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Abstract: The efficient and accurate application of deep learning in the remote sensing field largely
depends on the pre-processing technology of remote sensing images. Particularly, image fusion is
the essential way to achieve the complementarity of the panchromatic band and multispectral bands
in high spatial resolution remote sensing images. In this paper, we not only pay attention to the visual
effect of fused images, but also focus on the subsequent application effectiveness of information
extraction and feature recognition based on fused images. Based on the WorldView-3 images of
Tongzhou District of Beijing, we apply the fusion results to conduct the experiments of object
recognition of typical urban features based on deep learning. Furthermore, we perform a quantitative
analysis for the existing pixel-based mainstream fusion methods of IHS (Intensity-Hue Saturation),
PCS (Principal Component Substitution), GS (Gram Schmidt), ELS (Ehlers), HPF (High-Pass Filtering),
and HCS (Hyper spherical Color Space) from the perspectives of spectrum, geometric features,
and recognition accuracy. The results show that there are apparent differences in visual effect
and quantitative index among different fusion methods, and the PCS fusion method has the most
satisfying comprehensive effectiveness in the object recognition of land cover (features) based on
deep learning.

Keywords: image fusion; high spatial resolution remotely sensed imagery; object recognition;
deep learning; method comparison

1. Introduction

With the development of earth observation technology, a large number of remote sensing satellites
have been launched, which further improves the acquisition ability of high spatial resolution and high
spectral resolution imagery, and provides extensive data sources for applications [1]. Object recognition
of urban typical land features from High Spatial Resolution Remote Sensing Imagery (HSRRSI) is
an active and important research task driven by many practical applications. Traditional methods are
based on hand-crafted or shallow-learning-based features with limited representation power [2].

In recent years, the application of deep learning in the field of remote sensing has become more
and more extensive, and its progress has solved many problems, especially in target detection [3],
target recognition [4], and semantic segmentation [5], which has taken the current research to a new
height. High spatial resolution remotely sensed imagery often contains multiple types of land-cover
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with distinct spatial, spectral, and geometric characteristics, and the manual labeling sample is not
enough, which limits the applications of deep learning in object recognition from HSRRSI [6].

Over the last decades, a number of relevant methods have been proposed by combining the spatial
and the spectral information to extract spatial–spectral features [7–19]. In a recent study, Cheng propose
a unified metric learning-based framework to alternately learn discriminative spectral-spatial features;
they further designed a new objective function that explicitly embeds a metric learning regularization
term into SVM (Support Vector Machine) training, which is used to learn a powerful spatial–spectral
feature representation by fusing spectral features and deep spatial features, and achieved state-of-the-art
results [20]. It is now commonly accepted that spatial–spectral-based methods can significantly improve
the classification performance, which also reflects the importance of spatial and spectral features of
image data in application-level in deep learning. However, the number of labeled samples in HSRRSI
is quite limited because of the high expense of manually labeling, and even the available labels are not
always reliable. Making full use of HSRRSI to produce high-quality training data will be a challenge.

The Worldview-3 images used in this study are composed of the panchromatic band
and multispectral bands. The former has high spatial resolution and the latter has high spectral
resolution. The questions remains of how to effectively utilize these remote sensing image data
and take them as a whole to the greatest extent for comprehensive analysis and application.
Spatial–spectral fusion can solve the constraints between spatial resolution and spectral resolution.
In the processing stage, remote sensing images with different spatial and spectral resolutions in
the same region are fused to obtain images with both high spatial resolution and high spectral
resolution. Panchromatic-multispectral fusion is the most classical method of spatial–spectral fusion
and the first choice for various applications. The fusion technology originated in the 1980s [21–23].
Since the SPOT-1 satellite system first provided panchromatic and multispectral images simultaneously
in 1986, panchromatic-multispectral fusion technology has developed rapidly; a lot of methods have
been proposed [24–26].

In general, the existing mainstream panchromatic and multispectral fusion methods can
be divided into four categories: component substitution-based fusion [27,28], multi-resolution
analysis-based fusion [29,30], model optimization-based fusion [31,32], and sparse expression-based
fusion methods [33]. Although there are many existing fusion methods, it is still challenging to find
a suitable image fusion method for specific data sources and specific application scenarios.

In this study, six traditional spatial–spectral fusion methods are selected for panchromatic
and multispectral bands in the study area to generate remote sensing images with both high spatial
resolution and high spectral resolution. Then, we apply image fusion results to conduct the experiments
of land cover (features) object recognition for remote sensing images based on Mask R-CNN [34].
The experimental results demonstrate the effectiveness of the proposed method and reveal the potential
application of image fusion technology in target recognition and feature-oriented primitive processing,
analysis, and understanding. By comparing the recognition results of different fusion methods,
we obtain a fusion image that is more suitable for network generalization ability. It also verifies that
a fusion image with high spatial resolution and high spectral resolution achieves better recognition effect.

