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Abstract: Large-scale crop mapping provides important information in agricultural applications.
However, it is a challenging task due to the inconsistent availability of remote sensing data caused by
the irregular time series and limited coverage of the images, together with the low spatial resolution
of the classification results. In this study, we proposed a new efficient method based on grids to
address the inconsistent availability of the high-medium resolution images for large-scale crop
classification. First, we proposed a method to block the remote sensing data into grids to solve
the problem of temporal inconsistency. Then, a parallel computing technique was introduced to
improve the calculation efficiency on the grid scale. Experiments were designed to evaluate the
applicability of this method for different high-medium spatial resolution remote sensing images and
different machine learning algorithms and to compare the results with the widely used nonparallel
method. The computational experiments showed that the proposed method was successful at
identifying large-scale crop distribution using common high-medium resolution remote sensing
images (GF-1 WFV images and Sentinel-2) and common machine learning classifiers (the random
forest algorithm and support vector machine). Finally, we mapped the croplands in Heilongjiang
Province in 2015, 2016, 2017, which used a random forest classifier with the time series GF-1 WFV
images spectral features, the enhanced vegetation index (EVI) and normalized difference water index
(NDWI). Ultimately, the accuracy was assessed using a confusion matrix. The results showed that the
classification accuracy reached 88%, 82%, and 85% in 2015, 2016, and 2017, respectively. In addition,
with the help of parallel computing, the calculation speed was significantly improved by at least
seven-fold. This indicates that using the grid framework to block the data for classification is feasible
for crop mapping in large areas and has great application potential in the future.

Keywords: large scale; crop mapping; random forest; grid; parallel

1. Introduction

The knowledge of croplands has important implications for food security, economic development,
and agricultural policy making [1–3]. Crop-type mapping in large agricultural areas also provides
important fundamental data for crop growth monitoring, yield estimation and drought warnings [4–8].
Traditionally, the crop-type information was obtained through field surveys, which are time- and
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labor-consuming. Remote sensing, either alone or in combination with statistical field statistical
surveys, plays a key role in identifying and mapping croplands over large areas due to its synoptic
view, multi-temporal coverage, and cost-effectiveness.

Agricultural applications require high accuracy, high spatial resolution and high update
frequency large-scale crop classification products. However, mapping croplands over large areas with
multi-spectral, multi-temporal remotely sensed data remains challenging due to the large volume
of data caused by large area and the inconsistent of available imagery caused by cloudiness and
uneven revisit times. A series of cloud computing platform were introduced, which greatly solving
the calculation problem caused by a large volume of data [9–13]. In addition, both NASA’s NEX
system for global processing and Infor Terra’s Pixel Factory for massive imagery auto processing
use cluster-based platforms (a group of computers that are interconnected by a high-speed network)
for calculation speed optimization [14,15]. However, due to the temporal inconsistency of image
acquisition, there are still limitations in multi-temporal cropland classification [16–22], including (a)
most of supervised classifiers require consistent number of features. [23–25]; (b) insufficient temporal
information is used caused by the abandon of images acquired at a specific time without covering
the full study area [9,26,27]. Thus, the overall accuracy of large scale cropland mapping is less than
ideal (between 66% and 79%) [16,18,28,29]. Therefore, there remains a need to create better operational
cropland map production based on high-medium resolution images (≤30 m) over large areas.

Many scholars have made efforts to solve the problem of inconsistent of available imagery.
Some scholars have attempted to divide the study area into several small regions to ensure the same
acquisition time of the images [30]. However, data scarcity in the time series is a common problem if the
study area is too large, which could affect the classification accuracy. For instance, due to the influence
of clouds and rainy weather, sufficient temporal information cannot be obtained [27]. Some methods
have been proposed to compensate for the missing pixels, such as interpolation and resampling on
time series [31], self-organizing Kohonen maps (SOMs), as well as extracting statistical values from
time series [26,27]. However, the accuracy of the results obtained by these methods is still uncertain.
To overcome these challenges, we focused on developing a framework based on grids to solve the
problem of the inconsistent availability of remote sensing data and realize large-scale crop classification.
Using grids to block the remote sensing data could reduce the data organization scale and maximize
the use of the time series data to achieve better classification accuracy [17,21,32]. A set of unified
encoding rules is a good way to optimize the computational speed required for processing massive
remote sensing datasets with high-performance parallel computing.

