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Abstract: RADARSAT Constellation Mission (RCM) compact polarimetry (CP) data were simulated
using 504 RADARSAT-2 quad-pol SAR images. These images were used to samples CP data in three
RCM modes to build a data set with co-located ocean wind vector observations from in situ buoys
on the West and East coasts of Canada. Wind speeds up to 18 m/s were included. CP and linear
polarization parameters were related to the C-band model (CMOD) geophysical model functions
CMOD-IFR2 and CMOD5n. These were evaluated for their wind retrieval potential in each RCM
mode. The CP parameter Conformity was investigated to establish a data-quality threshold (>0.2), to
ensure high-quality data for model validation. An accuracy analysis shows that the first Stokes vector
(SV0) and the right-transmit vertical-receive backscatter (RV) parameters were as good as the VV
backscatter with CMOD inversion. SV0 produced wind speed retrieval accuracies between 2.13 m/s
and 2.22 m/s, depending on the RCM mode. The RCM Medium Resolution 50 m mode produced the
best results. The Low Resolution 100 m and Low Noise modes provided similar results. The efficacy
of SV0 and RV imparts confidence in the continuity of robust wind speed retrieval with RCM CP
data. Three image-based case studies illustrate the potential for the application of CP parameters and
RCM modes in operational wind retrieval systems. The results of this study provide guidance to
direct research objectives once RCM is launched. The results also provide guidance for operational
RCM data implementation in Canada’s National SAR winds system, which provides near-real-time
wind speed estimates to operational marine forecasters and meteorologists within Environment and
Climate Change Canada.

Keywords: compact polarimetry; synthetic aperture RADAR (SAR); RADARSAT Constellation
Mission (RCM); wind speed retrieval models; C-band model (CMOD); National SAR Winds

1. Introduction

Wind speed retrieval using spaceborne scatterometer and synthetic aperture radar (SAR) data is a
mature field with operational implementation in many countries. The most widely-used algorithms
are the C-band model (CMOD) family of geophysical model functions. These models were based on
the relationship of the C-band vertical-transmit vertical-receive (VV) backscatter with wind speed,
wind direction and incidence angle, derived from scatterometer data [1,2]. Early development
based on European Remote Sensing (ERS-1) scatterometer data resulted in CMOD-IFR2 [1], with
additional development producing CMOD4 and CMOD5, to arrive at CMOD5n [2] and, most recently,
CMOD7 [3]. SAR imagery applications have employed the CMOD family of models and have also
developed SAR-specific models to take advantage of other polarizations. The horizontal-transmit
horizontal-receive (HH) SAR backscatter was associated with the CMOD VV backscatter through
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the use of a polarization ratio (PR) [4,5]. The cross-polarized backscatter, i.e., horizontal-transmit
vertical-receive (HV), was associated with wind speed, without wind direction or incidence angle
input [5]. Models employing both co- and cross-polarized parameters (i.e., VV and VH), in addition to
incidence angle and sensor noise, with or without wind direction, were associated with wind speed and
are found to be comparable to or better than CMOD-IFR2 retrievals [6]. Using cross-polarized wind
speed retrieval in concert with CMOD5n, [7] reported capabilities for SAR wind direction retrieval.
Alternatively, azimuthal smearing due to surface motion was associated with wind speed via the
SAR azimuth cutoff [8]. Geophysical model functions relating the azimuth cutoff to wind speed and
significant wave height were described by [9]. The azimuth cutoff was explored further by [10], who
also establish criteria for the optimal use of azimuth cutoff for wind speed retrieval.

The development of the RADARSAT Constellation Mission (RCM) and Radar Imaging Satellite-1
(RISAT-1) necessitates an examination of C-band compact polarimetry (CP) SAR data for wind
retrieval. CP data provides near-polarimetric SAR capabilities, but at much larger swath widths,
making these data more operationally viable. However, while RCM and RISAT-1 can provide linear
polarizations, in CP mode, no linear polarizations are available, relying instead on right-circular-transmit
orthogonal-linear-receive architecture (CTLR) [11–13]. Operational systems, such as Canada’s National
SAR Winds programme (NSW), must therefore be able to accommodate CP data in their workflows.
The CTLR architecture enables the derivation of many CP parameters, several of which are analogous
to linear parameters (i.e., right-circular-transmit linear-receive: RV, RH), while others are analogous to
polarimetric parameters (e.g., RV-RH phase difference), and still others are a function of the right- or
left-circular-return (i.e., RR, RL).

CP data can be simulated from polarimetric data under the assumption of cross-polarized
reciprocity. An RCM data simulator, developed by F. Charbonneau at the Canada Centre for Mapping
and Earth Observation, Natural Resources Canada, was employed by the authors to simulate the
CP data from RADARSAT-2 quad-polarized data [14–17]. The RCM simulator adds noise to the
RADARSAT-2 data to simulate the various RCM mode noise floors. In early versions of the RCM
simulator (v.2 in 2013/2014), random noise was added to the first Stokes vector, causing the noise to be
cancelled out in the other Stokes vectors [14]. Therefore, noise effects on phase-related parameters
could not be assessed. In later versions of the RCM simulator (v.3.1. in 2016), noise was added to the
complex imagery prior to Stokes vector generation, allowing phase-related parameters to be evaluated
for different noise floors.