2. Methodology

2.1. Image Fusion Methods

In order to improve the quality of remote sensing image data, such as resolution, contrast,
integrity, and other indicators, various fusion methods have been developed. The common methods
are IHS (Intensity-Hue Saturation), PCS (Principal Component Substitution), ELS (Ehlers) [35,36], GS
(Gram Schmidt), HPF (High-Pass Filtering) [21], and HCS (Hyper spherical Color Space). In this study,
we use these six methods to evaluate the adaptability of six fusion methods to high-resolution imagery
and their effectiveness of land cover (features) object recognition based on deep learning.
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IHS transformation can effectively separate spatial (intensity) and spectral (hue and saturation)
information from a standard Red-Green-Blue (RGB) image [37]. First, the IHS method transforms
an RGB image into the IHS image space. The IHS color space is represented by Intensity (I), Hue (H),
and Saturation (S). The effect of this representation of remote sensing images aligns better with
human visual habits, making the image objects look more similar to the color changes of real objects,
and closer to the human perception mechanism of color. Next, the intensity component (I) is replaced
by the panchromatic image. Then, an inverse IHS transformation is performed to obtain a fused image
that has high spatial resolution and hyperspectral resolution. The specific process is shown in Figure 1.
The fused image obtained by transformation, substitution, and inverse transformation not only has
the advantage of high resolution of panchromatic image, but also maintains the hue and saturation
of the multispectral image. These characteristics will be beneficial to the subsequent deep learning
models to capture the fine features of the complex land-use images used for generalization.
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Compared with IHS transformation, the Principal Component Substitution (PCS) technique uses
Principal Component Transformation (PCT), with which number of input bands is not limited to three.
PCS is a multi-dimensional linear transformation fusion based on image statistical features, which can
concentrate variance information and compress data. When using the PCT in image fusion, the first
component of the low spatial resolution images is replaced by the high spatial resolution images.
The fused images are obtained by applying an inverse PCT on the new set of components [38,39].
This fusion method has a wide range of applications, and the image after inverse transformation
of principal components is clearer and richer. It can more accurately reveal the internal structure
of multi band remote sensing information data, thereby reducing the difficulty and complexity of
the subsequent deep learning feature extraction model. The specific process is shown in Figure 2.

GS fusion method mainly uses Gram–Schmidt Transformation in mathematics, which can
effectively eliminate the correlation between multi-spectral bands. It is similar to the Principal
Component Transform (PCA) method and is commonly used in mathematics. GS fusion firstly obtains
a low-resolution panchromatic image from a multi-spectral image and uses the image as the first band
of multi-spectral image to recombine with the original multi-spectral image. Then, GS transformation
is applied to the reconstructed multi-band image. Equation (1) is the concrete equation of the GS
transformation. The panchromatic image is used to replace the first band of the image after GS
transformation. Lastly, the fused image is obtained by GS inverse transformation. GS transformation
gives the image higher contrast, and can better maintain the spectral information of the original image
with less information distortion. This algorithm can weaken the correlation between multispectral bands,
thus reducing information redundancy, highlighting more useful or discriminative information in
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the data itself, thus increasing the effectiveness of land cover (features) object recognition based on
deep learning.

GST(i, j) = (BT(i, j) − µT) −
T−1∑
i = 1

(∅(BT, GSi) ×GSi(i, j)

µT =

∑N
j = 1

∑M
i = 1 BT(i,j)

M×N

∅(BT, GSi) =
[

δ(BT ,GSi)

δ(GSi,GSi)
2

]


(1)

In Equation (1), GST denotes the T orthogonal component after GS transformation; BT represents
the T band of the original low spatial resolution remote sensing image; M and N represent the total
number of rows and columns of the image; i and j represent the rows and columns of the original
low spatial resolution image, respectively; µT is the mean of the gray value of pixels in the T band
of the original low spatial resolution remote sensing image; ∅(BT, GSi) is the covariance between
the T band of the original low spatial resolution image and GSi.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 30 
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The difference between GS and PCA is that the information contained in the PCA is mainly in
the first component with the most information, and its information decreases in turn in the remaining
color components, while the components transformed by Gram-Schmidt are only orthogonal,
and the amount of information contained in each component is not significantly different [40].
Therefore, the GS transform can preserve the spectral information of original multispectral images
and the spatial texture features of panchromatic images to the greatest extent, so as to solve the problem
of excessive concentration of the first component in PCT. However, the GS transformation is relatively
complex and unsuitable for large-scale image fusion.

Both IHS and PCS fusion methods pertain to component substitution methods, which are
remarkable image fusion techniques that are able to meet user’s needs in most application scenarios.
Insufficiently, the computational complexity of these methods is too high to merge massive volumes
of data from new satellite images quickly and effectively. For that reason, many research studies
have been carried out to develop an advanced image fusion method with a fast computing capability
and to preserve the high spatial and spectral quality [41]. One of the improved standard data fusion
techniques is the Ehlers fusion method. The Ehlers fusion algorithm was founded by Professor
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Manfred Ehlers of the University of Osnabluk. The basic principle of the Ehlers fusion algorithm
is to sharpen the panchromatic band by using Fast Fourier Transform (FFT filtering), and then use
the IHS transform for image fusion. The advantage of this algorithm is that it provides three preset
filtering models for different regional images, which are urban, suburban, and suburban mixed areas,
respectively. This feature preserves the same spatial characteristics of the fused image as the original
image. The specific process of the ELS fusion method are shown in Figure 3.
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High-Pass Filtering is often used in image texture and detailed processing to improve
the high-frequency details of images, and highlight the linear features and edge information of images.
For a remote sensing image, the spectral information of the image is included in the low-frequency part,
and the details, edges, and textures of the image are included in the high-frequency part. The basic
principle of High-Pass Filtering (HPF) fusion is to extract the high-frequency part of the image and apply
it to the low-resolution image (multi-spectral image) to form the high-frequency feature prominent
fusion image [42], which can improve the application accuracy of image target recognition. Equation (1)
is the concrete equation of the GS transformation.

HPi = (Wa ×MSIiLP) + (Wb × PANHP), (2)

In Equation (2), Wa and Wb are weighted, respectively, and added to 1; MSIiLP represents the result
of low-pass filtering of low-resolution image (multi-spectral image) in band i, PANHP represents
the result of high-pass filtering of high-resolution image (panchromatic image), and HPi represents
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the fusion image of original multi-spectral image in band i after the above processing. This method not
only effectively reduces the low-frequency noise in high-resolution images, but also can be used in all
multi-spectral bands after filtering.

Hyper spherical Color Sharpening (HCS) is a fusion method suitable for multi-band images.
For a remote sensing image with N bands, it is shown as a strength I component and N-1 angle
component on the hypersphere. The mathematical function of the fusion of HCS method is shown in
Equation (3), in which xi is the i component of the original color space.