Grids have been used in various application fields [33–35]. Ye et al. [36] designed a multilevel
raster data cleaning and reconstitution multigrid (RDCRMG) system using universal transverse
mercator projection (UTM projection). The RDCRMG system divides images into several consistent,
independent blocks and distributed storage in different data. The raster data can be quickly extracted
for the target areas by using the “no metadata” model, which directly calculates the data storage path
without retrieving the metadata records. In addition, it allows the users to split the task into subtasks
that can be executed in parallel. In large-scale crop classification, small-scale distributed storage
makes it easier to obtain consistent time-series images. The no metadata concept applied with parallel
computing can handle the calculation of massive raster datasets well. In this paper, we proposed a new
workflow for large-scale crop mapping based on an RDCRMG from high-medium resolution images
(≤30 m). Remote sensing data were clipped into the RDCRMG 10 km grid for unified management.
Ten km grids were used as the calculation unit for classification, which means that the classification
model was trained in each grid independently, and the temporal features were generated from the
images in each grid.

In summary, to cope with the inconsistent availability of high-medium resolution images (≤30 m)
over large-scale cropland mapping, we proposed a new efficient and effective workflow based on
RDCRMG. First, we used the 10 km grid as the basic processing unit and classified images in each grid
with the whole samples but different temporal features according to the GF-1 revisit times in this grid.
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Secondly, we designed a parallel computing approach based on a 10 km grid and integrated a machine
learning algorithm, which greatly improved the calculation speed without sacrificing classification
accuracy. The workflow was applied to the classification of Heilongjiang Province, which is the highest
food-producing province and covers a 4.73 Mha area in China, with GF-1 WFV images and random
forest classifier.

2. Materials

2.1. Study Area

Heilongjiang Province, which is located in the northeastern part of China between 43◦26′N–53◦33′N
and 121◦11′E~135◦05′E (Figure 1), is an important commodity base for grain in China. From south to
north, according to temperature indicators, Heilongjiang can be divided into a medium temperature
zone and a cold temperate zone. From east to west, according to the dryness index, it can be divided
into a wet zone, a semi-humid zone, and a semiarid zone. Covering an area of 4.73 Mha, the terrain
is roughly high in the northwest, north, and southeast and low in the northeast and southwest.
There are approximately 1.18 Mha of cultivated agricultural land, accounting for 30% of the total land.
The major crops are corn, rice, and soybeans. They are all sown at May and harvested in late September.
The annual average rainfall of Heilongjiang is 400–700 mm, of which 60% is concentrated from June
to August.
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Figure 1. Study area. (a) China. The Chinese map overlays the digital elevation model (DEM) 30 M base
map. (b) Shape, latitude, and longitude of Heilongjiang. Heilongjiang Province overlays the moderate
resolution imaging spectroradiometer (MODIS) China 500 M normalized difference vegetation index
(NDVI) for dairy products.

2.2. Data Sources and Preprocessing

2.2.1. Remote Sensing Data

The Gaofen-1 (GF-1) WFV imagery was utilized in this study due to its high spatial and
temporal resolution. The GF-1 satellite was launched on 26 April 2013 and is the first satellite in the
civilian high-definition earth observation satellite (HDEOS) program to realize a high-resolution and
wide-swath optical remote sensing mission. It has two high-spatial-resolution cameras and four wide
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field viewing cameras with a combined width of 800 km. The GF-1 satellite has a spatial resolution
of 16 m and four spectral bands: blue (0.45–0.53 µm), green (0.52–0.59 µm), red (0.63–0.69 µm), and
near-infrared (0.77–0.89 µm). Its temporal resolution is 2 days. GF1 WFV imagery have been widely
used in crop classification, in-season crop mapping, crop planting area survey etc., and has achieved
good results [37–39]. The GF-1 satellite data can cover the whole world, and it has the most abundant
temporal data and the most comprehensive coverage over China. The data can be downloaded from the
official website of the China Resources Satellite Application Center [40]. Organizations need to register
an account on the website and apply for subscription rights. The GF-1 images can be downloaded for
free if permission is granted.

The GF-1 satellite has 8-track imaging and 35◦ imaging capability per side. We downloaded the
images from May to September for classification, with a total of 742 scenes in 2015, 462 scenes in 2016,
and 571 scenes in 2017. To ensure the quality of the classification, we only used the images with less
than 10% cloud cover. Following these rules, the GF-1 WFV sensor acquired a total of 398 scene images
in 2015, 291 in 2016, and 272 in 2017 covering Heilongjiang Province. Figure 2 shows the detailed
temporal distribution.
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Figure 2. Heilongjiang Province 2015–2017, three-year time series distribution map, including the
number of scene images available for each day of the year (DOY).

