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Abstract: Shoreline mapping using satellite remote sensing images has the advantages of large-scale
surveys and high efficiency. However, low spatial resolution, various geometric morphologies and
complex offshore environments prevent accurate positioning of the shoreline. This article proposes a
semi-global subpixel shoreline localization method that considers utilizing morphological control
points to divide the initial artificial shoreline into segments of relatively simple morphology and
analyzing the local intensity homogeneity to calculate the intensity integral error. Combined with
the segmentation-merge-fitting method, the algorithm determines the subpixel location accurately.
In experiments, we select five artificial shorelines with various geometric morphologies from Landsat
8 Operational Land Imager (OLI) data. The five subpixel artificial shoreline RMSE results lie in
the range of 3.02 m to 4.77 m, with line matching results varying from 2.51 m to 3.72 m. Thus,
it can be concluded that the proposed subpixel localization algorithm is effective and applicable to
artificial shoreline in various geometric morphologies and is robust to complex offshore environments,
to some extent.
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1. Introduction

The coastline, the boundary of land and sea, is one of the 27 most important land surface features,
and is vulnerable to natural processes such as coastal erosion/accretion, sea level changes and human
activities [1]. Coastline mapping is, therefore, becoming a fundamental work for coastal erosion
monitoring, coastal resource management, coastal environmental protection and coastal sustainable
development [2–6]. In reality, the shoreline accurate position is difficult to be localized, as the position
changes continually through time, because of cross-shore and alongshore sediment movement in the
littoral zone and especially because of the dynamic nature of water levels at the coastal boundary
(e.g., waves, tides, groundwater, storm surges, setups, runups, etc.) [7].

With the advantages of cost-effectiveness and large spatial and temporal scales, satellite remote
sensing data have been used widely for coastline mapping [1,7–9]. When shoreline changes are
sufficiently large (several tens of meters), satellite remote sensing can enable semi-automated
comparison of large-scale areas by providing a common protocol for all sites [10], thus making
comparisons consistent [11]. However, most observed shoreline changes are presently much smaller [12],
so that the coarse spatial resolution of pixels prevent the accurate determination of shoreline positions
when monitoring shoreline changes [13]. In this case, shoreline change observations can only be
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obtained by means of repeated in situ surveys, analysis of aerial or satellite high-resolution photographs
at several time intervals, or a combination of both approaches [11,14]. However, the expensive price and
shortage of historical data cannot meet large-scale shoreline supervision demands and the requirements
of shoreline change analysis. Thus, it is important to conduct research on how to accurately determine
the shoreline’s position from long-term sequences of medium spatial resolution satellite images.

In recent years, many articles have appeared on how to use super resolution mapping (SRM)
or subpixel edge localization (SEL) algorithms to extract the shoreline accurately. In these articles,
positioning accuracy is quantitatively evaluated by four indicators: mean absolute error (MAE),
standard deviation (SD), root mean squared error (RMSE), and line matching (LM) [15].

SRM has been applied to low- or medium-resolution satellite remote sensing images to overcome
the limitation of the image spatial resolution of the original image. Li et al. [16] proposed that SRM
can be categorized into two groups. The first group [17–20] is directly applied to satellite images
instead of the intermediate spectral unmixing result, whereas the second group [21–29] is expected
to improve the result’s accuracy when highly-accurate fraction images are available from a spectral
unmixing model [30]. According to shoreline SRM, Foody et al. [31] presented a soft fuzzy classification
utilizing a geostatistical approach to obtain accurate waterline locations. Muslim et al. [32] proposed a
localized soft classification approach to predict the shoreline location by a two-point histogram and
pixel-swapping algorithms. Muslim et al. [33] proposed a contouring and geostatistical method to
geographically position the coastline within image pixels. Zhang et al. [34] integrated a geostatistical
approach and the high-resolution spatial structure prior model to undertake super-resolution mapping,
which can properly illustrate the spatial distribution of the coastline at a fine scale. Comparisons [35]
have been made using three soft classification methods and three subpixel mapping methods for
coastal area classification.

SEL algorithms are often designed as follows: first, the initial position is obtained by edge
detection; second, a local edge model is adopted to refine the initial edge position to the subpixel
level. Subpixel detection techniques can be grouped into three categories [36]: moment-based;
least-squares-error-based; and interpolation-based. Concerned with subpixel shoreline localization,
Pardo-Pascual et al. [37] extracted subpixel shorelines utilizing local spatial structures from Landsat
TM and ETM+, where the RMSE obtained ranged from 4.69 to 5.47 m. Almonacid-Caballer et al. [38]
determined the annual mean shoreline subpixel position from Landsat images, and the extracted
shorelines were biased from the seaward direction by approximately 4–5 m. Qingxiang Liu [39]
presented a subpixel vector-based shoreline method to monitor shoreline changes at Narrabeen–Collaroy
Beach, Australia, over 29 years. The experimental results show that after the correction of tidal effects,
the RMSEs of annual mean shorelines are within 5.7 m. Pardo-Pascual et al. [40] evaluated the accuracy
of shoreline positions obtained from the infrared (IR) bands of Landsat 7, Landsat 8, and Sentinel-2
imagery on natural beaches, where the mean error reached 3.06 m (± 5.79 m) from Landsat 8 and
Sentinel-2 images.

In fact, there are different types and various geometric morphologies of shorelines in complex
offshore environments. From the point of view of different shoreline types, there are artificial shorelines
and natural shorelines. A shoreline may also be considered over a slightly longer timescale, such as
a tidal cycle, where the horizontal/vertical position of the shoreline could vary anywhere between
centimeters and tens of meters (or more), depending on the beach slope, tidal range, and prevailing
wave/weather conditions [7]. It is, therefore, more difficult and challenging to evaluate the shoreline
location accurately, especially natural shorelines.

