonstrated in Figures 2 and 3.
A triplet-like absorption feature with minima at 8.21 pm, 8.85 pm, and 9.33 um (Figure 2a) indicates
the presence of both quartz and clay minerals (e.g., soil E2). The ratio between the minimum values,
and the wavelength of the third minimum, depend on the relative amounts of quartz and clay minerals
in the soil. A decrease in the amount of quartz with an increase in the amount of clay minerals reduces
the value of the absorption at 8.21 um and shifts the absorption at 9.33 pm to 9.36-9.56 um (e.g., soil
A3). On the other hand, a minimum in the 8.06-8.12 um range and/or a noticeable absorption feature
between 10.20 pm and 11.40 um, as demonstrated in Figure 3, indicates the presence of carbonates in
the soil. The associated emissivity features of pure minerals are given in Figure 4.
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Figure 2. (a) Emissivity spectra of selected soil samples. Each spectrum is the average of tens of pixels in
the calculated emissivity image. (b) Normalized emissivity spectra emphasizing indicative absorption
features of quartz and clay minerals. Gray dashed lines emphasize the wavelengths mentioned in
the text.
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Figure 3. (a) Emissivity spectra of selected soil samples; gray dashed boxes emphasize indicative
absorption features of carbonates. Each spectrum is the average of tens of pixels in the calculated
emissivity image. (b) Normalized emissivity spectra; gray dashed lines emphasize the wavelengths
mentioned in the text.
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Figure 4. Emissivity spectra of pure minerals: quartz, kaolinite, kaolinite with quartz substrate
(left y-axis) and calcite (right y-axis), based on [21] and resampled to the Telops Hyper-Cam
spectral configuration.
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The aforementioned mineral-related emissivity features were used to create spectral indicants,
described in Table 2, to identify the most abundant mineral(s) in each soil sample. These were then
used to classify the samples into three soil types: CM (clay minerals as most abundant minerals),
C (carbonates as most abundant minerals), and Q (quartz as most abundant mineral).

Table 2. Spectral indicants of minerals.

Most Abundant Mineral Spectral Indicant
Clay minerals Nep = 956um” < Neéa =g21um and Ney = g21um > 0.98
Carbonates Ex= 8_06_3_12umb < &) =821um and/or Nej = 11.24pm < 0.995 with Nex - g21,;m > 0.98
Quartz Excluding the above

2 Ne is the normalized emissivity value at the indicated wavelength. ¢ is the emissivity value in the indicated
wavelength range.

The spectral-based classification fit the XRD analysis results in most (90%) of the soil samples
(Figure 5), as well as the elemental analysis results (Figure 6). The Al/Si values of the CM-type soils
were larger than most Al/Si values of the Q-type soils (Figure 6a). In general, a larger Al/Si value in the
sample indicates a higher concentration of clay minerals than quartz. The abundance of Ca (indicating
the concentration of carbonates) in soils classified as a C-type was larger than in soils classified as a
CM or Q-type (Figure 6b).

10217 C ©.0.0.00CC00000000000000000000000C000CCO0000CCO0

8178,:0,0,0.C,0,0,0,0,0,C.0,C.OC,CC.CO]

C type (C[C,C0,0,0,0,0,00,0,0,0,0.C0,0,0,0.C,00,0.0C,C,C.C

Figure 5. Type of each soil sample according to the most abundant mineral(s)—carbonates (blue),
clay minerals (green), and quartz (red); each pair of circles (empty and filled) represent a soil sample;
the spectral-based classification (empty circle) fits the XRD analysis results (filled circle) where the
circle color is identical.

Once the most abundant minerals were determined, we turned to identifying the less abundant
minerals in each soil sample using two indices that were created based on their mineral-related
emissivity features:

SQCMI (Soil Quartz Clay Mineral Index) = Nej = 9,56 um/(Néx =821 um X Néx =885 um) 2)

and
SCI (SOil Carbonate Index) = N&)\ =11.24 um X NS}\ =10.51 um/Ns)\ =8.85 um (3)

where Ne is the normalized emissivity value at the indicated wavelength.

In general, a larger SQCMI value indicates a higher Si/Al ratio (Figure 7a), suggesting a lower
concentration of clay minerals relative to quartz; a smaller SCI value indicates a higher concentration
of carbonates in the soil sample (Figure 7b).