2.2.2. Field Sample Data

The field sample data provide a basic reference for crop classification. We randomly sampled the
data according to the size of the study area, distribution of the major crops and accessibility to the field
sites. Corn is widely distributed mainly in the central, western, and southern regions of the province
due to economic factors. Rice is mainly distributed in the Sanjiang Plain and along the river region.
Soybeans are mainly distributed in the central and northern parts. Figure 3 shows the distribution
of crops.
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In addition to these three crops, we also collected samples of wheat, woods, greenhouses, buildings,
water, etc., but because these land cover types are not our main focus and the number is small, when
performing the classification, they are merged into a single class named “other”. According to the
actual sampling plan, we randomly selected 2235 corn samples, 639 rice samples, 1308 soybean samples,
and 765 other samples each year and divided it into the training data and test data at a ratio of 2:1.

2.2.3. RDCRMG and Automated Preprocessing System

Raster dataset clean and reconstitution multigrid (RDCRMG) is a multisource raster data
organization and management logic framework that is similar to the Military Grid Reference System
(MGRS) data organization framework. Currently, the implementation of RDCRMG is mainly based
on code and includes some basic functionality based on the graphical user interface (GUI), such as
the preprocessor. According to the RDCRMG system, three levels of square grids (100 km–10 km–1
km) with different grid sizes, strictly nested relationships, and specific codes are used as consistent RS
image partition units. It includes the UTM 6◦ band–100 km grid–10 km grid–time–data type encoding
rules, and we used a 10 km grid as our data organization unit. In the RDCRMG system, the grid codes
are used as the directory name and file name to generate the logical storage paths of the raster file
blocks based on the “no metadata” model, as shown in Figure 4.
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The GF-1 WFV data used in this paper needed to undergo the following preprocessing steps
before being entered into the RDCRMG: metadata reading, radiometric calibration, atmospheric
correction, orthorectification, cloud detection, geometric registration, projection conversion, clipping,
and cleaning [36]. Figure 5 shows the temporal data of the grid after the image is entered into the
RDCRMG. The sample data in the RDCRMG underwent the following steps: rasterization, metadata
reading, project conversion, cropping, and cleaning. Figure 6 shows the number of samples in each
grid unit after the sample was entered into the RDCRMG system.
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2.3. Spectral Features

To maximize the differences among rice, corn, and soybeans, we not only use the original spectral
values as features but also calculate the enhanced vegetable index (EVI) [41] and the normalized
difference water index (NDWI) [42].

The EVI was proposed by Huete et al. [41] and is one of the most widely used vegetation
indices. It can effectively reflect the vegetation coverage and eliminate the influence of the atmosphere.
In addition, it has a good correlation with the vegetation coverage that does not easily reach saturation.
Studies have shown that the EVI can effectively reflect the physiological characteristics of different
crops in different growing seasons at different growth stages [32]; the calculation formula is as follows:

EVI = 2.5 ∗ (NIR−RED)/(NIR + 6RED− 7.5BLUE + 1) (1)

The NDWI, proposed by Mcfeethers [42], minimizes the vegetation information and highlights
the water information. It is sensitive to changes in the liquid water content of the vegetation canopy.
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Yang et al. used it to extract rice information and achieved good results [43]. The NDWI is calculated
as follows:

NDWI = (GREEN −NIR)/(GREEN + NIR) (2)

The temporal profile of various crops is shown in Figure 7. The corn, rice, and soybeans are sown
at the end of April and harvested in September, so the feature trends of these three crops are basically
the same. On day of the year (DOY) 130, the surface of the rice field is covered by water, and the
soybean has an obvious texture when it is just planted. Therefore, in the red and green bands, the
rice has the lowest spectral value. On DOY 156, the soybean is flowering; the corn is in the seventh
leaf stage; and the rice is in the stage of greening and tillering, so the rice has a higher NDWI value.
Between DOY 220 and 240, the differences in the NIR and EVI values among the corn, rice, and soybean
are obvious, all of them reached their peaks, and they were significantly different. During the harvest
period, the features of the three crops also behave differently.
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3. Method

Our approach for large-scale crop mapping based on high-medium resolution images involved
four steps: (1) feeding both the images and sample data into the RDCRMG grid system; (2) selecting
high-quality images and reconstructed a sample dataset with all ground truth sample locations and with
full temporal profile, then calculated features; (3) generating the training data and test data according
to a 2:1 ratio and (4) extracting a training features dataset based on the dates of the satellite revisited
for each 10 km grid, then optimizing hyperparameters and classifying. Next, all the classification
results were mosaicked into one entire crop type map, and the test data were used for an accuracy
assessment based on the confusion matrix. We employed the parallel computing strategy in the second
and fourth steps. This also means that we generated 4951 predictive models. Since Heilongjiang