I =
√

x2
1 + x2

2 + x2
3 + . . . x

2
n

ϕ1 = arctan(

√
x2

n+x2
n−1+x2

n−2+...x
2
2

x1
)

ϕn−2 = arctan(

√
x2

n+x2
n−1

xn−2
)

ϕn = arctan( xn
xn−1

)


(3)

This method converts multi-band remote sensing data into the hyper spherical color space by
constructing models and simulating the panchromatic band I component, so as to obtain a sharpened
panchromatic band I component, and finally to reverse the data to obtain the fusion image. The fusion
image of this method highlights the edge contour of the object, improves the utilization rate of image
information, improves the accuracy and reliability of subsequent computer interpretation, and is
conducive to feature extraction and classification recognition of a subsequent deep learning model.

The aforementioned six methods extract the most valuable information from the original image
according to their own characteristics and fuse it into high-quality images, which can improve the spatial
resolution and spectral resolution of the original image. In the subsequent experiments, for the optimal
fusion results, we demonstrate the effectiveness and practicability of the image in land cover (features)
object recognition based on deep learning.

2.2. Object Recognition Method based Mask R-CNN

2.2.1. Mask R-CNN Network Architecture

In recent years, deep learning has been applied to remote sensing measurements in replacement
of the empirical feature design process by automatically learning multi-level representations [43].
Since 2012, Convolutional Neural Networks (CNN) have been widely used in image classification.
Novel CNN structures, such as AlexNet [4], VGGNet [44], GoogLeNet [45], and ResNet [46], have been
shown to be remarkable.

Since 2015, a special CNN structure, known as region-based models, which detects objects by
predicting a bounding box of each object, have been developed for pixel-wise semantic segmentation
and object detection [43]. For example, these region-based models include R-CNN [47], Fast R-CNN [48],
Faster R-CNN [49], and Mask R-CNN [34]. In this paper, the most representative Mask R-CNN in
the current field is used as the basic model.

Mask R-CNN is a two-stage framework (Figure 4). The first stage scans the image and generates
proposals. The second stage classifies proposals and generates bounding boxes and masks. The backbone
network of Mask R-CNN is ResNet101 and FPN (Feature Pyramid Networks). ResNet is the champion
of the classification task of the ImageNet competition in 2015, which can increase the network depth
to hundreds of layers and has excellent performance. FPN utilizes the feature pyramid generated
by ResNet to fully fuse the high-resolution and high-semantic information of low-level features of
the image and generates feature maps of different scales into RPN (Region Proposal Networks) and ROI
(Region of Interest) Align layers by top-down up sampling and horizontal connection processes. RPN is
a lightweight neural network that scans images with sliding windows and searches for areas where
objects exist. ROI Align is a regional feature aggregation method proposed by Mask-RCNN, which solves
the problem of misalignment caused by two quantifications in ROI Pooling operation. After using
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RoIAlign, the accuracy of the mask is improved from 10% to 50%. Another breakthrough of the model
is the introduction of semantic segmentation branch, which realizes the decoupling of the relationship
between mask and class prediction. The mask branch only does semantic segmentation, and the task of
type prediction is assigned to another branch.
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2.2.2. Network Training

As an initial experiment, we trained a Mask R-CNN model on the RSSCN7 Dataset [50]
and RSDataset [51]. The pixel resolution of the above dataset is 0.3m. We selected 996 images
as training data and 200 images as testing data (Table 1). Several typical landmark, including buildings
and water bodies, a=were selected as marking samples (Figure 5). All target objects in training
and testing data sets were labeled manually, including attributes and masking information of objects.
Figure 6 is the examples of training sample masks of Figure 5.
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Table 1. The strategy of training and testing division for different datasets.

Class Dataset Training Samples Testing Samples

Building RSSCN7 708 19,116 100 2174
RSDataset 98 2641 25 676

Total 806 21,757 125 2850

Water
RSSCN7 100 117 50 66

RSDataset 90 99 25 30

Total 190 216 75 96
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Based on Tensorflow, keras, and Anaconda deep learning libraries, we use NVIDIA GeForce
GTX 1060 with a single GPU to train 996 training data samples (21,757 buildings, 216 water bodies)
and generate a recognition model. The total training time is 58 hours. The main parameters of the Mask
R-CNN model are set in Table 2. We use the trained model to recognize buildings and water bodies
in 200 test data sets, including 3254 buildings and 185 water bodies. Figures 7 and 8 are examples
of recognition results of buildings and water bodies, respectively. Table 3 reflects the recognition
accuracy. The precision and recall rate of building recognition reached 0.8275 and 0.7828, respectively,
and the precision and recall rate of water body recognition reached 0.8529 and 0.9062, respectively,
which confirm the availability of the model.
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Table 2. Main parameters information of model.

Parameter Values Parameter Values

GPU_COUNT 1 TRAIN_ROIS_PER_IMAG 200

IMAGES_PER_GPU 1 MAX_GT_INSTANCES 200

BACKBONE ResNet DETECTION_MAX_INSTANCES 200

BACKBONE_STRIDES [4, 8, 16, 32, 64] Batch Size 1

NUM_CLASSES 3 Epochs 30

RPN_ANCHOR_SCALES (32, 64, 128, 256, 512) LEARNING_RATE 0.0001

RPN_ANCHOR_RATIOS [0.5, 1, 2] LEARNING_MOMENTUM 0.9

RPN_NMS_THRESHOLD 0.7 WEIGHT_DECAY 0.0001
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Table 3. Accuracy evaluation of test dataset recognition results.