From a geometric morphology point of view, shorelines include simple straight, quasi-straight,
and high curvature shorelines, or combinations of these. It is difficult for traditional subpixel
shoreline algorithms to determine various geometric morphological shoreline subpixel positions. Most
algorithms mentioned above obtain the most accurate shoreline position for simple straight shorelines,
but fail for high curvature shorelines in which the positional error increases [37].



Remote Sens. 2019, 11, 1779 3 of 25

Owing to the complex offshore environment, which includes suspended sediment, foam, different
land-cover types etc., there are many mixed pixels and noise along the shoreline. Thus, it is difficult
to find pure pixels along the natural or artificial shoreline for spectral unmixing, and the pure pixels
obtained by global spectral analysis may not represent shoreline local spectra finely. Meanwhile, these
conditions may also lead to difficulties in modeling the local edge for SEL algorithms.

Compared with a natural shoreline, an artificial shoreline is stable and its position is not affected
by tidal effects or other factors, thus the reference shoreline can be extracted from high-resolution
satellite images from different imaging times. Thus, artificial shorelines have the advantage of being
more easily validated than natural shorelines. In this study, we focus on how to determine the artificial
shoreline position accurately. In addition, we propose a method called the semi-global shoreline
subpixel localization (SGSSL) algorithm. The main thoughts underlying SGSSL are simplifying the
shoreline subpixel localization problem to a segmented shoreline subpixel fitting problem, expressing
a shoreline segment geometric morphology perfectly, and minimizing the intensity integral error in
local windows. To express various geometric morphological shorelines, we utilize multi-scale corner
points to divide the initial shoreline into relatively simpler shoreline segments. To prevent offshore
environment interference on subpixel localization, we analyze the water index intensity homogeneity
for designing local windows. In designed local windows, intensity integral errors are minimized to
obtain the subpixel shoreline positions. The entire method is dependent not only on shoreline geometric
morphology and global spectral features but also local window intensity analysis and segmented
shoreline geometric morphology. Thus, the proposed method is named semi-global subpixel shoreline
localization (SGSSL).

2. Study Areas & Datasets

2.1. Study Areas

With urbanized development, there are increasingly more artificial shorelines located along
Chinese coastal areas. Caofeidian Port and the Xiamen coastal area were selected as the study areas.
As shown in Figure 1a, the Caofeidian Port located at 118.5◦E, 39◦N, is adjacent to China’s Beijing
Tianjin Hebei urban agglomeration and is one of China’s important ore transportation ports. As shown
in Figure 1b, the Xiamen coastal area, located between 118◦E–118.5◦E and 24.35◦N–24.6◦N, is next to
the Taiwan Strait, and Xiamen is an important port for international economic and cultural exchange.
Five artificial shorelines of various geometric morphologies as experimental areas were chosen to
evaluate SGSSL, and their key characteristic parameters are listed in Table 1. The Gaofen-2 (GF-2)
satellite data is selected as our reference data. GF-2 is the first civil optical remote sensing satellite
independently developed by China with a spatial resolution better than 1 meter [41].

Our experiments verify the proposed algorithm from the following aspects. First, the subpixel
shoreline localization results are superimposed on the original data to evaluate the visual effect of
the proposed algorithm. Subsequently, compared with reference shoreline from GF-2, the four error
indicators of the subpixel shoreline are calculated to verify the correctness and adaptability of the
algorithm to different geometric morphology shorelines. Finally, the differences between the subpixel
shoreline length and the reference shoreline length are calculated, which could illustrate ability of the
proposed method to preserve details.
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Table 1. Key characteristics of the five experimental areas.

Experimental
Areas 1/2

Experimental
Area 3

Experimental
Areas 4/5

Location Caofeidian Port Caofeidian Port Xiamen coastal
area

Shoreline type artificial artificial artificial

Geometric morphology simple straight
combination of

quasi-straight and
curved shape

high
curvature/combination

of quasi-straight
and curved shape

Experimental
image

Data
Landsat-8 OLI

images
(Path 122, Row 033)

Landsat-8 OLI
images

(Path 122, Row 033)

Landsat-8 OLI
images

(Path 119, Row 043)

Date 04/25/2015 04/25/2015 10/13/2015

Resolution 15 m fusion image 15 m fusion image 15 m fusion image

Reference image

Data GF-2 image GF-2 image GF-2 image

Date 05/31/2015 05/31/2015 02/06/2015

Resolution 1 m fusion image 1 m fusion image 1 m fusion image

2.2. Data Pre-Processing

First, using the rational polynomial coefficient (RPC) of the GF-2 image, ortho-rectification of the
GF-2 multi-spectral (MS) data and panchromatic (PAN) data were performed separately.

Then, the Gram Schmidt [42] pan sharpening algorithm was used to fuse the MS data with the
PAN data; then, the spatial resolution of the Landsat 8 OLI fusion images was 15 m and that of the
GF-2 fusion images was 1 m.

The registration parameters were estimated by correspondence feature points that were selected
manually and by the polynomial model. The maximum registration error between the two fusion
images (15 m/pixel fused Landsat8 OLI image, 1 m/pixel fused GF-2 image) is less than 3 m. The
registration error will bring uncertainty to the accuracy assessment and is discussed in Section 5.1.

3. Materials and Methods

According to the main thoughts underlying SGSSL, the overall process is shown in Figure 2.
First, global spectral and geometric morphology analysis are conducted: the initial shoreline is
extracted using the Otsu [43] automatic threshold method from water index images; and geometric
morphology control points, abbreviated as morphology control points (MCPs), are extracted using
the multi-scale Harris algorithm [44]. The primary MCPs are utilized to divide the initial shoreline.
Then, semi-global analysis is performed by the segmentation-merge-fitting (SMF) method. In the SMF
process, the segmented shoreline subpixel location is determined by minimizing the intensity integral
error, finally obtaining a continuous subpixel shoreline vector.