Remote Sens. 2019, 11, 1500 8 of 22

study area covers 4951 10 km grids, the grids with the same temporal images were predicted using
the same model. Figure 8 shows the detailed classification procedure. The whole workflow was
implemented using the C# language, and the classifier was implemented with the Python scikit-learn
package [44]. We established a grid attribute table in an Oracle database, which contains all the grids
in Heilongjiang study area. The specific fields include ISINCLDSAMPLE (whether there are samples),
ISINCLDIMG (whether there are images), and CLASSRLT (whether there are classification results) to
indicate the progress of the classification. For example, before the second step, all the fields of all the
grids were marked as pending. After the third step, the training and test data are all generated, and
the ISINCLDSAMPLE and ISINCLDIMG fields are marked as completed. The program automatically
monitors these unprocessed grids until all the steps for all the grids have been completed.

Remote Sens. 2019, 11, x FOR PEER REVIEW  8 of 22 

 

in the second and fourth steps. This also means that we generated 4951 predictive models. Since 
Heilongjiang study area covers 4951 10 km grids, the grids with the same temporal images were 
predicted using the same model. Figure 8 shows the detailed classification procedure. The whole 
workflow was implemented using the C# language, and the classifier was implemented with the 
Python scikit-learn package [44]. We established a grid attribute table in an Oracle database, which 
contains all the grids in Heilongjiang study area. The specific fields include ISINCLDSAMPLE 
(whether there are samples), ISINCLDIMG (whether there are images), and CLASSRLT (whether 
there are classification results) to indicate the progress of the classification. For example, before the 
second step, all the fields of all the grids were marked as pending. After the third step, the training 
and test data are all generated, and the ISINCLDSAMPLE and ISINCLDIMG fields are marked as 
completed. The program automatically monitors these unprocessed grids until all the steps for all the 
grids have been completed. 

 
Figure 8. Workflow of our study, including five important steps: (1) data fed into the grid; (2) 
calculation of multitemporal features; (3) generation of training and test data; (4) classification. Steps 
2 and 4 were based on a 10 km grid. 

  

Figure 8. Workflow of our study, including five important steps: (1) data fed into the grid; (2) calculation
of multitemporal features; (3) generation of training and test data; (4) classification. Steps 2 and 4 were
based on a 10 km grid.
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3.1. Image Selection

To ensure the quality of the classification, the images were carefully selected based on the amount
of cloud coverage and image coverage for the following three scenarios: (i) Image mosaic. For example,
if there were two GF-1 WFV images, a and b, which were adjacent to each other, the two scenes
were merged.
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(ii) Cloudless image selection. When downloading a high-resolution WFV image, we only
downloaded the images of the entire scene with a cloud content below 10%. The impact of the
cloud coverage on the classification results is very large, so before the classification, to ensure the
quality of the results, we again filtered the data in 10 km grid units. At this time, only the 10 km grid
raster images with cloud content below 60% were selected for classification. (iii) Large image selection.
It was found that if the image did not cover the entire grid, there were obvious edge effects in the
classification results. Therefore, we only used the images in which the imaging area occupied more
than 75% of the 10 km grid area. Figure 9 shows the data acquisition scenarios and the amount of data
in the 10 km grid after the image acquisition.

3.2. Full Temporal Profile Reconstruction

The difficulties of large scale multi-temporal classification are: (a) not every grid contains ground
truth sample locations, (b) not every grid contains samples of all crop types, and (c) the dates of images
covering each grid may largely differ. Therefore, we reconstructed a training sample dataset with all
ground truth sample locations and with full temporal profile (containing the union of all observation
time points of GF-1 satellite in whole study area), as shown in Figure 10.
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In the process of reconstructing the full temporal profile for each sample location, we used linear
interpolation to fill in the missing spectral values according to the images before and after. For each time
point in the temporal profile, we prepared six features including four spectral bands, EVI and NDWI.

3.3. Training and Classification

We trained different models separately for each 10 km grid, using all sample locations in our
training dataset but with different features according to the actual image availability of each grid.
By this approach, even if there is no sample location in a specific grid, we still have the whole sample
locations to use for training, by simply filtering the features according to the availability of temporal
images in this grid, as shown in Figure 10. For example, if a grid contained images acquired on May 1
and June 1, we used only features of these two dates by extracting the corresponding feature columns
from the training data table of all sample locations for training. Then, classification was done with
the available images of this 10 km grid using the trained classifier. We integrated Scikit-learn [45] in
Python in our classification framework for training and classification, and optimized the parameters
by gridsearchcv function of this package to reach a better choice of the hyperparameters.