A subset of CP parameters can be directly related to CMOD models for wind speed retrieval: these
are RV, RH, RL and SV0 [14,15]. Model functions for RV and RH have also been derived directly from
CP data, using both empirical [16] and semi-empirical models associated with Bragg and non-Bragg
scattering [17]. Model functions for CP parameters unrelated to CMOD have been derived and have
skill in wind speed retrieval; in particular RR [14,18], m-χ-volume [14], and randomly polarized power [15].

Limitations to wind speed retrieval using both CMOD-related parameters and CP parameters
are associated with the sensor noise floor and/or the geophysical conditions of the water surface. The
higher the noise floor, the more the parameters are affected, particularly those that rely on non-Bragg
scattering, i.e., cross-polarized parameters [6,15]. In low wind conditions [19], or in the presence of
ocean slicks [20], CP parameters that rely on phase information may also be affected. A low wind speed
threshold of 3 m/s is occasionally used to avoid data issues at low wind speeds [17]. Modification to
CP parameter values may also originate from rain, internal waves, or ocean currents [17]. Sensor noise
and surface conditions can, therefore, lead to poor data quality, which must be considered both during
model development and during wind speed retrieval.

In this study, we evaluated the set of CMOD-related CP (CMOD-CP) parameters for their utility
in SAR wind speed retrieval. Using a recent version of the RCM simulator (v.3.1.), we aimed to (1)
establish a novel data-quality threshold based on CP parameters and (2) test CMOD-CP parameter
wind speed retrievals against buoy-observed wind speeds. The latter represents the most robust testing
thus far for the full set of CMOD-CP parameters (RV, RH, RL and SV0), and provides a comparative
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analysis of two CMOD models (CMOD-IFR2 and CMOD5n) and three RCM modes. We also performed
a model comparison between CP and linear CMOD-related parameters. We concluded with a forward
look at future data products derived from RCM CP and linear data.

2. Methods

2.1. Data

2.1.1. C-band SAR Data

RCM data were simulated from RADARSAT-2 Fine Quad (FQ) data using the RCM simulator
(v.3.1). A total of 504 FQ SAR images were acquired for the period 2008 to 2012, over Environment
and Climate Change Canada (ECCC) meteorological buoys. Three RCM modes were simulated: Low
Resolution (LowRes), Low Noise (LowNoise) and Medium Resolution (MR50). The specifications of
the selected beam modes are shown in Table 1. The simulation options are specification noise floor
(NESZ) and speckle filtering using a Sigma-Lee filter with a window size of 7 × 7 and a target size of
5 × 5; no second filter run was used. Backscatter values were in sigma-naught (σ0).

Table 1. Specification of RCM modes used for this study; all modes are capable of providing HH, VV,
HH+HV, VV+VH and CP polarizations. LowRes and MR50 are also capable of providing HH+VV [21].

RCM Mode Short Form Resolution (m) Looks (Range
× Azimuth)

Swath Width
(km)

(Accessible)

Nominal
NESZ (dB)

Low Resolution (100 m) LowRes 100 8 × 1 500 (500) −22
Low Noise LowNoise 100 4 × 2 350 (600) −25

Medium Resolution (50 m) MR50 50 4 × 1 350 (600) −22

Post-simulation image processing included the derivation of additional CP parameters and image
georectification. Twenty CP parameters and five linear polarization parameters were used in this
study (Table 2). Image sampling was performed using a 3 × 3 km region of interest (ROI), centred on a
meteorological buoy. The mean and standard deviation for each parameter were calculated for each
ROI, for each RCM mode simulated. Therefore, the data set comprised 1512 samples (504 × 3 modes).
Sample ROIs encompassed ~1915 pixels for the LowNoise and LowRes modes, and ~7680 pixels for the
MR50 mode. Parameter values were normalized to decibels (dB) when appropriate for more reliable
calculation of the statistics.

Table 2. Compact-polarimetry and linear polarization parameters used in this study.

Short Form Description

σ0
RV,σ0

RH, σ0
RL Right-circular transmit, vertical, horizontal, left receive

δRVRH Phase difference [12]
Conformity Conformity coefficient [22]

SV0 First Stokes vectors
σ0

VV, σ0
HH Linear polarizations

2.1.2. Meteorological Data

The ECCC meteorological buoys used in this study are in marine areas on the East and West coasts
of Canada (Figure 1); these areas have calibrated and well-maintained buoys. The buoys report hourly
wind speed and wind direction measured by two sensors, averaged over an eight-minute interval. The
observed wind speed was converted to winds at a 10 m reference height above the ocean surface using
the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA
COARE) bulk flux algorithm [23]. Wind direction must be relative to the satellite look direction. This
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was calculated by adjusting the observed wind direction relative to the satellite track direction +90◦
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Figure 1. ECCC buoy locations, with their ID code, on the West and East coasts of Canada.

2.2. SAR Data Quality

Various factors can influence the quality of the data used for algorithm development and testing.
Spatio-temporal issues concern the temporal, and thus spatial, difference between buoy data at its
reporting time and at the SAR acquisition time. These issues were mitigated somewhat by the use of
3 × 3 km ROIs. Two additional factors were spatial variability within sample ROIs, and low-quality
backscatter in the proximity of the noise floor.