In Section 3.1, an ideal image is taken as an example to illustrate the basic principle of SGSSL.
In Section 3.2, the challenges faced when the basic principle is applied to real satellite images are
explained. In Section 3.3, the method of conducting the global analysis for SGSSL is introduced,
including obtaining the initial shoreline position and extracting the MCPs. In Section 3.4, the process of
performing a semi-global shoreline analysis for SGSSL is proposed, including designing local windows
and details of the SMF processes.
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3.1. Basic Principles of Subpixel Shoreline Localization

The entire shoreline can be regarded as consisting of many shoreline segments. The proposed
subpixel shoreline localization algorithm is based on the following two assumptions:

Assumption 1: Any shoreline segment can be approximated by the polynomial function y = f (x).
Assumption 2: The shoreline segment divides the image into two homogeneous regions with

intensities A and B (A < B).
The ideal binary image is built in the image coordinate system O-xy, as shown in Figure 3, in which

there is one shoreline segment.
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Figure 3. Ideal binary image. A shoreline segment separates the image into two homogeneous regions
with intensities A and B. The ith shoreline point locates in the yellow box, and m1, m2 are the pixels’
number above or under the shoreline segment in the local window; SAi

∗ and SBi
∗ are areas covered by

A or B in the local window.

A local window (the purple box in Figure 3) centered on the ith shoreline pixel (xi,yi) is set, so the
sum of intensity in the ith window is:

SUMi =

yi+m1∑
j=yi−m2

Gxi, j (i=1,2,...n), (1)
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where (xi,yi) is the current shoreline point’s pixel coordinate, G the pixel’s intensity, n the number
of pixels in the shoreline segment, and m1, m2 are the pixels’ number above or under the shoreline
csegment in the local window, respectively. According to Assumption 2, the integral of the intensity in
the ith window is:

SUMi
∗ = A× SAi

∗ + B× SBi
∗
(i=1,2,...n), (2)

where SAi
∗ and SBi

∗ are areas covered by A or B in the local window, respectively:

SAi
∗ + SBi

∗= m1 + m2 + 1. (3)

According to Assumption 1, as the cubic function can express more geometric details and has
superior morphological adaptability, the shoreline segment’s polynomial function is:

f (x) = a + bx + cx2 + dx3. (4)

So, the area under the shoreline segment in the ith local window (SAi
∗) can be calculated as:

SAi
∗ =

∫ xi+1/2
xi−1/2

(
a + bx + cx2 + dx3 + 0.5 + m2 − yi

)
dx

= 0.5 + m2 − yi + a + xib +
(
xi

2 + 1
12

)
c +

(
xi

3 + 1
4 xi

)
d (i=1,2,...n)

, (5)

With the above derivations, the intensity integral of the ith local window’s (SUMi
*) can be

described as:

SUMi
∗ = A× SAi

∗ + B× SBi
∗

= (1/2 + m2 − yi)A + (1/2 + m1 + yi)B + (A− B)a + (A− B)xib
+(A− B)

(
xi

2 + 1/12
)
c + (A− B)

(
xi

3 + xi/4
)
d

, (6)

In ideal conditions,
SUMi = SUMi

∗

yi+m1∑
j=yi−m2

Gxi, j = (1/2 + m2 − yi)A + (1/2 + m1 + yi)B + (A− B)a + (A− B)xib + (A− B)
(
xi

2 + 1/12
)
c + (A− B)

(
xi

3 + xi/4
)
d , (7)

A similar idea has been researched by Trujillo-Pino et al. [36] for medical and indoor images,
in which a subpixel edge location algorithm based on the partial area effect (PAE) was proposed.
However, in that work, the algorithm neither considered the various geometric morphologies of the
real shoreline/contour nor proved its application to actual satellite remote sensing images.

To solve Equation (7), the equation can be represented simply as:

piβ = qi (i = 1, 2, . . . n) (8)

where:
pi = (A− B)[ 1 xi xi

2 + 1/12 xi
3 + xi/4 ]

β =
[

a b c d
]T

Ri = (1/2+m2 − yi)A + (1/2+m1 + yi)B
qi = SUMi −Ri.
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The following non-homogeneous equation can be obtained:
p11 p12 p13 p14

p21 p22 p23 p24
...

...
...

...
pn1 pn2 pn3 pn4

β =


q1

q2
...

qn


(i=1,2,...n)

β =
(
PTP

)−1
PTQ

(9)

The intensity integral error in the ith local window (ei) is defined as:

ei =
∣∣∣SUMi − SUM∗i

∣∣∣ = ∣∣∣qi − piβ
∣∣∣
(i=1,2,...n) (10)

By the least squares methodology, the cubic polynomial coefficients vector β = (a,b,c,d)T can
be solved with intensity integral error minimization, and then the shoreline subpixel localization
is determined.

3.2. Challenges for Subpixel Shoreline Localization in Remote Sensing Images

In Section 3.1, the derivation was based on the ideal image in Figure 3. When dealing with
real shorelines, as Figure 4a shows, the initial shoreline (colored in purple) with various geometric
morphologies does not satisfy Assumption 1. Therefore, the initial shoreline should be divided into
segments of relatively simple morphologies, which can be approximated by the cubic polynomial
function. For a shoreline to be divided appropriately, the multi-scale Harris corner algorithm [44]
should be utilized to extract the MCPs.
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When processing actual satellite images, the water index result is affected by sensor imaging
noise and the interaction between adjacent classes. Meanwhile, heterogeneous pixels exist in the local
window with intensity changes (Figure 4b, green box). Then, Assumption 2 is not satisfied, which
leads to the intensity integral error expressed in Equation (10) not equaling zero.

It is therefore necessary to design the local window to guarantee the intensity integral error
approaches zero to ensure the performance of SGSSL correctly.
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3.3. Shoreline Global Analysis

3.3.1. Determination of Initial Shoreline Position

To make full use of satellite image global information, we will conduct a shoreline global analysis,
which includes a spectral feature analysis and geometric morphology analysis to determine the initial
shoreline position at the pixel level and extract appropriate MCPs.