Remote Sens. 2019, 11, 1429 7 of 12
0.70
(a)
0.60 o

0.50 o N

0.40 (o)

Al/Si

0.30 o
0.20 o
0.10 o

0.00 .
Soil sample

40 o o ° (b)

35

30 ®

10 ° o © o

5 o o %
o
o
0
Soil sample

Figure 6. The Al/Si value (a) and % Ca (b) of each soil sample; red circles represent spectral-based Q-type
soils, green circles represent spectral-based CM-type soils, and blue circles represent spectral-based
C-type soils.
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Figure 7. (a) Correlation between the % Si/% Al ratio and the calculated SQCMI value of all soil
samples, excluding one brown-red sandy soil sample (brown circle). (b) Correlation between the % Ca

values and the calculated SCI values of soil samples, excluding brown-red sandy soils (orange circles),
characterized by relatively small amounts of carbonates.

Comparing the index values with the chemical analysis resulted in spectral indicants, described in
Table 3, which enabled determining the mineralogy, from more to less abundant, in each soil sample.

Table 3. Spectral indicants of the relative amounts of minerals.

Soil Type Indicant Relative Amount of Mineral(s)
SCI < 1.010 C>CM
0 1.010 < SCI < 1.020 and SQCMI > 1.020 C>CM
SCI > 1.020 CM>C
SCI > 1.050, SQCMI > 1.200 no C,no CM
M Absorption at 8.12 um and/or SCI < 1.005 C>Q
C SQCMI > 1.010 with Ney = g 21um < 0.990 Q>CM

Emissivity spectra of selected soil samples, their indices and mineralogy are presented in Figure 8§

and Table 4, respectively.
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Figure 8. Emissivity spectra of selected C-type (O3, H11), CM-type (H14, A3) and Q-type (C4, S19)
soil samples; bold curves represent mineral-related features of the less abundant minerals (blue for
carbonates, red for quartz and green for clay minerals) in each sample.

Table 4. Spectral indicants and resultant mineralogy of selected soil samples.

Mineralogy (More to Less Abundant)

Soil Type Indicants
Spectral-Based XRD Analysis
E2 Q SQCMI = 1.072, SCI = 1.041 QCMC QCM
E7 Q SQCMI = 1.033, SCI = 1.033 QCMC QcMC
C4 Q SQCMI = 1.015, SCI = 1.010 QCcMC QCMC
B8 M SCI =1.004 CMCQ CMCQ
A3 CM SCI=1.010 cMQC cMQC
H2 CM SCI = 1.008, absorption at 8.12 um CMCQ CMCQ
K2 C SQCMI = 1.004 CcCCMQ cQcMm
03 C SQCMI = 1.000 CCMQ cocMm
P3 C SQCMI = 1.020 cQcM cQocMm
H11 C SQCMI = 1.017, Nej = g21um = 0.983 cQcM cQcMm
H14 CM SCI = 1.002, absorption at 8.12 um CMCQ CMCQ
S19 Q SQCMI = 1.012, SCI = 0.997 QCccM QCccMm

The spectral-based full mineralogy of most (75%) soil samples fit the XRD analysis results
(Figure 9).

Overall, the indicants enabled the determining of the mineral content in the soil in a
semi-quantitative manner, from more to less abundant minerals.
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Figure 9. Mineralogy (from more to less abundant, y-axis) of each soil sample; spectral-based
classification (empty circles) and XRD analysis results (filled circles).

4. Conclusions

The current study presents a procedure for determining the soil mineralogy using ground-based
hyperspectral LWIR images. The emissivity spectra of 90 soil samples were calculated and analyzed to
identify the most common minerals in soils, quartz, clay minerals, and carbonates, and their relative
abundance in each sample. Identifying the mineral-related emissivity features and their relative
intensities enabled the creation of indicants to identify the most abundant mineral(s) in each soil sample
and to classify it as a Q-, CM-, or C-type soil. The spectral-based soil type classification fit the results of
the XRD and elemental analyses in most (90%) of the soil samples. The relative amounts of the less
abundant minerals in each soil sample were determined using two created indices—SQCMI and SCI,
resulting in a semi-quantitative mineralogy determination. The spectral-based full mineralogy of most
(75%) of the soil samples fit the XRD analysis results. The presence of organic matter, fertilizers, crude
oil, and other contaminating materials should be studied in terms of whether and how they affect the
indicant and index values, and therefore, the determination of the soil mineralogy.

The presented procedure can be used to study the effects of different processes, e.g., Aeolian
processes, aquaturbation, and fire events on the soil surface mineralogy. For a known soil surface, an
increase in the SQCMI value may indicate an increase in the amount of quartz, relative to clay minerals,
and a decrease in the SCI value may indicate an increase in the amount of carbonates.

As hyperspectral technology in the thermal LWIR region is becoming established in the field of
terrestrial mapping, it is important to study its potential for soil mapping. The ground-based procedure
should be implemented for airborne hyperspectral LWIR data, and the ability to detect quartz, clay
minerals, and carbonates, and to map their abundance in the soil surface and monitor mineralogical
changes on a regional scale and should be studied further.
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