2.2.1. Spatial Variability

ROIs that exhibit high variability in backscatter are likely representative of image areas (i.e.,
3 × 3 km) containing discontinuous wind slicks or strong wind gradients. Such ROI sample values
are probably unrepresentative of the buoy wind speed and/or direction. Therefore, they are likely to
introduce a significant source of error and should be removed from further analysis.

An analysis of σ0
VV standard deviation values shows that a number of samples exhibited relatively

high variability compared to the bulk of the samples (Figure 2). An upper threshold for the acceptable
spatial variability was set at two standard deviations above the mean:

τ = x + 2s (1)

where x is the mean of the σ0
VV standard deviation values and s is the standard deviation of the

standard deviation values. A lower threshold is not needed, as low variability is desired. For example,
for the LowNoise mode, the mean of the σ0

VV standard deviation values was 1.49 dB, and the standard
deviation of the standard deviation values was 0.26 dB; thus τ = 1.49 + 2 · 0.26 = 2.01 dB. Samples ≥ τ

were omitted: 16 samples for LowNoise (τ = 2.01 dB), 14 for LowRes (τ = 2.04 dB), and 14 for MR50
(τ = 2.17 dB).
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variability constraint. The respective breakpoints were at Conformity values of 0.176 (LowNoise), 
0.212 (LowRes) and 0.211 (MR50). The higher noise floor of the LowNoise mode resulted in fewer 
samples exhibiting low data quality, as expected. To ensure high quality data, a Conformity threshold 
of >0.2 (mean for three modes) was used. This is supported by the analysis of [20]. The Conformity 
threshold removed 19 samples from the LowNoise mose, 32 from the LowRes mode, and 31 from the 
MR50 mode. 

Figure 2. σ0
VV standard deviation versus σ0

VV for the LowNoise mode (n = 486). The red line represents
the upper variability threshold.

2.2.2. Low-Quality Backscatter

Low-quality backscatter exists in situations of low wind speed over water [20]. This results
from the presence of wind slicks, either at the pixel level or as a portion of a spatially-averaged
region of interest. Wind slicks occur when wind forces cannot overcome viscous forces, resulting in
specular reflecting surfaces that do not exhibit the commonly-observed Bragg-scattering from water
surfaces [24,25]. At C-band, this usually occurs at wind speeds <~3 m/s (Figure 3). Low-quality
backscatter is caused by the contamination of the radar signal by antenna side lobes and by returns
from nearby pixels [20].
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Low-quality backscatter negatively affects the phase information of the radar return. This
influences any algorithm development that includes such data, often causing non-linear relationships.
Low-quality data should, therefore, be treated separately from high-quality data.

Low-quality backscatter can be identified using Conformity, ρRVRH, and/or δRVRH [19,20]. An
analysis of the data shows that δRVRH and Conformity are closely related (Figure 4). A Conformity
threshold ≤0 clearly identifies samples with highly divergent phase information, i.e., significant
departures from the −90◦ value expected for open water. However, samples with conformity values
as high as ~0.25 also appear to be associated with divergent phase values; these may also affect
algorithm development.
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Breakpoint analysis was used to identify the Conformity value at which data quality diverges. This
was carried out using segmented regression, using all the samples remaining after the spatial variability
constraint. The respective breakpoints were at Conformity values of 0.176 (LowNoise), 0.212 (LowRes)
and 0.211 (MR50). The higher noise floor of the LowNoise mode resulted in fewer samples exhibiting
low data quality, as expected. To ensure high quality data, a Conformity threshold of >0.2 (mean for
three modes) was used. This is supported by the analysis of [20]. The Conformity threshold removed 19
samples from the LowNoise mose, 32 from the LowRes mode, and 31 from the MR50 mode.

2.3. Final Data Set

There was a very limited number of high-wind speed samples: only three samples (in each mode)
were >17.8 m/s, and these did not have a sufficient incidence angle distribution. Therefore, these
samples were removed, and analysis and model development were limited to wind speeds ≤18 m/s.

The final data set contained between 435 and 446 samples, depending on RCM mode (Table 3).
Stratified random selection during sampling was used to ensure that the desired incidence angle ranges
and wind speed ranges were sufficiently represented. The justification for the incidence angle ranges
and wind speed ranges is outlined in [14].

Table 3. Summary of samples; numbers are approximate (mean of three modes) as they vary somewhat
with mode: LowNoise (n = 446), LowRes (n = 435) and MR50 (n = 436).

Wind Speed/Inc. Angle 19◦–29◦ 30◦–39◦ 40◦–49◦

0–3.3 m/s 22 17 4
3.4–5.4 m/s 27 34 18
5.5–7.9 m/s 54 55 21

8.0–13.8 m/s 55 55 29
13.9–18 m/s 15 24 11

2.4. CMOD Models

Two CMOD models were used in this study: CMOD-IFR2 [1] and CMOD5n [2]. Relative
comparisons were made with σ0

VV, σ0
HH (using the polarization ratio (PR) of [5]), and the four CP

parameters related to CMOD (σ0
RV, σ0

RH, σ0
RL, SV0); the derivation for the CP parameters are described

in [14]:
σ0

RV ≈ 0.5 CMOD (2)

σ0
RH ≈ 0.5 CMOD/PR (3)

σ0
RL ≈ 0.25(CMOD + CMOD/PR) + 0.5

√
CMOD2/PR (4)

SV0 ≈ 0.5(CMOD + CMOD/PR) + CrossPol (5)

where CrossPol is modelled based only on wind speed following [5].
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Noise reduction was used in order to compare observed backscatter with CMOD5n-modelled
values because CMOD5n was developed with noise subtracted. Both the RCM simulator mode nominal
noise floor and the original Rdarasat-2 FQ noise floor were subtracted from the observed backscatter.
A further 3 dB was subtracted to account for the noise floor pattern of FQ images, which was lower
towards the centre of an image [14]. No RCM simulator or RADARSAT-2 FQ noise reduction was used
for CMOD-IFR2, as it appeared that no noise subtraction was used during its development; only the
3 dB noise floor pattern value was subtracted.