Class Actual Detection Matching Precision Recall

Buildings 2850 2696 2231 0.8275 0.7828
Water 96 102 87 0.8529 0.9062

3. Experiment

3.1. Experimental Area

This study chooses the high-resolution remote sensing image data of Tongzhou New Town in
Beijing City acquired by Digital globe’s WorldView-3 satellite on September 19, 2017, as the research
area, including panchromatic and multispectral images (Figure 9). The longitude and latitude ranges
are nwLat = 39◦96′, nwLong = 116◦63′, seLat = 39◦84′, seLong = 116◦78′. The image is geometrically
corrected to ensure the effect of data fusion. Because cloud cover is only 0.004 when the image of
the study area is acquired, there is no atmospheric correction operation. This area contains countryside,
residential, cultural, and industrial areas. Various and versatile architecture types of Surface Coverage
Elements with different color, size, and usage make it an ideal study area to evaluate the potential of
a building extraction algorithm.
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Figure 9. Study areas (a) and image data. (b) Multispectral image. (c) Panchromatic image, including
the WorldView-3 images of Tongzhou new town.

In this study, 800 pixels × 800 pixels were selected as the experimental area (Figure 10). The Mask
R-CNN algorithm used in this experiment supports three-band images. Generally, the information
content of the three bands is sufficient to support the research of land features (cover) recognition.
In this study, a 0.3-m panchromatic image and the R, G, and B bands of a 1.24-m multispectral image
are fused by six methods. Finally, a 0.3-m true color high resolution remote sensing image is obtained,
which is conducive to subsequent artificial visual interpretation and qualitative and quantitative
analysis. This experimental area contains trees, houses, roads, grasslands, and water bodies. The types
of land cover are diverse to ensure the effectiveness of the experiment.
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Figure 10. Image sample of experimental area-1.

3.2. Experimental Method

In this study, the model based on Mask R-CNN is used to recognize the typical urban features from
the fused high-resolution remote sensing images. This paper compares and evaluates the adaptability
of IHS, PCS, GS, ELS, HPF, and HCS fusion methods to the object recognition of surface coverage
(elements) based on deep learning from three aspects: visual effect, quantitative analysis, and object
recognition accuracy.

3.3. Result and Discussion

3.3.1. Visual Assessment

The results of six fusion methods are shown in Figure 11. By checking whether the spectral
resolution of the fused image is maintained and whether the spatial resolution is enhanced, the quality
of the fused image and the adaptability of the method can be evaluated on the whole.
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Figure 11. Comparison between the original images. (a) Multispectral image and (b) Panchromatic
image and six methods (c–h) for the WorldView-3 multispectral and pan images. Fused images from
(c) Intensity-Hue Saturation (IHS), (d) Principal Component Substitution (PCS), (e) Gram-Schmidt
Transformation (GST), (f) Ehlers Fusion (ELS), (g) High Pass Filter Resolution Merge (HPF), and (h)
Hyper spherical Color Space (HCS) methods.

In order to achieve a more detailed visual interpretation effect, this study fuses the images of
water, vegetation, roads, playgrounds, and bare land to establish the corresponding atlas (Table 4).

Firstly, we analyze the spectral feature preservation ability of fused images. Compared with
the original multispectral image, the fused image basically maintains the spectral characteristics,
but there are also significant differences in local color.

The overall color of IHS, PCS, and HCS fusion images is consistent with the original multi-spectral
remote sensing image, and the color contrast is moderate. The color of construction land in the GS fusion
image is brighter than that of original image combination, and the color of river water changes from
grass green to dark green compared with original image combination. After ELS fusion, the brightness
of the fused image is darker and the contrast of the image is reduced. After HPF fusion, the edge of
the fused image is obvious and the sharpening effect is outstanding.

In terms of spatial information enhancement ability, by comparing the results of the six methods
with panchromatic images, we can find that the linear objects, such as roads, water bodies, playgrounds,
and residential contours, can be better distinguished and the texture structure of fused images
becomes clearer.

PCS, GS, and HPF fusion images have better visual effects, with prominent edges and clear
textures of residential areas, roads, playgrounds, water, and woodlands, which are easy to visually
interpret. Compared with the three aforementioned methods, IHS and HCS fusion images have some
deficiencies in texture clarity of woodland and water bodies, and the other features are very similar
in both spectral and spatial characteristics. The ELS transform has serious duplication and blurring
phenomena on the boundaries of roads, playgrounds, water, and woodland. In the interlaced area of
woodland and architecture, the land features appear inconsistent.

By subjective evaluation of the color, texture structure, clarity, and spatial resolution of the fused
image, the quality of the fused image and the superiority of the fusion method can be evaluated
as a whole. However, the subtle differences of spectral and spatial characteristics of many fusion images
cannot be well distinguished by visual assessment alone. It is necessary to use objective evaluation
methods to quantitatively describe the differences between different algorithms.
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Table 4. Fusion effect of six fusion methods and multispectral image.

Image
Methods

Water Vegetation Road Roof
Playground
Greenspace

Playground
Runway

Pan
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3.3.2. Quantitative Assessment

This Quantitative evaluation of fusion effect is a complex problem. The objective evaluation
method is to determine the statistical parameters of fused images. This method greatly improves
the certainty and stability of evaluation.

In this paper, the mean value of each band of the fused image is used to reflect the overall
brightness of the image. The main expression is as follows:

µ =
1

M×N

M∑
i = 1

N∑
j = 1

F(i, j), (4)

F (i, j) is the gray value of the fused image F at the pixels (i, j), M and N are the size of image F.
The higher the mean value is, the brighter the overall brightness of the image is.

Standard deviation and information entropy are used as quantitative indicators to evaluate
image information richness. The standard deviation is obtained indirectly from the mean value,
which indicates the degree of dispersion between the gray value and the mean value of the image pixel.
The expression of the standard deviation is as follows:

Std =

√√√√
1

M×N

M∑
i = 1

N∑
j = 1

(F(i, j) − µ)2, (5)

The information entropy of fusion image can reflect the amount of image information. Generally,
the larger the entropy of the fused image is, the better the fusion quality will be. The calculation
equation is as follows:

Ce = −
L∑

i = 0

Pilog2Pi, (6)

Ce is the information entropy; Pi is the occurrence probability of the gray value i of the pixel in
the image; L is the maximum gray level of the image.
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The definition of the average gradient response image is used to reflect the contrast of minute
details and texture transformation features in the image simultaneously. The main expression is
as follows:

G =
1

M×N

M∑
i = 1

N∑
j = 1

√
((
∂F(i, j)
∂i

)
2

+ (
∂F(i, j)
∂j

)
2

)/2, (7)

Spectral distortion degree is used to evaluate the spectral distortion degree of the fused image
relative to the original image. The spectral distortion expression is defined as:

Warp =
1
W

∑
i

∑
j

|V′i,j −Vi,j|, (8)

W is the total number of pixels in the image, V′i,j and Vi,j are the gray values of the fused image
and the original image (i, j).