3.3.2. Determination Initial Shoreline Position

Before extracting MCPs, we should determine the initial pixel level shoreline from the original
fused satellite images. This procedure includes the following steps. First, the water index image is
calculated. The modified normalized difference water index (MNDWI) [45] is preferred, and the reason
why MNDWI is preferred is discussed in Section 5.1. Subsequently, the Otsu method [43] is applied to
the water index image, in which an optimal threshold T* is selected automatically by maximizing the
inter-class discrepancy. Third, using the optimal threshold value T*, the water index image is divided
into a binary image, which includes non-water and water classes. A series of points representing the
pixel level shoreline is obtained.

3.3.3. MCP Extraction

To satisfy Assumption 1, the initial pixel level shoreline with various geometric morphologies
should be divided into segments with relatively simple morphology by MCPs. As multi-scale Harris
detection [44] is sensitive to corners, MCPs are extracted by multi-scale Harris detection [44] from a
binarized water index image:

M = µ(x, σI, σD) = σ2
Dg(σI) ⊗

[
L2

x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

]
, (11)

where σI is the integral scale, g(σI) the Gaussian convolution kernel with integral scale σI, and La the
derivative computed in the a direction. The multi-scale Harris cornerness measure combines the trace
and the determinant of the scale-adapted second moment matrix:

cornerness = det(µ(X, σI, σD)) − αtrace2(µ(X, σI, σD)) (12)

where α is an empirical coefficient, α ∈ (0.04, 0.06). It should be noted that decreasing the value of α
will increase the cornerness. Since our aim is to extract MCPs from the water/non-water binary image,
the value of α can be set to 0.06 (the maximum empirical value). The local maximum of cornerness at
each scale determines the scales’ corner positions.

Second, each corner is verified depending on whether the Laplacian of Guassian (LOG) attains
the maximum at the scale, and the LoG values are calculated by:∣∣∣LoG (X, σn)

∣∣∣ = σ2
n

∣∣∣Lxx(X, σn) + Lyy(X, σn)
∣∣∣ , (13)

Comparing the LoG values with the adjacent two scale space images at the same position, if:

F(x, σn) > F(x, σl), l ∈ {n− 1, n + 1}, (14)

these corners would be reserved as multi-scale Harris corners.
Considering shoreline geometric morphological changes can be classified as dramatic variations

and minor variations, the MCPs should include primary MCPs and supplementary MCPs. As the
primary MCPs locate the positions at which the shoreline’s morphology changes drastically, theoretically,
the multi-scale Harris corner points can be directly viewed as primary MCPs. However, during the
process of building multi-scale image pyramids, images would be blurred and image structure details
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could be missed. Therefore, the initial scale’s corner subset is also preserved from multi-scale Harris
detection [44] as supplementary MCPs. The partial area effect (PAE) subpixel algorithm [36] should be
conducted for MCP positions to obtain their accurate subpixel position. These two types of MCPs and
subpixel positions will be used in the SMF process.

3.4. Shoreline Semi-Global Analysis

To utilize the semi-global information of a shoreline segment correctly, we conduct shoreline
semi-global analysis, which includes a designed local window and the SMF method to determine the
local homogeneous intensity and obtain proper shoreline segments for subpixel localization.

3.4.1. Designing Local Window

In this subsection, we introduce how to design the local window [36] and estimate homogeneous
intensities A and B [36] to ensure that the intensity integral error ei in Equation (10) is close to zero,
so as to satisfy Assumption 2.

First, the maximum gradient direction of each shoreline point is calculated, and for every shoreline
point, Sobel edge detection is utilized to calculate the gradient (Gx, Gy). Then, the larger gradient is
preserved as the points’ maximum gradient direction.

It should be noted that the shoreline segment consists of numerous points. Therefore, if shoreline
points of a certain maximum gradient direction (Gx or Gy) have a larger proportion in the segment,
then that direction will be used as the main direction for the segment.

If the main direction for the segment is Gy, the (m1+m2+1) ×1 local window is designed, and the
cubic polynomial function of a segment is:

y = a + bx + cx2 + dx3. (15)

If the main direction for the segment is Gx, the 1×(m1+m2+1) window is designed and the cubic
polynomial function of segment is:

x = a + by + cy2 + dy3. (16)

Second, since the homogeneous pixels’ intensities are stable, they have a minimum gradient in the
local window’s direction. The algorithm adjusts m1, m2 to find the minimum gradient pixels (pixels in
the blue box in Figure 4b). Once we find the minimum gradient pixels, their water index intensities are
used to estimate the intensity A, B and their coordinates are used to set the window size [36].

In the ith window, the intensities Ai and Bi are the farthest pixels from the shoreline. To ensure
the correlation between pixels in the local window, we limit m1 ≤ 4, m2 ≤ 4.

Ai = Gi, j−m2 , Bi = Gi, j+m1 , (17)

Since there is a correlation between the intensities of adjacent points in the shoreline segment,
to ensure that the homogeneity of A or B further prevents isolated noises, according to the adjacent
shoreline points’ relative positions, we determine slope k of this shoreline point and calculate the more
homogeneous intensity estimation values Ai

* and Bi
*:or

Ai
∗ =

Ai+Ai+1
2 , Bi

∗ = Bi+Bi−1
2 , i f k ≥ 0

Ai
∗ = Ai+Ai−1

2 , Bi
∗ =

Bi+Bi+1
2 , i f k < 0

, (18)

where k =
yi+1−yi
xi+1−xi

, (xi,yi) and (xi+1,yi+1) are the adjacent shoreline points’ coordinates.
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3.4.2. Segmentation-Merge-Fitting Method