2.5. Wind Speed Retrieval

Wind speed retrieval was performed by inverting the backscatter models. This was accomplished
by beginning at two extreme wind speeds (low and high), then incrementing or decrementing the
wind speed (by 0.01 m/s) until an observed parameter value was reached. Both the incrementing and
decrementing methods must converge at a similar value (within 1 m/s) for a retrieval to occur. The
difference between the two methods is usually ≤0.03 m/s. The resulting retrieval is the average of the
incrementing and decrementing results.

If the difference between the two methods is >1 m/s, this indicates that the model does not exhibit
a monotonic relationship with wind speed. This can result in the retrieval of two significantly different
wind speeds, and thus in a lack of convergence. No retrieval occurs in such cases.

Wind speed retrievals < 0 m/s or > 18 m/s occasionally occurred, even though the data set was
restricted to values ≤ 18 m/s. This was due the incomplete statistical representation of the model and
the stochastic nature of the data. We omitted retrievals < 0 m/s and > 20 m/s.

2.6. Wind Speed Accuracy Assessment

Wind speed accuracy assessment was done by comparing the parameter-modelled wind speed
with the buoy-measured wind speed. This was assessed using statistical measures: Spearman’s
correlation, Root-Mean-Square Error (RMSE), slope (and intercept), and overall bias.

3. Results

3.1. CMOD Assessment

The association of observed backscatter with CMOD-IFR2- and CMOD5n-modelled σ0
RV, σ0

RH,
σ0

RL and SV0 provided similar statistics to σ0
VV and σ0

HH (Figure 5, Table 4). The Spearman correlations
for CMOD-IFR2 were ~0.96 and the RSE values were ~1.78; slopes were ~0.96 and biases were generally
negative, except for σ0

RH. For CMOD5n, the Spearman correlations were ~0.95 and the RSE values
were ~2.29; slopes were ~1.02 and biases were generally positive, except for σ0

RH and σ0
RL.

Table 4. Association of observed backscatter with CMOD-IFR2- and CMOD5n-modelled backscatter
for RCM-simulated LowNoise data (n = 446).

Parameter Spearman’s ρ RSE (dB) Intercept Slope Bias

CMOD−IFR2 σ0
VV 0.96 1.79 −0.60 0.98 −0.42

σ0
HH 0.97 1.82 −0.57 0.97 −0.16
σ0

RV 0.96 1.74 −0.91 0.95 −0.14
σ0

RH 0.97 1.76 −1.18 0.91 0.26
σ0

RL 0.96 1.81 −0.53 1.00 −0.49
SV0 0.96 1.74 −0.78 0.94 −0.04

CMOD5n σ0
VV 0.94 2.17 −0.25 0.97 0.11

σ0
HH 0.96 2.31 0.63 1.04 0.03
σ0

RV 0.94 2.21 0.02 1.00 0.07
σ0

RH 0.96 2.69 1.74 1.11 −0.20
σ0

RL 0.95 2.26 0.23 1.03 −0.13
SV0 0.95 2.07 −0.37 0.94 0.46
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LowNoise data, n = 446 buoy measurements: a,b) σ0

VV, c,d) σ0
RV, e,f) SV0. Spearman’s ρ is indicated.
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3.2. Wind Speed Retrieval

CMOD-related parameters have dependencies with incidence angle, wind speed, and wind
direction. Therefore, the use of these models for wind speed retrieval necessitates a priori knowledge of
wind direction. Buoy measurements are the source of wind direction for the wind speed retrieval tests.

The model comparison focused on the RMSE and slope statistics, because together, they described
most of the models’ efficacy (Table 5). When averaging all the parameters, the lowest RMSE values
occurred in the MR50 mode, and the best slopes were also in the MR50 mode. When averaging each
parameter across the three modes, CMOD5n-SV0 had the lowest RMSE, followed by CMOD5n-σ0

VV
and CMOD5n-σ0

RV (Figure 6). CMOD5n-σ0
RH also seemed to perform relatively well at high wind

speeds; however, its overall variability was greater.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 15 

 

Table 4. Association of observed backscatter with CMOD-IFR2- and CMOD5n-modelled backscatter 
for RCM-simulated LowNoise data (n = 446). 