3.4. Parallel Computing

The RDCRMG retrieval strategy adopted the concept of the map-reduce mode. Based on this,
a parallel strategy was implemented for the classification. By calculating the corresponding 10 km
grid codes of the query scope, the calculation of each grid was performed in parallel. In addition to
acquiring the union of all observation time points of GF-1 satellite in whole study area and generating
the training sample dataset with all ground truth sample locations and with full temporal profile, all
the remaining steps could be performed in parallel.

Parallel computing was implemented at both the thread and process levels and was based on a
computing cluster of four servers. The machine parameters are shown in Table 1. First, the program
was connected to the Oracle database, the field information was read in the grid attribute table, and
then a pending grid set was assigned to each process. Second, in each process, the grid subset encoding
sequence was assigned to each thread to implement thread-level parallel computing. Each thread
allocation node would design a different number of threads according to the calculated required
memory to prevent a computer memory overflow. The experiment showed that under the given
computational resources, we could simultaneously perform the calculations for 18 grids.

Table 1. The basic specifications of the computing clusters in terms of the processor and RAM.

Server ID Processor RAM

Server A Intel E5-2680 × 2 32 G
Server B Intel E5-2620 × 2 16 G
Server C Intel E5-2620 × 2 16 G
Server D Intel E5-2407 × 2 8 G

3.5. Method Performance Evaluation

We evaluated the performance of this method in three different ways as follows:
First, we assessed the applicability of the method with different machine learning classifiers and

remote sensing images. In terms of the classifiers, we chose the random forest classifiers and support
vector machines. The random forest (RF) algorithm is a widely used machine learning method based
on decision trees. Bootstrap sampling was used to train each decision tree, and the results yielded by
the random forest algorithm were determined by the output of all the decision trees involved [45–48].
The support vector machine (SVM) classifier was derived from statistical learning theory. The training
samples are segmented by a hyperplane. The principle of segmentation aims to maximize the interval
and finally transform it into a convex quadratic programming problem [49,50]. The specific parameter
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values set when the two classifiers perform hyperparameter optimization are shown in Table 2. In terms
of the data, in addition to the GF-1 WFV images, we used the sentinel 2 images in a small research area
and compared the classification results with the classification results based on GF-1 WFV images.

Table 2. Parameter group setting details in parameter tuning.

Random Forest Algorithm Support Vector Machine

n_estimators 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 Kernel Function: linear, C: [1,10,100,100,1000]
max_features ‘auto’, ‘sqrt’, ‘log2’ Kernel Function: poly, C: [1], degree: [2,3]

Kernel Function: rbf, C: [1,10,100,100,1000], gamma:
[1,0.1,0.01,0.001]

n_estimators: number of decision trees; max_features: number of features of the best segmentation point; C:Cost
and slack parameter.

Second, we selected a small study area and applied the widely used nonparallel classification
methods for the classification and then compared the performance. There are two differences between
our method and the widely used nonparallel methods. The first is that we classified by 10 km grid
units, and for each grid, the available images of all the dates during the crop phenology were used as
much as possible. Second, we used the temporal resampling to supplementary time series image for
the grids with samples.

The third evaluation approach is to verify the migration of the classification model within the
study area. Because the study area is large, we used the whole samples to classify and did not consider
the inconsistent characteristic curves among crops in different regions. So, we divided the study
area into two parts, one for the southwestern region where samples are scarce, labeled A, and the
northeastern region labeled B. Two-thirds of the samples from B were used for training, and A/B was
classified to use this model. Finally, the classification accuracy of A/B was compared.
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3.6. Efficiency Test

To determine how much the efficiency of parallel classification can be improved, two models
were used to determine the classification speed with the same grids (Figure 11). Certain grids with
and without samples were selected for classification using the speed test. For mode 1, we used a
parallel classification technique proposed in this paper, which was carried out with multi-process and
multithread parallel computing. For mode 2, the classification was executed in one single thread.

3.7. Heilongjiang Classification Results Accuracy Assessment

The classification results for Heilongjiang study area were evaluated in two different ways. First,
a confusion matrix was used for the accuracy assessment. The following metrics were calculated: the
overall accuracy, average accuracy of the map, and the user and producer accuracy of each type of
crop. The second evaluation method was to compare the area and interannual variation of the three
main crops, which were analyzed separately. At the same time, the relevant policies promulgated by
the Chinese government and statistical data were used as an aid to analyze the influencing factors.