The correlation coefficient with each band of the multispectral image and coefficient of correlation
between each band of the fused image and panchromatic image are used as quantitative indicators
to measure the spectral fidelity (i.e., the degree of preservation of the advantages of the original
panchromatic band and the multispectral band in both geometric and spectral information). The related
expression is as follows:

Cc =

∑M
i = 1

∑N
j = 1 (F(i, j) − µF)(A(i, j) − µA)√∑M

i = 1
∑N

j = 1(F(i, j) − µF)
2(A(i, j) − µA)

2
, (9)

where µF and µA represent the average gray level of fusion image and source image, respectively.
The larger the correlation coefficient, the more information the fusion image gets from the source
image, the better the fusion effect.

Table 5 shows the statistical analysis between different fusion methods. Comparing the brightness
information of fused images, we find that PCS has the largest mean value in R and G bands. The values
of the two bands are 322.45 and 396.63, respectively. ELS has the largest mean value in the B band
with 397.25 values. The brightness information of GS(R band: 313.25; G band: 380.74; B band: 243.82),
HPF(R band: 312.58; G band: 379.63; B band: 242.70,) and HCS(R band: 313.43; G band: 381.05; B band:
243.88) is not significantly different from that of the original multispectral image (R band: 313.08;
G band: 380.13; B band: 243.20). Compared with other fusion methods, these three methods have more
scene reductively.

Firstly, we can evaluate the spatial information of fused images by standard deviation.
From the comparative analysis of standard deviation information, the values of PCS, HCS, HPF,
and HCS are stable, which are close to or higher than the original multispectral images. It shows that
the gray level distribution of the images is more discrete than the original ones, and the amount of
image information has increased, among which PCS (R band: 95.694; G band: 167.71; B band: 173.94)
has achieved the best results. The standard deviation of IHS (B band: 88.860) and ELS (B band: 82.816)
in the B band is small, which indicates that the gray level distribution of the image is convergent
and the amount of image information is reduced.

From the information entropy index, the information entropy of each fusion image is close to or
higher than that of the original multi-spectral image. The increase of information entropy indicates
that the information of each fusion image is richer than that of the pre-fusion image. In the R band,
IHS and ELS reached 1.558 and 1.583 above average, respectively. PCS and HCS fusion methods
achieve the overall optimal effect in the G (PCS: 1.328; IHS: 1.324) and B bands (PCS: 1.557; IHS: 1.558),
indicating that the information richness of PCS and HCS fusion images are higher than that of other
fusion images.
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Table 5. Statistical analysis between different fusion methods.

Method
Band µ Std Ce G Warp Spectral Spatial

Panchromatic 287.77 124.60 0.788 13.096 — — 1.0

Multispectral (R) 313.08 90.577 0.649 15.019 — 1.0 0.903

IHS 241.94 159.00 1.558 9.5800 105.40 0.872 0.939
PCS 322.45 95.694 0.679 8.7229 27.949 0.941 0.981
GS 313.25 88.027 0.596 8.0980 24.963 0.942 0.976
ELS 229.04 159.71 1.583 10.839 112.68 0.887 0.929
HPF 312.58 90.577 0.644 11.954 18.465 0.946 0.894
HCS 313.43 96.929 0.682 12.597 16.723 0.946 0.895

Multispectral (G) 380.13 155.30 1.307 27.238 — 1.0 0.929

IHS 377.14 152.98 1.291 12.883 27.602 0.966 0.954
PCS 396.63 167.71 1.328 15.227 47.888 0.944 0.983
GS 380.74 154.66 1.244 13.999 42.345 0.944 0.976
ELS 373.31 157.02 1.288 15.443 31.553 0.954 0.917
HPF 379.63 155.30 1.301 20.634 31.649 0.946 0.915
HCS 381.05 160.66 1.324 15.787 19.539 0.973 0.929

Multispectral (B) 243.20 158.38 1.554 25.665 — 1.0 0.941

IHS 310.06 88.860 0.572 9.7820 96.955 0.914 0.951
PCS 259.94 173.94 1.557 15.321 48.605 0.946 0.978
GS 243.82 160.02 1.497 14.266 43.372 0.944 0.978
ELS 397.25 82.816 1.131 10.366 165.51 0.852 0.881
HPF 242.70 158.37 1.511 20.892 32.541 0.946 0.927
HCS 243.88 160.53 1.558 10.907 12.685 0.988 0.944

Symbolic Meaning: µ = mean value; Stud = standard deviation; Ce = Information entropy; G = Mean gradient;
Warp = Distortion degree; Spectral = Spectral correlation coefficient; Spatial = Spatial correlation coefficient.

From the analysis of the definition (average gradient) of the fused images, the average gradient of
the six fusion images in the G and B bands is close to or higher than that of the original multi-spectral
images, except for the R band. This shows that the six fusion methods have been enhanced in spatial
information, and the expression effect of detailed information is higher. The HPF fusion method
performs best in image clarity.

Comparing the spatial correlation coefficients of six fused images with the original color images,
we find that PCS(R band: 0.981; G band: 0.983; B band: 0.973) and GS(R band: 0.976; G band:
0.976; B band: 0.978) achieve better results, indicating that the geometric details of fused images are
more abundant, and the spatial correlation between the PCS fusion image and the original image is
the highest.