 Parameter Spearman’s ρ  RSE (dB) Intercept Slope Bias 
CMOD−IFR2 σ0VV 0.96 1.79 −0.60 0.98 −0.42 

 σ0HH 0.97 1.82 −0.57 0.97 −0.16 
 σ0RV 0.96 1.74 −0.91 0.95 −0.14 
 σ0RH 0.97 1.76 −1.18 0.91 0.26 
 σ0RL 0.96 1.81 −0.53 1.00 −0.49 
 SV0 0.96 1.74 −0.78 0.94 −0.04 

CMOD5n σ0VV 0.94 2.17 −0.25 0.97 0.11 
 σ0HH 0.96 2.31 0.63 1.04 0.03 
 σ0RV 0.94 2.21 0.02 1.00 0.07 
 σ0RH 0.96 2.69 1.74 1.11 −0.20 
 σ0RL 0.95 2.26 0.23 1.03 −0.13 
 SV0 0.95 2.07 −0.37 0.94 0.46 

 

 
Figure 6. Wind speed retrievals with (a) CMOD5n-SV0, (b) CMOD5n-σ0VV, (c) CMOD5n-σ0RV and (c) 
CMOD5n-σ0RH, versus buoy wind speed measurements for the MR50 mode, n = 424. 

Figure 6. Wind speed retrievals with (a) CMOD5n-SV0, (b) CMOD5n-σ0
VV, (c) CMOD5n-σ0

RV and (d)
CMOD5n-σ0

RH, versus buoy wind speed measurements for the MR50 mode, n = 424.



Remote Sens. 2019, 11, 1682 10 of 15

Table 5. Wind retrieval accuracies for the C-band models (CMOD). The green cells indicate the best
three values for RMSE and slope in each RCM mode.

RMSE (m/s) Slope

Parameter CMOD-IFR2 CMOD5n CMOD-IFR2 CMOD5n

LowNoise
σ0

VV 2.51 2.17 0.70 0.65
σ0

HH 2.54 2.37 0.75 0.75
σ0

RV 2.50 2.24 0.69 0.67
σ0

RH 2.58 2.49 0.74 0.79
σ0

RL 2.49 2.25 0.71 0.68
SV0 2.50 2.19 0.71 0.68

LowRes
σ0

VV 2.40 2.26 0.76 0.72
σ0

HH 2.42 2.44 0.81 0.81
σ0

RV 2.40 2.35 0.75 0.75
σ0

RH 2.52 2.62 0.80 0.84
σ0

RL 2.42 2.35 0.77 0.75
SV0 2.38 2.22 0.76 0.74

MR50
σ0

VV 2.25 2.22 0.76 0.73
σ0

HH 2.31 2.36 0.81 0.81
σ0

RV 2.26 2.20 0.75 0.74
σ0

RH 2.37 2.51 0.79 0.84
σ0

RL 2.28 2.27 0.78 0.75
SV0 2.25 2.13 0.77 0.75

3.3. RCM SAR Wind Case Studies

Three image-based case studies illustrate the applications of RCM CP and linear wind retrieval models.
Case 1 illustrates retrievals within an FQ image for a small incidence angle (Figure 7). The small

extent of the FQ images (~25 × 25 km) limits wind speeds to a narrow range of values. Therefore, the
colour scale is relative to the range of the wind speeds retrieved for the image. Wind direction input to
the model comes from the buoy data located within the image (buoy 44141).Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 15 
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a RADARSAT-2 FQ3 image for 23 October 2010. The black point is the location of buoy 44141. The
projection is Lambert Conformal Conic, Canada WGS84.
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The original image was a RADARSAT-2 FQ3 image (incidence angle 20.9◦–22.9◦). The first eight
pixels along the near-range side of the original image were affected by a filter artifact caused by the
simulator and were thus removed prior to wind retrieval. The image was resampled to a 1 km pixel
spacing. The wind speed retrieval model used was CMOD-IFR2-σ0

RV. The resulting image was
trimmed to avoid stepped edges. The related buoy wind speed was 15 m/s from a relative wind
direction of 206◦.

Operational wind speed retrieval at the NSW programme primarily use wide-swath RCM data, in
either linear or CP modes. Cases 2 and 3 in Figure 8 illustrate CMOD-IFR2-σ0

VV retrievals for full swath
MR50 data with a 20 m pixel spacing. These data were simulated from RADARSAT-2 ScanSAR-Narrow
data. Wind direction input to the model used Regional Deterministic Prediction System data with a
~10 km spacing [26]. Case 2 represents a gradual gradient in the wind field (Figure 8a), and Case 3 a
complex wind field (Figure 8b).
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Figure 8. CMOD-IFR2-σ0
VV wind speed retrievals by the NSW system using simulated RCM MR50

data, for (a) 18 August 2014 and (b) 10 October 2018, based on RADARSAT-2 VV SAR data (c,d),
respectively. The red outlines are the RCM MR50 mode swath width. Wind arrows are 10 km Regional
Deterministic Prediction System data. The tan colour is a land mask.