4. Results

4.1. Results of the Accuracy Assessment

4.1.1. Verification of the Suitability of the Method

We assessed the applicability of the proposed method in terms of the classifiers and images.
Table 3 shows the comparison results of the random forest and the support vector machine algorithms.
They both achieved good results, and the accuracy is almost the same. Therefore, the computational
framework proposed in this paper is applicable to a general machine learning classification algorithm
based on supervised classification.

Table 3. Comparison of the accuracy of the classifiers.

Classifier Random Forest Algorithm Support Vector Machine

Overall accuracy (%) 86 84
Average accuracy (%) 85 83

kappa 0.76 0.74

Our method can also be applied to the Sentinel-2 data. In the small study area, the classification
result derived from the Sentinel-2 data had an average classification accuracy of 83% and an overall
classification accuracy of 77%. Furthermore, the results showed that the use of the GF-1 WFV images
had a higher overall accuracy compared with using the Sentinel-2 images (Table 4). The OA increased
by 6% when using the GF-1 WFV images. Because the 2017 Sentinel-2B data are still in the testing stage,
and a time resolution of 5 days has not yet been fully achieved. Therefore, the temporal information
from the GF-1 WFV images was relatively richer than that of the Sentinel-2 images, which could
distinguish different crops more accurately.

Table 4. Accuracy comparison of the GF- WFV and Sentinel-2 images.

Classifier GF-1 WFV Sentinel-2

Overall accuracy (%) 83 77
Average accuracy (%) 82 83

Kappa 0.68 0.70
Number of images 10 7
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4.1.2. Accuracy Comparison with the Widely Used Classification Method

The results of our proposed classification method and the widely used nonparallel classification
method were very similar. We selected a sample grid from the 32,653 projection tape as the experimental
area. Experiment I used the proposed algorithm, and Experiment II used the widely used method.
Before the classification, we simulated the common large-scale classification database and rules were
as follows: (i) ensure that no single-date data can cover the entire research area; (ii) the image set in
the experimental area has an irregular time series. Table 5 shows a comparison of the classification
results. The overall accuracy and average accuracy of Experiments I and II were equal, however, the
classification accuracy of different crops was different. The accuracy of rice obtained by the proposed
method was significantly higher than that of the traditional method. The reason is that our method
could make full use of the crop time series characteristics, which is beneficial for rice identification.

Table 5. Comparison of the accuracy among the widely used nonparallel classification methods.
A refers to the method we propose, and B refers to the widely used classification methods.

Experiment-I Experiment-II
Sample Count

UA (%) PA (%) UA (%) PA (%)

Corn 85 95 85 96 159
Rice 91 88 76 92 24

Soybean 97 68 97 71 41
Other 82 69 84 54 39

AA:87 OA:86 AA:86 OA:86

AA: Average accuracy; OA: Overall accuracy; UA: User accuracy; PA: Producer accuracy.

4.1.3. Assessment of the Classification Model Migration

The classification accuracy of the grids that were far from the sample collection area did not
decrease. The results showed that the classification accuracy from the 256 test samples in Region-A
was 80%, while the accuracy from the 1000 test samples in Region-B was 83%. Therefore, we believe
that the proposed method is not sensitive to the differences between crops from different regions of
Heilongjiang Province.
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4.2. Computation Performance Evaluation

We set up six groups of experimental data, and each group had a different number of grids as
follows: 18, 90, 180, 270, 360, and 450 grids. In each group, one half of the grids contain samples and
the other half not contain samples. A task-level parallel computing cluster with four spatial analysis
servers and one load-balancing server was deployed as the infrastructure for the efficiency tests. For
mode 1, each grid was classified in parallel, and 18 grids at a time were calculated. For mode 2,
the widely used methods were used to classify the grids one at a time. Figure 12 presents the time
consumption for the classification of modes 1 and 2 with different sized query scopes. It can be seen
that parallel computing based on RDCRMG can significantly improve the computational efficiency
by approximately seven times, and the improvement is more obvious as the number of computing
grids increases.

4.3. Heilongjiang Province Classification Results

Although the classification accuracies of the random forest and the support vector machine
classifiers were almost the same, when the random forest classifier generated a decision tree, each
node was generated from the optimal segmentation of several randomly selected variables, which
we believe helped find the best sample set for each grid to classify. Finally, we chose the random
forest classifier for the three-year classification of Heilongjiang Province. The results showed that the
proposed method demonstrated a good performance for cropland mapping in the study area. Figure 13
indicates that the corn was distributed in most parts of the province and it cultivation area was large.
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Rice was concentrated in the eastern region, while soybeans were mainly distributed in the
north-central region, and the rice and soybean areas were relatively small and clustered. A few regional
subsets of the crop maps are shown in Figure 14.
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Figure 14. The classification result details of Heilongjiang with four 10 km grids for year 2015, 2016
and 2017.