The correlation coefficients of images need to consider not only the ability of the processed image
to retain the spatial texture details of the original high spatial resolution image, but also the ability of
the image to retain spectral characteristics. Comparing the spectral correlation coefficients between
the fused image and the original multi-spectral image, we find that the fused image of PCS, GS, HPF,
and HCS has a high correlation with the original image, among which the HCS fusion method has
the lowest change in spectral information and the strongest spectral fidelity.

From the analysis of spectral distortion degree, the distortion of IHS in the R band and B band is
105.40 and 96.95, respectively, and ELS (R band: 112.68; B band: 165.51) is much higher than other
methods. However, in the G band, the distortion of IHS and ELS is 27.602 and 31.553, respectively, while
PCS obtained the maximum distortion of all methods of 47.888, which shows that the performance of
different methods in different bands is greatly different. Overall, the distortion degree of his (R band:
105.40; G band: 27.602; B band: 96.955), ELS (R band: 112.68; G band: 31.553; B band: 165.51), and PCS
(R band: 27.949; G bands: 0.976; B band: 0.978) is too large, which indicates that the distortion degree
of image spectra is greater. The spectral distortion of GS, HPF, and HCS fusion methods is small,
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which indicates that the spectral distortion of fusion images is low, among which HCS (R band: 0.946;
G band: 0.973; B band: 0.988) achieves the best effect.

3.3.3. Accuracy Assessment of Objectification Recognition

Figure 12 is the recognition result of six fusion methods using the Mask-RCNN model.
In Figure 12c–h, the fusion images generated by different fusion methods have different recognition
results for buildings, water bodies, and playgrounds. Among them, the overall recognition results
obtained by GS and PCS are better, followed by HPF and HCS. The results for IHS and ELS have
less satisfying effect. Figure 13 is the recognition result of typical buildings in the fusion image
of six methods. The building recognition effect of the left-upper region (Building A, B, C, and D)
and right-upper region (Building F), with obvious edge differences, achieves good performance,
and almost all of them can be recognized correctly.

The confidence level of object recognition is shown in Table 6. The confidence of PCS in five
buildings with clear outlines is the only one of the six methods where all values reach above 0.95.
In building A, B, and F, the confidence of PCS is the highest, at 0.933, 0.974, and 0.983, respectively.
In building C and D, the confidence of IHS is the highest, at 0.984 and 0.996, respectively. Building E in
the lower left area interwoven with vegetation or shadows is shown to be partially unrecognizable.
Among the recognition results of building E, the masks based on six fusion methods cannot clearly
depict the edges of buildings. The confidence of the recognition results is the lowest among all building
individuals. IHS achieves the highest value of 0.970, and PCS achieves confidence of 0.950.

The buildings with small building areas in the middle region (Area M) are easy to be missed due
to the interference of spectral characteristics and shadows. Occasionally, buildings with prominent
roof structures are misidentified as multiple buildings, resulting in repeated detection. Area N in
Figure 13 is composed of stairs and lawns. Except for ELS and HPF, there is no misidentification in
other methods. Area G is actually empty space. The HPF method misidentified area N as a building.

Considering the overall effect of building recognition, PCS is the best, achieving more accurate
segmentation of building edges, followed by IHS, GS, and HCS, and lastly ELS and HPF, which have
different degrees of omission and misidentification.

Table 6. Comparison of building confidence level of six fusion methods and multispectral images.

Building
Method

MUL IHS PCS GS ELS HPF HCS

A 0.870 0.993 0.993 0.993 0.993 0.982 0.983
B 0.914 0.964 0.974 0.972 0.965 0.973 0.968
C 0.874 0.984 0.958 0.951 0.982 0.969 0.942
D 0.963 0.996 0.971 0.973 0.991 0.959 0.962
E 0.830 0.970 0.950 0.932 0.941 0.900 0.911
F 0.930 0.918 0.983 0.978 0.982 0.972 0.969

AVERAGE 0.897 0.971 0.972 0.967 0.977 0.959 0.956
Max Number - 4 3 1 1 - -
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Saturation (IHS), (d) Principal Component Substitution (PCS), (e) Gram-Schmidt Transformation (GST),
(f) Ehlers Fusion (ELS), (g) High Pass Filter Resolution Merge (HPF), and (h) Hyper spherical Color
Space (HCS) methods.
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(c) Intensity Hue Saturation (IHS), (d) Principal Component Substitution (PCS), (e) Gram-Schmidt
Transformation (GST), (f) Ehlers Fusion (ELS), (g) High Pass Filter Resolution Merge (HPF), and (h)
Hyper spherical Color Space (HCS) methods.

Figure 14 is the result of water body recognition in the fusion image of six methods. PCS, GS,
and HPF have better segmentation effect. PCS and GS work better in segmentation of water body
edges. The confidence of the two methods is 0.994 and 0.995 (Table 7), respectively. IHS, ELS, and HCS
cannot distinguish the confusing parts of water bodies and vegetation shadows.

Table 7. Comparison of water confidence level of six fusion methods and a multispectral image.

Category
Method

Mul IHS PCS GS ELS HPF HCS

Water 0.986 0.985 0.994 0.995 0.991 0.981 0.984
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Figure 14. Comparison of accuracy of water recognition between the (b) Multispectral image and six
fusion methods (c–h) for the WorldView-3 multispectral and pan images. Fused images from (c) Intensity
Hue Saturation (IHS), (d) Principal Component Substitution (PCS), (e) Gram-Schmidt Transformation
(GST), (f) Ehlers Fusion (ELS), (g) High Pass Filter Resolution Merge (HPF), and (h) Hyper spherical
Color Space (HCS) methods.