The MCPs determined in Section 3.3.2 include the primary MCPs and the supplementary
MCPs, which have been derived from multi-scale Harris corners to represent the major and minor
shoreline geometric morphologies. However, utilizing them all without any selection it will lead to
over-segmented shorelines and a high computational burden for the subpixel localization algorithm.
The segmentation-merge-fitting (SMF) method is proposed to obtain appropriate shoreline segments
adaptively, according to the residuals of the least-squares process and the main directions of the
adjacent shoreline segments. In the SMF, the least-squares fitting process and the subpixel positions of
the MCPs are added as constraints (Equation (19)) to connect adjacent shoreline segments and obtain
the continuous subpixel shoreline. {

ymcpi − f (xmcpi) = 0,
ymcp j − f (xmcp j) = 0,

(19)

The detailed steps are shown in Figure 5.
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The detailed explanation for all of the above steps follows:
0. Preparatory work: Build the shoreline morphological control point set (SMCPS) and add all

primary MCPs to the SMCPS; set the threshold t of the least squares residual to 0.08.
1. Segmentation: Utilize the SMCPS to divide shoreline to obtain shoreline segments and calculate

the main direction of each shoreline segment.
2. Merge: Judge whether the main direction of the current shoreline segment is the same as the

main direction of the adjacent segment:
If TRUE, merge these two adjacent segments and go to the Step 3 ‘Delete Point’; else, go to Step 4.
3. Delete point: Remove the current morphological control point connecting the two adjacent

segments from the SMCPS.
4. Fitting: Polynomial coefficients are calculated by the constrained least squares methodology,

and the least squares residuals are computed for each point. If there are four shoreline points adjacent
to the shoreline MCP, the residuals of which are larger than the threshold t, this shoreline MCP should
be removed from the least square constraints. Then, the current shoreline segment must be recalculated.
Else, go to Step 5.

5. Judge the ‘re-segmentation’ condition: If, in a shoreline segment, shoreline points with
least-squares residuals larger than the threshold t continuously appear and these points’ number is
larger than 4, the shoreline segment must be re-segmented. Go to Step 6; else go to Step 7.

6. Add Point:
1O If the segment is a merged shoreline in Step 2, the MCPs removed in Step 2 should be restored

in the SMCPS.
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2O If the segment is not a merged shoreline in Step 2, the supplementary MCPs located in the
segment are added into the SMCPS.

3O If there are no supplementary MCPs in the segment, the point with the largest least squares
residual should be selected and added into the SMCPS.

Update the SMCPS, and go to Step 1.
7. Traversing: If all shoreline segments have been traversed, keep the subpixel results and go to

Step 8; else, select the next shoreline segment and go to Step 2.
8. End: If the SMCPS is constant during this traversal, end the loop and go to Step 9; else, go to

the Step 2 and re-traverse.
9. Output: The subpixel shoreline results are output.

3.5. Verification Method

The reference shorelines are extracted manually from GF-2 fusion images, which satisfy the
standards of the “Technical Regulations for Satellite Remote Sensing Survey on Island & Coastal
Zones” [14]. Using the SGSSL algorithm, a subpixel shoreline can be obtained. The reference shoreline
and the shoreline determined by SGSSL can be compared.

We choose four error indicators to assess the SGSSL performance: the MAE, RMSE, SD and LM.
The MAE (Equation (20)) is obtained by averaging all distance errors, because all the errors are obtained
by calculating the absolute value of the distance from the SGSSL shoreline to the GF-2 reference
shoreline. The MAE and RMSE describe the SGSSL result bias towards the reference shoreline. The SD
indicates the variability around the MAE (Equation (21)):

MAE =

∑N
i =1|di|

N
(20)

SD =

√√√
1
N

N∑
i=1

(di −MAE)2 (21)

RMSE =

√∑N
i=1 d2

i
N

(22)

where |di| is the distance from the subpixel shoreline point to the reference shoreline.
As Figure 6 shows, for the calculation of the LM [15], S∆ is the sum of the area enclosed by

the SGSSL shoreline and the reference shoreline, and Lreal is the length of the reference shoreline.
In Figure 6, the black dotted line represents the reference shoreline and the solid line represents the
shoreline determined by SGSSL.

LM =
S∆

Lreal
(23)

where S∆ = S1 + S2 + S3 + S4.
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4. Results

Here, we evaluate the results of the proposed SGSSL in terms of visual comparison, quantitative
assessment, and shoreline detail preservation ability.

4.1. Visual Comparison

There are various geometric morphological shorelines in the selected coastal experimental areas.
In the first two experimental areas (Figure 7a,e), the initial shoreline colored in purple has been
extracted by Otsu [43] in Figure 7b,f. Owing to the fact that shoreline morphology is simple, MCPs
labeled by yellow crosses can divide the initial shoreline into relatively simpler segments (Figure 7b,f).
The proposed SGSSL algorithm determines the subpixel shoreline, which is represented by the red line
in Figure 7c,g and which coincides with the real shoreline well. Although in the local zoomed image
(Figure 7d,h) the initial pixel level shoreline points in yellow are located slightly landward, the final
subpixel shoreline results (red line) still locate accurately.

In the latter three experimental areas (Figure 7i,m,q), the shoreline morphology is relatively
complex, and the initial shoreline in purple has also been extracted by Otsu [43] in Figure 7 j,n,r. With
the SMF method, we keep the selected MCPs labeled with yellow crosses (Figure 7j,n,r) and using
them, the shoreline can be divided into relatively simpler segments to be perfectly expressed by red
line in Figure 7k,o,s. Although in the local zoomed image (Figure 7l,p,t) the initial pixel level shoreline
points in yellow are located slightly landward, the final subpixel shoreline results also coincide with
the actual position well.
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Figure 7. Visual comparison in experimental areas 1–5. Original images (R, band5; G, band4;B, band3)
appear in the first column [(a,e,i,m,q)]; final shoreline morphological control point set (SMCPS) and
segmented shorelines are in the second column [(b,f,j,n,r)]; semi-global subpixel shoreline localization
(SGSSL) results in the third column [(c,g,k,o,s)]; and magnified images of the third column in the fourth
column [(d,h,l,p,t)].