From 2015 to 2017, corn acreage has been decreasing, and rice and soybean acreage has been
growing. After consulting the relevant data, it was found that, since the implementation of the corn
reserve policy in China in 2008, the corn planting area in Heilongjiang Province has increased from
0.38 Mha to more than 6.7 Mha. The price of corn has been falling and the cost of storage has been
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high. Therefore, starting in 2015, China reformed the corn storage system and increased the subsidies
for corn, but reduced the corn planting area. At the same time, the area planted with rice and soybeans
has been growing, and soybeans have increased even more. Since 2016, China has carried out pilot
work on the arable land rotation system, and selected seven cities in Heilongjiang to carry out pilot
work, which has encouraged some growers to rotate crops to plant soybeans, so the soybean planting
area has increased. In 2017, Heilongjiang Province vigorously promoted the “dry to water” policy,
which meant changing low-lying land and saline-alkaline land into fertilizer fields. Therefore, the
rice planting areas in the Sanjiang Plain and Songhua River Basin increased significantly. Overall, the
classification results of this paper are consistent with the adjustment trend of the agricultural planting
structure in Heilongjiang Province.

The classification accuracy of each crop type over three years is shown in Table 6. The user accuracy
(UA) of the corn was the highest. However, the producer accuracy (PA) of the corn in 2016 and 2017
was lower, and the rice and soybeans were largely misclassified as corn, indicating that the sample size
of the corn was too large. The PA of rice was the highest, partly because the characteristics of water
(the growing environment of rice) were clearly reflected in the spectral values of the EVI and NDWI.
Both the soybean UA and PA were high except in 2016. We can see that the mixed phenomenon of the
soybean and corn was the most serious in 2016, partly because the time series features were not able to
distinguish the corn and soybean very well.

Table 6. Confusion matrix of the three-year classification results, the user accuracy and producer
accuracy of various crops, the overall classification accuracy, and the average classification accuracy.

Reference Class
Predicted Class Corn Rice Soybean Other Total UA (%)

2015

Corn 699 9 16 25 745 93
Rice 24 184 2 2 213 87

Soybean 51 1 364 17 436 84
Other 46 6 7 196 255 77
Total 820 200 389 240 1649 88

PA (%) 85 92 94 82 88

2016

Corn 651 8 59 27 745 87
Rice 15 189 4 5 213 89

Soybean 91 0 336 9 436 77
Other 67 2 27 159 255 62
Total 824 199 426 200 1649 81

PA (%) 79 95 79 80 81

2017

Corn 697 5 31 12 745 94
Rice 36 176 0 1 213 93

Soybean 64 0 370 2 436 85
Other 85 5 12 153 255 60
Total 872 185 409 173 1649 85

PA (%) 79 95 90 91 86

UA: User accuracy; PA: Producer accuracy.

In order to further verify the method proposed in this paper, we use a leave one year out
verification method to classify and verify the Heilongjiang Province results based on GF-1 WFV data.
We set up three sets of experiments, respectively: (i) we used sample locations of 2015 and 2016 to train
the model. Then, this model was used to classify 2017, and sample locations from 2017 were used
to evaluate the accuracy; (ii) we used sample locations of 2015 and 2017 to train the model. Then,
this model was used to classify 2016, and sample locations of 2016 was used to evaluate the accuracy.
(iii) train the time series spectral values of all samples in 2016 and 2017 to classify the 2016 data and
use the 2015 test samples for accuracy assessment. Because the footprints of the GF-1 satellite do not
overlap during three years, we select one image every half month as a representative image of this
growth period, and select nine images every year, thus ensuring the consistency of the three-year time
series features. The classification accuracy are shown as Table 7. We can see that it is not satisfactory.
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The reasons are as follows: (i) the spectral difference of GF-1 WFV data in different years is too large,
and it is not suitable for classification with spectra of other years; (ii) the method we proposed that
training and classification based on the actual image availability of each 10 km grid can better solve the
irregular irregularity of the GF-1 satellite’s footprints.

Table 7. Leave one year out method accuracy assessment result.