In order to further verify the land cover (features) object recognition efficiency of the model for
buildings by using six fusion methods, we selected an experimental area with denser buildings and more
building types for building recognition (Figure 15). In total, 50 single buildings in the experimental
area were identified by visual interpretation, and six complex building areas were divided for
overall analysis.
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Figure 15. Experimental Area-2. (1–50) A total of 50 single buildings. (A–F) A total of six complex
building areas.

Through the recognition results in Figure 16, we find that the image recognition effect after fusion
has been greatly improved. The recognition results of multi-spectral remote sensing images have
significant instances of misidentification and omission.

The IHS fusion method missed three buildings, ELS and HPF methods have miss one building.
And PCS, GS, and HCS miss no detection. The six methods have achieved effective case segmentation
for 40 single buildings. Combined with the data comparison results of Table 8 for confidence level,
PCS (0.973) > HCS (0.965) > GS (0.956) > ELS (0.948) > HPF (0.930) > IHS (0.929), we can conclude that
the PCS method achieves the best results. Through the recognition results of complex building areas,
we find that multi-spectral remote sensing images are recognized as blurred edge masks, which cannot
distinguish building units. A–F regions are irregular composite buildings. The recognition results of
six fusion images show different degrees of fragmentation, which also provides a breakthrough point
for our subsequent training of neural networks and the transformation of the network structure.
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(c) Intensity Hue Saturation (IHS), (d) Principal Component Substitution (PCS), (e) Gram-Schmidt
Transformation (GST), (f) Ehlers Fusion (ELS), (g) High Pass Filter Resolution Merge (HPF), and (h)
Hyper spherical Color Space (HCS) methods.

Table 8. Comparison of Building Confidence level of six fusion methods and the multispectral image.

Building
Method

Mul IHS PCS GS ELS HPF HCS

1 0.851 0.994 0.994 0.990 0.993 0.983 0.993
2 - 0.993 0.990 0.994 0.990 0.979 0.996
3 - 0.991 0.989 0.990 0.990 0.985 0.991
4 0.965 0.990 0.988 0.981 0.993 0.974 0.993
5 - 0.864 0.829 0.869 0.932 0.866 0.836
6 0.906 0.995 0.994 0.987 0.995 0.982 0.994
7 - - 0.907 0.828 0.779 0.904 0.875
8 - 0.978 0.977 0.978 0.982 0.982 0.982
9 0.807 0.995 0.996 0.994 0.996 0.985 0.995

10 0.846 0.978 0.977 0.979 0.982 0.978 0.987
11 0.788 0.983 0.986 0.978 0.985 0.979 0.985
12 - - 0.965 0.735 0.964 0.904 0.725
13 - 0.988 0.993 0.991 0.992 0.984 0.992
14 - 0.992 0.986 0.990 0.990 0.977 0.989
15 - 0.994 0.990 0.992 0.996 0.987 0.996
16 - 0.986 0.991 0.992 0.994 0.987 0.992
17 - 0.993 0.994 0.994 0.995 0.988 0.994
18 - 0.991 0.989 0.983 0.995 0.991 0.991
19 - 0.861 0.891 0.932 0.879 0.783 0.870
20 - 0.988 0.992 0.984 0.985 0.977 0.99
21 - 0.997 0.997 0.990 0.995 0.985 0.996
22 - 0.994 0.997 0.994 0.996 0.992 0.996
23 - 0.988 0.994 0.983 0.992 0.950 0.991
24 - 0.996 0.997 0.993 0.994 0.990 0.996
25 0.896 0.960 0.995 0.991 0.994 0.982 0.994
26 0.901 0.993 0.993 0.993 0.991 0.967 0.993
27 - 0.980 0.989 0.974 0.978 0.805 0.976
28 - 0.985 0.978 0.976 0.982 0.915 0.984
29 - 0.995 0.996 0.997 0.996 0.994 0.997
30 - 0.987 0.993 0.994 0.994 0.990 0.995
31 - 0.979 0.979 0.968 0.987 0.976 0.985
32 0.916 0.988 0.990 0.991 0.990 0.976 0.992
33 0.951 0.995 0.993 0.994 0.993 0.989 0.995
34 0.951 0.994 0.996 0.995 0.996 0.988 0.996
35 0.953 0.979 0.972 0.952 0.918 - 0.939
36 - 0.987 0.952 0.744 0.976 0.935 0.939
37 - 0.890 0.908 0.866 0.776 0.888 0.902
38 - 0.986 0.987 0.983 0.987 0.972 0.984
39 - 0.986 0.794 0.738 - 0.767 0.792
40 - 0.985 0.986 0.982 0.991 0.973 0.991

AVERAGE - 0.929 0.973 0.956 0.948 0.930 0.965
MaxNumber - 11 17 3 13 1 12

In order to further quantitatively evaluate the recognition effect, we evaluate the detection accuracy
of buildings in the experimental area by calculating precision and recall. Table 9 shows the results
of six fusion methods and multispectral imagery. PCS achieves precision of 0.86 and recall of 0.80.
These two indicators are the highest in the six methods. The precision of the multispectral image is
only 0.48 and the recall is only 0.197, which also proves that image fusion can significantly improve
the effectiveness of object recognition based on deep learning.
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Table 9. Comparison of building detection results of six fusion methods and the multispectral image.

Index
Method

Mul IHS PCS GS ELS HPF HCS

Detected objects 28 53 57 51 53 52 55
Matched objects 12 45 49 43 42 44 46

Precision 0.480 0.849 0.860 0.843 0.792 0.846 0.836
Recall 0.197 0.738 0.803 0.705 0.689 0.721 0.754

In addition, we selected two experimental areas (Figure 17) with similar and scattered water
bodies to further verify the recognition efficiency of water bodies in the image generated by six fusion
methods. The water bodies in the selected experimental area are different in size. Dense vegetation
and shadows are interlaced with water bodies, which are liable to cause confusion.
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Figure 17. Water experimental area.