4.2. Quantitative Assessments

Table 2 summarizes the quantitative assessment results. In all experimental areas, the MAE at
the subpixel level lies in the range of 2.48–3.34 m with an average of 3.03 m; the RMSE varies from
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3.02–4.77 m with an average of 3.80 m; while the LM lies in the range of 2.51–3.72 m, with an average
of 3.03 m. All quantitative assessments prove that the proposed SGSSL is reliable.

Table 2. The quantitative assessments in experimental areas.

Experimental Area MAE (m) SD (m) RMSE (m) LM (m)

1 2.94 1.93 3.51 2.87
2 3.34 2.16 3.97 3.30
3 3.67 3.06 4.77 3.72
4 2.72 2.61 3.77 2.77
5 2.48 1.72 3.02 2.51

It should be noted that these assessment results may be affected by registration errors. How the
registration errors influence the quantitative assessments is discussed in Section 5.1.

4.3. Shoreline Detail Preservation Ability

Some shoreline details observed in the high-resolution images would be blurred or missed in
low-resolution images. Hence, it is necessary to verify the detail preservation ability of SGSSL for
shoreline details by comparing the lengths between subpixel results and high-resolution images.

In Table 3, the length difference ratios between subpixel results and reference shorelines are
calculated, and the maximum value is less than 2.5%, which indicates that the proposed SGSSL can
effectively preserve shoreline details.

Table 3. Subpixel shoreline length and reference shoreline length.

Experimental Area 1 2 3 4 5

Subpixel Shoreline Length (m) 3206.22 3000.19 2739.38 6324.41 3572.84
Reference Shoreline Length (m) 3205.25 2994.95 2675.57 6236.77 3571.32

Length Difference Ratio 0.03% 0.17% 2.33% 1.39% 0.04%

5. Discussion

5.1. Registration Error Influence on Quantitative Assessment

There are unavoidable registration errors when the accuracy assessment is conducted between the
reference shorelines and SGSSL results. The registration errors will bring uncertainty to the quantitative
assessment of SGSSL.

For objective analysis, three typical shoreline geometric morphologies are chosen for the registration
error effect analysis.

First, the upper part of experimental area 1 is chosen. Because the upper part of experimental
area 1 is a nearly vertical shoreline, the displacement of the horizontal direction will bring an apparent
influence to the final MAE. Using 1 m as the displacement interval (0.067 pixels for Landsat8 OLI data)
and with the maximum displacement limited to 5 m, the registration error influence in the horizontal
direction across the range of [–5 m, +5 m] can be calculated and observed in Figure 8a,b.

Second, the middle part of experimental area 5 is chosen. Because the middle part of experimental
area 5 is a nearly horizontal shoreline, displacement in the vertical direction will bring an apparent
effect on the final MAE. Using 1 m as the displacement interval (0.067 pixels for Landsat8 OLI data) and
with the maximum displacement limited to 5 m, the registration error effect at the vertical direction in
the range of [–5 m, +5 m] can be calculated and observed in Figure 8c,d.
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Figure 8. Mean absolute error (MAE) with registration errors compensated illustration (a) vertical
shoreline, (b) registration error compensated results for the vertical shoreline, (c) horizontal shoreline
and (d) registration error compensated results for the horizontal shoreline.

As Figure 8a,b show, displacements in the right direction will compensate for the registration
error influence on the MAE. The MAE without registration error compensation is 5.73 m, which is
2.59 m larger than the entire experimental area 1 MAE result. With registration error compensation in
the right direction, the MAE decreases. At a displacement of 3 m in the right direction, the MAE is
2.73 m; at the same direction of displacement of 4 m, the MAE reaches its most accurate value, 1.75 m.
After that, MAE results cannot be compensated.

As Figure 8c,d show, for the middle part of experimental area 5, displacement will also have an
effect on the final MAE. The MAE is 1.69 m without any registration error compensation, which is
smaller by 0.59 m than the entire MAE of experimental area 5. With displacements in the up or down
directions, the worse MAE will be obtained. Additionally, at a displacement of 3 m in the up direction,
the MAE is 3.39 m; at the displacement 3 m in the down direction, the MAE is 2.9 m.

Third, experimental area 4 is chosen. Because the artificial shoreline in experimental area 4 is
almost circular, the registration error will not influence the SGSSL result in certain directions. So the
reference shoreline is displaced in four different directions, namely up, down, left and right, with 1 m
of the displacement interval (0.067 pixels for Landsat8 OLI data), and the maximum displacement is
limited to 5 m. In Figure 9, the MAE results of SGSSL with different displacements are shown.

From Figure 9, it can be observed that the MAE becomes more accurate in the 270◦ direction,
namely in the down direction. The MAE first becomes most accurate at 2.60 m, which is the minimum
MAE. The MAE then increases to 2.63 m in the 270◦ direction with a displacement of 2 m, and increases
to 2.77 m in the same direction with a displacement of 3 m. For other directions, the MAE results are
not better. The worst subpixel accuracy appears in the direction of 90◦, the up direction, and the worst
MAE is 3.74 m.
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From the above analysis, it can be concluded that the registration error brings uncertainty to
the SGSSL quantitative assessment results. With the same registration method, different geometric
morphological shorelines are influenced by registration errors to different extents. The lowest accuracy
of the MAE appears at the vertical shoreline, and the MAE reaches at 5.73 m, which is still better than
0.5 pixels (15 m of the fused Landsat8 OLI image). Hence, the registration error with a maximum value
of less than 3 m is acceptable for SGSSL.