Year of Classification Result Overall Accuracy (%) Average Accuracy (%)

2015 70 73
2016 64 67
2017 71 65

5. Discussion

5.1. Reliability of Large Area Crop Mapping Using the Proposed Method

Currently, large-scale crop mapping based on high-medium spatial resolution (≤30 m) images
still faces great challenges, mainly due to inconsistent availability of data. At present, there are two
main methods for large-scale cropland mapping: (1) constructing a large sample set of all the land
cover classes (cropland is one of them), which is time- and labor-consuming and difficult to repeat;
or (2) replace the time series data with statistical data, for example, replacing the enhanced vegetation
index (EVI) time series with the temporal EVI statistics, such as the mean, standard deviation, and
maximum EVI. Our research proposes a new method for large-scale crop mapping by partitioning the
study area and using parallel computing based on RDCRMG. The 10 km RDCRMG grids are used
as a classification unit to ensure that the time series images are consistent, and it is also used as the
calculation unit to design the parallel calculations to improve the classification speed.

The proposed method is applicable to all the remote sensing data under WGS 84 coordinates
based on machine learning classifiers, and the accuracy achieved by the widely used nonparallel
method was basically consistent with that achieved by our method. Even the inconsistent characteristic
curves among crops in different regions, but it is not sensitive for this method in Heilongjiang. We then
verified the efficiency improvement of the proposed calculation method. Compared with the traditional
single-threaded classification, parallel classification can significantly improve the calculation speed, which
is approximately seven times higher. The larger the number of grids is, the more obviously the speed
improves by parallel classification. This provides a good solution for the calculation of larger areas.

5.2. Evaluation of Classification Results in Heilongjiang Province

In the classification results of the Heilongjiang study area, the geographic distribution of various
crops is consistent with the actual statistics. Corn is widely distributed throughout the province, rice
cultivation is concentrated in the eastern region, which is located in the Sanjiang Plain and is rich in
water resources and soybeans are mainly distributed in the central and northern regions. The overall
accuracy over the three years is between 81% and 88%. This result can already be used as a mask layer
in the yield forecast model. However, due to the relatively low number of samples, the phenomena of
the rice and soybean being misclassified into corn is more serious. Although there are enough samples
of the corn, the mixed phenomenon of the corn and soybean still exists, so it may be necessary to
increase samples and try to balance the samples of crops to be classified in a future study.

To ensure China’s food security, the Heilongjiang government has introduced a number of policies
for the corresponding counties. In 2015, the government has reduced corn acreage and encouraged
corn and soybean crop rotation, so the area planted with corn has been falling. In 2016, China’s corn
prices fell, while the soybean prices rose, and farmers were encouraged to grow soybeans to reduce the
soybean imports. The soybean planting area increased significantly in 2017 compared with the area in
2016. In the same year, the proposal of the drought-to-water policy greatly increased the area planted
with rice.
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In addition to these three major crops, we also analyzed the accuracy of other types of land cover,
including natural vegetation, metropolitan areas and water. Natural vegetation, such as forests, has an
accuracy of approximately 81%. Metropolitan areas, such as residential areas, have an accuracy of
approximately 98%, and water, such as rivers, have an accuracy of approximately 99%. The classification
results are shown in Figure 15. Although we mainly identify corn, rice and soybeans, the methods
proposed in this paper can recognize other common land cover categories well.
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5.3. Uncertainty Analysis and Outlook

There are some cases in which the classification accuracy of the proposed method is uncertain: (i)
The more high-quality images there are, the better the classification accuracy will be, so integrating
more images from different sources in the RDCRMG system will improve the classification results in
the future. (ii) The remote sensing images should be as close as possible to the WGS-84 coordinates;
otherwise, the classification result may have a large positional shift. (iii) Although we verified that the
distance from the sample cluster is not related to the classification accuracy, a wide coverage and a
large number of sample sets are more favorable for a higher accuracy.

6. Conclusions

Based on the RDCRMG grid, we proposed an efficient method to solve the inconsistent availability
of data for large-scale cropping mapping. The proposed method can quickly and accurately distinguish
among different crop types based on high-medium resolution images in large area. Using this approach,
a crop classification was performed for Heilongjiang Province from 2015 to 2017 with a random forest
classifier and GF-1 WFV images. The classification accuracy reached 88%, 82%, and 85% in 2015, 2016,
and 2017, respectively, and the crop distribution was consistent with the government-promulgated
policy. The entire classification process was completed within 22 hours to generate a cropland map of
4.73 Mha. Parallel computing was applied to the crop classification, which increased the computational
efficiency by approximately seven times. The larger the study area is, the faster the speed is that can
be realized.
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