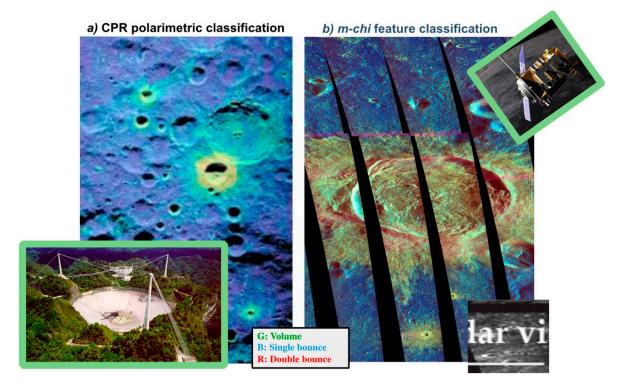
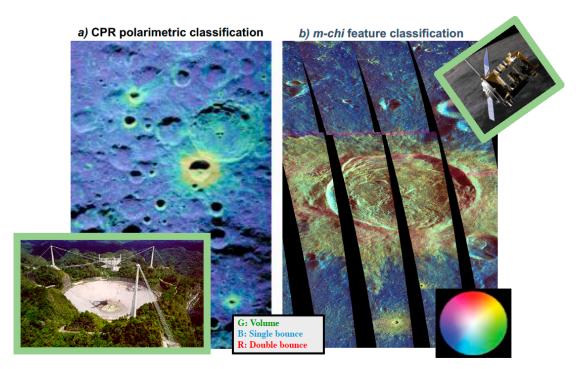


Erratum Erratum: Raney, R.K. Hybrid Dual-Polarization Synthetic Aperture Radar. *Remote Sens.* 2019, *11*, 1521


Remote Sensing Editorial Office

Remote Sensing Editorial Office, MDPI, St. Alban-Anlage 66, 4052 Basel, Switzerland; remotesensing@mdpi.com


Received: 26 July 2019; Accepted: 29 July 2019; Published: 31 July 2019

Due to a technical problem, Figure 1 in [1] was not published properly, i.e., color wheel in Figure 1 [1] was distorted. Remote Sensing Editorial Office would like to update Figure 1 as follows: Original Version:

Figure 1. Examples of lunar impact crater polarimetric images as seen from the Arecibo Observatory (**a**) and an m-chi classification of hybrid dual-polarized data (**b**) from the Mini-RF radar aboard LRO (adapted from Figure 5 of [24]). The color wheel helps to retrieve meaning from the transition colors between primaries. In this example, yellow indicates dominant contributions from both random and double-bounce backscatter.

Figure 1. Examples of lunar impact crater polarimetric images as seen from the Arecibo Observatory (a) and an m-chi classification of hybrid dual-polarized data (b) from the Mini-RF radar aboard LRO (adapted from Figure 5 of [24]). The color wheel helps to retrieve meaning from the transition colors between primaries. In this example, yellow indicates dominant contributions from both random and double-bounce backscatter.

This update does not change any scientific result of the paper. We would like to apologize for any inconvenience caused to the readers by this change.

Reference

1. Raney, R.K. Hybrid Dual-Polarization Synthetic Aperture Radar. Remote Sens. 2019, 11, 1521. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).