5.2. Water Index

To select the water index with optimal positioning accuracy, the positioning errors of the SGSSL
algorithm under three different water indices—the normalized difference water index (NDWI) [46],
MNDWI, and automated water extraction index (AWEI) [47]—are calculated and compared.

As Figure 10 shows, the accuracies of shoreline positioning under three different water indices
have all reached the subpixel level, indicating that the proposed algorithm is applicable to all water
indices. It is obvious that the MNDWI is best in the selected experimental areas. One of the reasons
is that the short-wave infrared 1 (SWIR1,1566.50 – 1651.22 nm) band is used in the calculation of the
MNDWI, and the most accurate and robust sub-pixel shoreline positioning results are often obtained
using the SWIR1 band [40]. Therefore, this paper prefers to use the MNDWI to enhance the differences
between land and water, but, considering complicated offshore environments and data sources, in other
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5.3. Intensity Integral Error Analysis

Owing to sensor imaging noise and the interaction between adjacent classes, the intensity integral
error in the ith local window is probably not equal to zero.

As Figure 11 shows, the initial shoreline pixel coordinate is (xi,yi), and the red line is the real
shoreline that crosses the pixel (xi,yi). The subpixel level coordinates of the point in the real shoreline
are (x0,y0), (x0∈[xi−1/2, xi+1/2], y0∈[yi−1/2, yi+1/2]). Once the local window size is determined by
finding the minimum gradient pixels along the window direction, the window sizes m1, m2 and the
homogeneous intensity Ai, Bi are all obtained. At shoreline point (x0,y0), the intensity profile is drawn
along the window direction, presuming the direction lies in the y axes in Figure 11.

If the shoreline segment can be expressed by a cubic polynomial. S1,S2,S3 are areas enclosed by
the intensity profile and the y axis (window direction),

S1(x0) = Ai × ( f (x0) − (yi − 0.5−m2))

S3(x0) + S4(x0) = Bi × ((yi + 0.5 + m1) − f (x0))
, (24)
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Therefore, the sum of the ith local window intensity is:

SUMi =

yi+m1∑
j=yi−m2

Gxi, j =

∫ xi+1/2

xi−1/2
(S1(x0) + S2(x0) + S3(x0))dx0, (25)

where, in the local window, G is the pixel intensity. The approximation of the sum of the ith local
window intensity is:

SUMi
∗ = Ai × SAi

∗ + Bi × SBi
∗

= Ai ×
∫ xi+1/2

xi−1/2 ( f (x0) − (yi − 0.5−m2))dx0

+Bi ×
∫ xi+1/2

xi−1/2 ((yi + 0.5 + m1) − f (x0))dx0

=
∫ xi+1/2

xi−1/2 (S1(x0) + S3(x0) + S4(x0))dx0

, (26)

Thus, in the local window the intensity integral error ei can be described as:

ei = |SUMi − SUMi
∗
| =

∣∣∣∣∣∣
∫ xi+1/2

xi−1/2
(S2(x0) − S4(x0))dx0

∣∣∣∣∣∣ (27)

where the intensity integral error ei is related to three factors: the window size (m1+m2+1),
the homogeneous intensity difference (B-A), and the intensity slope at the shoreline point (x0,y0).
Regarding the three factors, the intensity slope is determined by image information. The other two
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factors are determined by appropriate homogeneous intensity estimation A, B and the window’s size
(m1+m2+1), which can ensure that the ei approaches zero.

Furthermore, to verify the correctness of the local window design method and to verify whether
or not the intensity integral error ei approaches zero, the relative error δ is calculated within the local
window in Landsat OLI8 MNDWI images.

δ =
SUMi

∗
− SUMi

SUMi
. (28)

The shorelines extracted manually from GF-2 images are viewed as the reference shorelines.
In Equation (28), SUMi

* is the integral of intensity in the ith window and calculated according to
Equation (6). The reference shoreline coordinates are used to calculate S*

Ai and S*
Bi. SUMi is the sum

of intensity in the ith window and calculated according to Equation (3).
As Figure 12a shows, 6743 local windows covering different offshore environments over different

periods of time in the study areas were sampled. The relative error distribution is shown in Figure 12b,
the mean of δ is 0.0174 and the variance is 0.0278. The probability of δ less than 5% is 87.57%, and that
of δ being less than 10% is 99.85%. Thus, it can be concluded that in most local windows, the relative
error δ can be seen as a small number, whose absolute value approaches zero.
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5.4. Segmentation-Merge-Fitting Process

As mentioned in Section 3.4.2, the initial shoreline may not be perfectly expressed by the cubic
polynomial function. In Figure 13a, it can be observed that the initial shoreline could be divided into
relatively simpler segments by primary MCPs (colored blue). As shown in Figure 13b,c (a magnified
version of Figure 13b), after using primary MCPs and constrained least squares solving, one shoreline
segment containing many shoreline points of larger fitting residuals still exists (marked by the yellow
box in Figure 13b), which must be segmented further. In Figure 13d, all supplementary MCPs in green
would be used to re-segment this problematic segment. Then, as the Figure 13e shows, some segments
would be merged. Finally, appropriate shoreline segments that perfectly agree with polynomial
functions are obtained using the SMF method, and are named seg1–seg3 in Figure 13f, the final SMCPS
selected from MCPs are labeled by yellow crosses. As shown in Figure 13g,h (a magnified version of
Figure 13g), the final subpixel positioning results coincide well with the real shoreline position.
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Figure 13. SMF process. (a) Initial shoreline and primary MCPs; (b) one problematic shoreline segment
in yellow box; (c) the magnified version of green box in (b); (d) supplementary MCPs in the problematic
shoreline segment; (e) the merged MCPs in the problematic shoreline segment; (f) the final shoreline
morphological control point set; (g) the fitted subpixel shoreline segments; (h) the magnified version of
green box in (g).