Through the recognition results of Figure 18, we find that in the multispectral remote sensing
image, the edges of water bodies in regions A and B are significantly confused with vegetation,
and the green space is mistaken for a water body. There is a serious missing detection phenomenon
in regions C–G. Compared with this, the recognition results of six fusion methods have been greatly
improved. PCS can better distinguish the confusing parts of water bodies and vegetation shadows.
PCS has the best edge segmentation effect. There is no large area of water missing or overflowing in
the segmentation mask. Table 10 shows the data comparison of confidence level, PCS (0.982) > GS
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(0.944) > HCS (0.934) > IHS (0.931) > HPF (0.904) > ELS (0.767), combined with the water detection
results of six fusion methods and multispectral imagery from Table 11, we conclude that PCS has
the best effect.

Remote Sens. 2019, 11, x FOR PEER REVIEW 26 of 30 

 

improved. PCS can better distinguish the confusing parts of water bodies and vegetation shadows. 
PCS has the best edge segmentation effect. There is no large area of water missing or overflowing in 
the segmentation mask. Table 10 shows the data comparison of confidence level, PCS (0.982) > GS 
(0.944) > HCS (0.934) > IHS (0.931) > HPF (0.904) > ELS (0.767), combined with the water detection 
results of six fusion methods and multispectral imagery from Table 11, we conclude that PCS has the 
best effect. 

 
Figure 18. Comparison of Accuracy of Water Recognition between the (b-1, b-2) Multispectral image 
and six fusion methods (c–h) for the WorldView-3 multispectral and pan images. Fused images from 
(c1, c2) Intensity-Hue Saturation (IHS), (d1, d2) Principal Component Substitution (PCS), (e1, e2) 
Gram-Schmidt Transformation (GST), (f1, f2) Ehlers Fusion (ELS), (g1, g2) High Pass Filter 
Resolution Merge (HPF), and (h1, h2) Hyper spherical Color Space (HCS) methods. 

 

 

A 

B 

C 

E 

 
D 

G F 

Figure 18. Comparison of Accuracy of Water Recognition between the (b-1, b-2) Multispectral
image and six fusion methods (c–h) for the WorldView-3 multispectral and pan images. Fused
images from (c1, c2) Intensity-Hue Saturation (IHS), (d1, d2) Principal Component Substitution (PCS),
(e1, e2) Gram-Schmidt Transformation (GST), (f1, f2) Ehlers Fusion (ELS), (g1, g2) High Pass Filter
Resolution Merge (HPF), and (h1, h2) Hyper spherical Color Space (HCS) methods.
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Table 10. Comparison of water confidence level of the six fusion methods and the multispectral image.

Water
Method

Mul IHS PCS GS ELS HPF HCS

A 0.770 0.995 0.994 0.969 0.984 0.965 0.989
B 0.774 0.986 0.985 0.970 0.893 0.936 0.985
C - 0.732 0.982 0.898 - 0.810 0.827
D - 0.941 0.943 0.891 0.777 0.773 0.861
E - 0.946 0.993 0.977 0.837 0.953 0.964
F - 0.931 0.996 0.924 0.898 0.919 0.941
G 0.946 0.984 0.984 0.982 0.984 0.974 0.972

AVERAGE - 0.931 0.982 0.944 0.767 0.904 0.934
MaxNumber - 2 5 - 1 - -

Table 11. Comparison of water detection results of the six fusion methods and the multispectral image.

Index
Method

Mul IHS PCS GS ELS HPF HCS

Detected objects 8 8 7 7 8 8 8
Matched objects 3 7 7 7 5 7 7

Precision 0.428 0.875 1 1 0.625 0.875 0.875
Recall 0.428 1 1 1 0.714 1 1

Table 12 reports the computation times of our proposed methods on three experimental areas
(experimental area-1, water experimental area-1 and area-2). Combined with detection results in
Tables 9 and 11, we can conclude that the computing time is proportional to detection of objects. How to
achieve the balance of efficiency and effect through the improvement of the algorithm is the next
important research direction.

Table 12. Computation time (second) comparison of the six different methods.

Running Time
Method

Mul IHS PCS GS ELS HPF HCS
Average

(6 Methods)
Building 5.430 16.32 16.95 15.35 16.46 15.58 16.65 16.218
Water-1 1.86 4.96 4.81 4.85 5.09 5.01 4.95 4.945
Water-2 4.51 5.13 4.95 4.98 5.01 5.15 5.08 5.050

From the above experiments, we can draw a conclusion that the object recognition method based
on Mask-RCNN applied in this paper can recognize objects. The image recognition effect for two
types of objects largely varies with different fusion methods, and the overall effect of PCS and GS
is better. It is noteworthy that there is a common phenomenon in the results of object recognition.
The segmentation effect of the edge of the mask is not satisfying, and the edge of the mask cannot be
fully fitted to the object for segmentation. In the subsequent sample making and model improvement,
the segmentation effect of the edge of the object needs to be further optimized.

4. Conclusions

Image fusion is the fundamental way to realize the complementary advantages between the high
spatial resolution of the panchromatic band and the high spectral resolution of multispectral bands.
In the pretreatment of model training data, we compared six fusion methods, IHS, PCS, GS, ELS, HPF,
and HCS, by applying them to the same WorldView-3 satellite image. The results show that the fusion
images obtained by different fusion methods are very different in visual effect and quantitative index.

Land cover (features) recognition effectiveness for buildings and water bodies using six fusion
methods are notably different, and the recognition accuracy has been significantly improved compared
with the original multi-spectral remote sensing images. Considering the subsequent segmentation
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and feature-oriented primitive processing, analysis, and understanding, PCS fusion method has the best
comprehensive effect.

We use deep learning to perform typical object recognition of land cover (features) in remote sensing
images, but there is still a long way to go to meet the standards of surveying and mapping products.
Realizing the automation from remote sensing image to sematic vector map production is the ultimate
goal. Compared with the object instance segmentation based on Mask-RCNN, the extraction of building
vector contours based on instance segmentation will be more challenging in the current research field.
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