4. Discussion

The strong correlations between simulated RCM backscatter and CMOD-modelled backscatter
(based on SAR image incidence angle, and buoy wind speed and direction) provide evidence that
both CMOD-IFR2- and CMOD5n-modelled parameters are appropriate for SAR wind speed retrieval
within operations such as the NSW system (Table 4). CMOD-IFR2-modelled backscatter is generally
more biased than CMOD5n-modelled backscatter, and the biases are more negative; these observations
are consistent with previous comparisons [2]. Of the CP parameters, σ0

RV exhibited consistently good
statistics, with relatively low RSE values, slopes near 1, and low absolute biases for both models.
These are comparable with the results for σ0

VV. Given the general similarity in the correlation values
between the linear and CP parameters, the analysis supports the use of CP parameters in lieu of linear
parameters, should only CP parameters be available.
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The wind speed retrievals exhibited a general overestimation at low wind speeds and
underestimation at high wind speeds (Figure 6), leading to slope values <1 (Table 5). For the
CP parameters, this was most prevalent for σ0

RV and least prevalent for σ0
RH, with σ0

RL, exhibiting
a compromise between the two. Overall, CMOD5n-SV0 had the lowest RMSE values in the MR50
and LowRes modes and was only bested by CMOD5n-σ0

VV in the LowNoise mode. The skill of
CMOD5n-SV0 was likely the result of its cross-polarized component, which compensated somewhat
for the wind speed underestimation of the co-polarized components at high wind speeds. The
cross-polarized contribution can likely be improved by using a more nuanced model than the Vachon
and Wolfe [5] model used in this study. This may make the CMOD5n-SV0 retrieval even better. The
similarity in slope values between CMOD-IFR2 and CMOD5n was the result of appropriate handling of
the noise values: minimal noise reduction in the case of CMOD-IFR2 and significant noise reduction in
the case of CMOD5n. Once RCM mode noise values are known, following launch and commissioning,
mode-specific noise reduction analysis will be needed to obtain robust retrievals.

All model results were within the accuracy range reported for SAR wind retrieval: between 1.5
and 2.7 m/s [5,6,27–29]. Although CMOD5n models usually had better RMSE values than CMOD-IFR2
models, the mean difference across all parameters and modes was only 0.1 m/s. These results provide
additional evidence that CMOD-IFR2- and CMOD5n-modelled CP parameters can be used with
confidence, instead of CMOD-σ0

VV models, when only CP data are available.
Although the accuracies reported in this study were adequate, they did not achieve RMSE <2 m/s.

A number of factors that may have caused the somewhat reduced accuracy, including (1) the temporal
mismatch between SAR acquisition and buoy wind speed measurement, (2) the buoy wind direction
measurements may not have always been representative of the 3 × 3 km sample area, (3) the addition
of noise by the simulator, and subsequent noise reduction, may have added error, and (4) the use of a
relatively simple retrieval technique. Higher accuracy can likely be achieved with more sophisticated
retrieval schemes; however, the relative accuracy between the linear and CP parameters was of interest
in this study. Once actual RCM data are available, greater effort will be devoted to increasing the
retrieval accuracy.

The wind speed retrieval at the buoy location (buoy 44141) in Case 1 (Figure 7) was underestimated
(11.6 m/s versus a buoy measurement of 15.0 m/s). However, the wind speed gradient in the image
was quite strong and the 12-minute temporal mismatch between the buoy measurements and the SAR
acquisition can account for this discrepancy. The greater prevalence of higher wind speed retrievals
along the near-range edge (left side), and to a lesser degree, the far-range edge, may be representative
of the actual wind pattern. However, this may also be due to the noise floor pattern of RADARSAT-2
FQ scenes, which was higher at the near- and far-range edges. Furthermore, on the near-range side,
there may also have been remnant filter artifact effects. Further research is needed to isolate the actual
cause(s). However, the retrieval in Figure 7 is solely illustrative of a retrieval within the small areal
extent (25 × 25 km) of a RADARSAT-2 FQ image, and does not reflect the scale of the operational
systems, which are not constrained by such small swath widths. The operational swath width images
shown in Figure 8 illustrate retrievals with the RCM MR50 mode (350 km wide); these are able to
resolve complex wind fields and provide retrievals in convoluted coastlines over large geographic
extents. Nevertheless, noise effects are likely to be a limiting factor and must be carefully considered
once actual RCM data become available.

5. Conclusions

In this study, a set of 504 RADARSAT-2 FQ images was used to simulate RCM image modes,
in order to sample CP parameters over meteorological buoy locations on the West and East coasts
of Canada. Three RCM modes were simulated: Low Noise, Low Resolution 100 m, and Medium
Resolution 50 m. These samples were used to evaluate the efficacy of CMOD-related CP (CMOD-CP)
parameters (σ0

RV, σ0
RH, σ0

RL and SV0) for wind speed retrieval, using CMOD-IFR2 and CMOD5n.
CMOD-CP accuracy was compared to CMOD results for σ0

VV and σ0
HH.
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To ensure a high-quality data set, a data quality threshold was established using the CP parameters
Conformity and RVRH phase difference. A Conformity threshold value of 0.2 was obtained via break-point
analysis, and found to be reasonably consistent for the three RCM modes considered.

Modelled CMOD-CP backscatter was found to be highly correlated with simulated RCM CP
backscatter. Both CMOD-IFR2 and CMOD5n were suitable for generating CMOD-CP parameters,
should linear parameters be unavailable, as will be the case with RCM CP data.