Table 4 lists the subpixel assessment indicators (MAE and SD) of shoreline segments marked by
yellow boxes in Figure 13 during the SMF process. For the initial longer shoreline segment divided by
primary MCP, the MAE and SD of subpixel localization results are 10.53 m and 12.11 m, respectively,
which indicate that the initial subpixel localization result is problematic. With the SMF process, the final
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selected MCPs distribute appropriately along the shoreline and three correct segments are preserved.
In addition, the subpixel localization MAE results lie in the range of 2.12 m to 3.22 m and the SD results
from 1.84 m to 2.20 m.

Table 4. Quantitative assessments of subpixel shoreline segments.

Error Indicator Primary
Shoreline

Final Shoreline Segments Result

Total Seg 1 Seg 2 Seg 3

MAE (m) 10.53 2.58 3.22 2.12 2.66
SD (m) 12.11 1.84 2.20 1.26 1.97

5.5. Robustness to Complex Offshore Environment and Salt-And-Pepper Noises

In Figure 14, due to the complex offshore environment, for example, the existence of suspended
sediment (Figure 14a), the local window is difficult to obtain, which will directly affect the subpixel
localization accuracy.
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Figure 14. Semi-global subpixel results in complex offshore environment. (a) three categories of
suspended sediments in the original image (R, band5; G, band4; B, band3); (b) three categories of
suspended sediments in the MNDWI image.

In Figure 14a,b, suspended sediment situations can be grouped into three different categories
depending on the concentration extent and accumulated area.

When the suspended sediment concentration is low (the regions in the blue boxes in Figure 14),
the influence will be suppressed or even eliminated in MNDWI images, regardless of the size of the
accumulated area.

When the suspended sediment concentration is high and the accumulated area is small with a
width less than four pixels, this region (green boxes in Figure 14) will be regarded as the intensity
variation region in the local window. In this situation, with the local window design method,
the minimum gradient pixels would be found in water, whose intensity is homogeneous.

When the suspended sediment concentration is high and the accumulated area is large (in yellow
boxes in Figure 14), with the local window design method, the homogeneous pixels will be selected
directly in the suspended sediment region.

In conclusion, regarding the above three forms of suspended sediments, the homogeneous
intensity estimations are dealt with effectively and will not reduce the subpixel localization accuracy.

Table 5 summarizes the MAE results of the selected local suspended sediment region, which lie
in the range of 0.96–3.55 m, proving that our proposed SGSSL is robust to suspended sediments to
some degree.
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Table 5. MAE of local regions in suspended sediment environments.

low Concentration
High Concentration

Large Area Small Area

MAE (m) 0.96 2.28 3.55

Furthermore, we evaluate the proposed SGSSL performance under the influence of salt-and-pepper
noises. In Figure 15, the yellow points are determined by the PAE subpixel algorithm proposed by
Trujillo-Pino [36], and the red lines are determined from SGSSL, where the white and black points are
salt-and-pepper noise. With increasing noise percentage, the PAE subpixel results become increasingly
problematic. However, the results determined by SGSSL are always accurate and are not affected by
increasing salt-and-pepper noise.
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As shown in Figure 16, the positioning accuracy results of the two methods under different
percentages of salt-and-pepper noise are quantitatively evaluated. With increasing noise percentage,
it is obvious that the SGSSL algorithm exhibits better accuracy, proving that the proposed SGSSL is
robust to salt-and-pepper noise to some extent.
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6. Conclusions

With the merits of efficient, large-scale investigational capability, satellite remote sensing shoreline
mapping plays an important role in the monitoring of coastal resource management. However, low
spatial resolution, various shoreline geometric morphologies, and complex offshore environments
prevent the accurate positioning of shorelines. In this study, therefore, we proposed a semi-global
subpixel shoreline localization (SGSSL) algorithm for accurately determining artificial shorelines.

The proposed method utilizes not only global spectral information and shoreline morphological
features, but also local water index homogeneity features and simplifies the entire shoreline subpixel
positioning problem with a segmented shoreline fitting solution. The method considers the following
factors: (1) MCPs are utilized to divide the initial shoreline into segments of relatively simple geometric
morphology; (2) minimum gradient pixels are found to design a local window; (3) the intensity integral
error is minimized in every local window within a segment to initially determine the subpixel location;
and (4) the SMF process is presented to obtain the shoreline segments that can be perfectly expressed
by a cubic polynomial function and to determine the final subpixel results.

In experiments, five artificial shorelines of various geometric morphologies from Landsat 8
OLI images were selected. The accuracy of the proposed method was evaluated using four error
indicators: the MAE, SD, RMSE, and LM. The subpixel RMSE results are all less than 5 m, ranging
from 3.02–4.77 m; and the LM results are all less than 4 m, ranging from 2.51–3.72 m, proving that
subpixel shoreline accuracy obtained by the proposed method is stable over different experimental
areas with various morphologies.

It can be concluded that the proposed algorithm is applicable to the various geometric morphologies
of artificial shorelines and is robust to complex offshore environments and salt-and-pepper noise,
to some extent.

Limitations of the proposed algorithm include the fact that its performance heavily depends
on MCP distribution. Although the SMF process helps in obtaining optimum segments, in some
experimental images a lack of MCPs will lead to irreparable subpixel accuracy loss. Another issue
worth mentioning is that the proposed algorithm relies on the initial pixel level shoreline, which is the
local window determination basis. More adaptation thresholding methodology should be applied to
guarantee the initial pixel level shoreline’s correct position. Finally, the proposed SGSSL has only been
verified on a selected artificial shoreline, other types of shoreline, for example, sandy shorelines and
mangrove shorelines, have not been evaluated.

In future research, the performance of the method should be improved by a more flexible MCP
extraction algorithm and a more reliable initial shoreline determination method. In terms of application
prospects, the method will be combined with multi-source satellite images or ground truth data in the
continuous monitoring of shoreline dynamics, coastal terrain mapping and other related research topics.
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