The wind retrieval accuracies of CMOD-SV0 and CMOD-σ0
RV were as good as, or better than,

the accuracy of CMOD-σ0
VV. This applied to both CMOD-IFR2 and CMOD5n. CMOD5n-SV0 was

the best CMOD-CP parameter, with accuracy values of 2.13 m/s to 2.22 m/s, depending on the RCM
mode; the Medium Resolution 50 m mode had the best accuracy. Therefore, CMOD-CP parameters,
and CMOD5n-SV0 and CMOD5n-σ0

RV, in particular, can be substituted for CMOD-σ0
VV when linear

data are unavailable.
This study provides significant results for marine surface wind speed retrieval using RCM data,

and for the transition of the operational NSW system from RADARSAT-2 to RCM SAR data. The effect
of noise is a controlling factor for marine surface wind retrievals. A careful reanalysis must be done
when RCM is launched to assess the actual noise floors. However, the relative errors should remain
similar. RCM’s three satellites, in addition to the existing RADARSAT-2, Sentinel-1A and Sentinel-1B,
will provide spatial and temporal coverage that will foster new research and development in marine
surface wind field estimation. After the launch of RCM, a study will be carried out with actual RCM
SAR data to further evaluate the potential of the CP parameters.
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Abbreviations

Abbreviation Description
CMOD C-band model
CMOD-CP CMOD-related CP parameters
CP Compact Polarimetry
CTLR Circular-Transmit Linear-Receive
dB Decibel
ECCC Environment and Climate Change Canada
FQ Fine-Quad RADARSAT-2 mode
HH Horizontal-transmit Horizontal-receive
HV, VH Horizontal-transmit Vertical-receive, or vice versa
LowNoise Low Noise RCM mode
LowRes Low resolution RCM mode
MR50 Medium Resolution 50 m RCM mode
NESZ Noise Equivalent Sigma Zero
NSW National SAR Winds
PR Polarization Ratio
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RCM RADARSAT Constellation Mission
RMSE Root-Mean-Square Error
ROI Region Of Interest
RR, RL Right-circular-transmit Right- or Left-circular-receive
RSE Residual Standard Error
RV, RH Right-circular-transmit Vertical- or Horizontal-receive
SAR Synthetic Aperture Radar
σ0 Sigma-naught backscatter
SV0 Stokes Vector 0 (first Stokes vector)
VV Vertical-transmit Vertical-receive

References

1. Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by
high-resolution scatterometry. J. Geophys. Res. Oceans 1998, 103, 7767–7786. [CrossRef]

2. Hersbach, H. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF.
J. Atmos. Ocean Technol. 2010, 27, 721–736. [CrossRef]

3. Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT
and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [CrossRef]

4. Vachon, P.W.; Dobson, F.W. Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH
polarization wind retrieval model. Can. J. Remote Sens. 2000, 26, 306–313. [CrossRef]

5. Vachon, P.W.; Wolfe, J. C-band cross-polarization wind speed retrieval. IEEE Geosci. Remote Sens. Lett. 2011,
8, 456–459. [CrossRef]

6. Komarov, S.; Komarov, A.; Zabeline, V. Marine wind speed retrieval from RADARSAT-2 dual-polarization
imagery. Can. J. Remote Sens. 2011, 37, 520–528. [CrossRef]

7. Zhang, B.; Perrie, W.; Vachon, P.W.; Li, X.; Pichel, W.G.; Guo, J.; He, Y. Ocean vector winds retrieval from
C-band fully polarimetric SAR measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4252–4261.
[CrossRef]

8. Kerbaol, V.; Chapron, B.; Vachon, P.W. Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes.
J. Geophys. Res. Oceans 1998, 103, 7833–7846. [CrossRef]

9. Grieco, G.; Lin, W.; Migliaccio, M.; Nirchio, F.; Portabella, M. Dependency of the Sentinel-1 azimuth
wavelength cut-off on significant wave height and wind speed. Int. J. Remote Sens. 2016, 37, 5086–5104.
[CrossRef]

10. Corcione, V.; Grieco, G.; Portabella, M.; Nunziata, F.; Migliaccio, M. A novel azimuth cutoff implementation
to retrieve sea surface wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens. 2018. [CrossRef]

11. Raney, R.K. Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404.
[CrossRef]

12. Charbonneau, F.J.; Brisco, B.; Raney, R.K.; McNairn, H.; Liu, C.; Vachon, P.W.; Shang, J.; DeAbreu, R.;
Champagne, C.; Merzouki, A.; et al. Compact polarimetry overview and applications assessment. Can. J.
Remote Sens. 2010, 36, S298–S315. [CrossRef]

13. Misra, T.; Rana, S.S.; Desai, N.M.; Dave, D.B.; Rajeevjyoti; Arora, R.K.; Rao, C.V.N.; Bakori, B.V.;
Neelakantan, R.; Vachchani, J.G. Synthetic aperture radar payload on-board RISAT-1: Configuration,
technology and performance. Curr. Sci. 2013, 446–461. [CrossRef]

14. Geldsetzer, T.; Charbonneau, F.; Arkett, M.; Zagon, T. Ocean wind study using simulated RCM
compact-polarimetry SAR. Can. J. Remote Sens. 2015, 41, 418–430. [CrossRef]

15. Denbina, M.; Collins, M.J. Wind speed estimation using C-band compact polarimetric SAR for wide swath
imaging modes. ISPRS J. Photogramm. Remote Sens. 2016, 113, 75–85. [CrossRef]

16. Sun, T.; Zhang, G.; Perrie, W.; Zhang, B.; Guan, C.; Khurshid, S.; Warner, K.; Sun, J. Ocean wind retrieval
models for RADARSAT constellation mission compact polarimetry SAR. Remote Sens. 2018, 10, 1938.
[CrossRef]

17. Zhang, G.; Perrie, W.; Zhang, B.; Khurshid, S.; Warner, K. Semi-empirical ocean surface model for
compact-polarimetry mode SAR of RADARSAT constellation mission. Remote Sens. Environ. 2018,
217, 52–60. [CrossRef]

http://dx.doi.org/10.1029/97JC01911
http://dx.doi.org/10.1175/2009JTECHO698.1
http://dx.doi.org/10.1109/JSTARS.2017.2681806
http://dx.doi.org/10.1080/07038992.2000.10874781
http://dx.doi.org/10.1109/LGRS.2010.2085417
http://dx.doi.org/10.5589/m11-063
http://dx.doi.org/10.1109/TGRS.2012.2194157
http://dx.doi.org/10.1029/97JC01579
http://dx.doi.org/10.1080/01431161.2016.1226525
http://dx.doi.org/10.1109/TGRS.2018.2883364
http://dx.doi.org/10.1109/TGRS.2007.895883
http://dx.doi.org/10.5589/m10-062
http://dx.doi.org/10.1109/URSIGASS.2014.6929612
http://dx.doi.org/10.1080/07038992.2015.1104635
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.002
http://dx.doi.org/10.3390/rs10121938
http://dx.doi.org/10.1016/j.rse.2018.08.006


Remote Sens. 2019, 11, 1682 15 of 15

18. Zhang, G.; Zhang, B.; Perrie, W.; He, Y.; Li, H.; Fang, H.; Khurshid, S.; Warner, K. C-Band right-circular
polarization ocean wind retrieval. IEEE Geosci. Remote Sens. Lett. 2019, March, 1–4. [CrossRef]

19. Zhang, B.; Perrie, W.; Li, X.; Pichel, G. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization
SAR image. Geophys. Res. Lett. 2011, 38. [CrossRef]

20. Geldsetzer, T.; van der Sanden, J.J. Identification of polarimetric and nonpolarimetric C-band SAR parameters
for application in the monitoring of lake ice freeze-up. Can. J. Remote Sens. 2013, 39, 263–275. [CrossRef]

21. RADARSAT Constellation Mission Technical Characteristics. Available online: http://www.asc-csa.gc.ca/

eng/satellites/radarsat/technical-features/characteristics.asp (accessed on 3 June 2019).
22. Truong-Loi, M.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E. Estimation of soil moisture and Faraday

rotation from bare surfaces using compact polarimetry. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3608–3615.
[CrossRef]

23. Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes:
Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [CrossRef]

24. Donelan, M.A.; Pierson, W.J., Jr. Radar scattering and equilibrium ranges in wind-generated waves with
application to scatterometry. J. Geophys. Res. Oceans 1987, 92, 4971–5029. [CrossRef]

25. Alpers, W.; Hühnerfuss, H. The damping of ocean waves by surface films: A new look at an old problem.
J. Geophys. Res. 1989, 94, 6251–6265. [CrossRef]

26. Regional Deterministic Prediction System (RDPS) in GRIB2 Format: 10 km. Available online: https:
//weather.gc.ca/grib/grib2_reg_10km_e.html (accessed on 3 June 2019).

27. Monaldo, F.M.; Thompson, D.R.; Beal, R.C.; Pichel, W.G.; Clemente-Colón, P. Comparison of SAR-derived
wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens. 2001,
39, 2587–2600. [CrossRef]

28. Portabella, M.; Stoffelen, A.; Johannessen, J.A. Toward an optimal inversion method for synthetic aperture
radar wind retrieval. J. Geophys. Res. Oceans 2002, 107. [CrossRef]

29. He, Y.; Perrie, W.; Zou, Q.; Vachon, P.W. A new wind vector algorithm for C-band SAR. IEEE Trans. Geosci.
Remote Sens. 2005, 43, 1453–1458. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2019.2898557
http://dx.doi.org/10.1029/2011GL047013
http://dx.doi.org/10.5589/m13-033
http://www.asc-csa.gc.ca/eng/satellites/radarsat/technical-features/characteristics.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/technical-features/characteristics.asp
http://dx.doi.org/10.1109/TGRS.2009.2031428
http://dx.doi.org/10.1175/1520-0442(2003)016&lt;0571:BPOASF&gt;2.0.CO;2
http://dx.doi.org/10.1029/JC092iC05p04971
http://dx.doi.org/10.1029/JC094iC05p06251
https://weather.gc.ca/grib/grib2_reg_10km_e.html
https://weather.gc.ca/grib/grib2_reg_10km_e.html
http://dx.doi.org/10.1109/36.974994
http://dx.doi.org/10.1029/2001JC000925
http://dx.doi.org/10.1109/TGRS.2005.848411
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Data 
	C-band SAR Data 
	Meteorological Data 

	SAR Data Quality 
	Spatial Variability 
	Low-Quality Backscatter 

	Final Data Set 
	CMOD Models 
	Wind Speed Retrieval 
	Wind Speed Accuracy Assessment 

	Results 
	CMOD Assessment 
	Wind Speed Retrieval 
	RCM SAR Wind Case Studies 

	Discussion 
	Conclusions 
	References

