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Abstract: Due to the sparsity of hyperspectral images, the dictionary learning framework has been
applied in hyperspectral endmember extraction. However, current endmember extraction methods
based on dictionary learning are not robust enough in noisy environments. To solve this problem,
this paper proposes a novel endmember extraction approach based on online robust dictionary
learning, termed EEORDL. Because of the large scale of the hyperspectral image (HSI) data, an online
scheme is introduced to reduce the computational time of dictionary learning. In the proposed
algorithm, a new form of the objective function is introduced into the dictionary learning process
to improve the robustness for noisy HSI data. The experimental results, conducted with both
synthetic and real-world hyperspectral datasets, illustrate that the proposed EEORDL outperforms
the state-of-the-art approaches under different signal-to-noise ratio (SNR) conditions, especially for
high-level noise.

Keywords: online dictionary learning; robust functions; endmember extraction; spectral unmixing;
hyperspectral images (HSI)

1. Introduction

Due to the complexity of natural ground spectra and the low spatial resolution of the remote-sensing
hyperspectral imaging process, pixels of these images are by nature, mixtures of several spectral
signatures known as endmembers [1]. This mixing is problematic for the downstream processing
of hyperspectral images (HSIs) and for applying such methods in real-world scenarios, including
target detection [2], classification [3] and change detection [4]. In many application scenarios such
as target detection, a certain level of subpixel accuracy is required in order to improve the image
processing output, which means that unmixing the HSIs is crucial. In most cases, the endmember
spectral signatures of HSIs are not known in advance. Thus, the hyperspectral unmixing process
must be performed in an unsupervised way, which usually involves two steps, namely, endmember
extraction and abundance estimation. Endmember extraction is the key step in the decomposition
of mixed pixels, that is, the determination of the basic features of the mixed pixels in the observed
image, the result of which greatly affects the accuracy of the estimation of the abundance coefficients.
Therefore, endmember extraction is of great significance in spectral unmixing.

There are two types of mainstream spectral mixing analysis models—the linear mixing model
(LMM) and the nonlinear mixing model (NLMM) [5–7]. The LMM regards each mixed pixel as a linear
combination of several endmember spectral signatures weighted by their corresponding abundance
coefficients. Considering the physical meaning of the abundance coefficient, the value of abundance
should satisfy non-negativity. Because of its simplicity and effectiveness, the LMM is more widely
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used in endmember extraction than the NLMM [8,9]. In this paper, it is assumed that the mixed pixels
follow the LMM.

Endmember extraction for HSIs has become a popular research topic in recent years, and numerous
algorithms have been proposed to crack the barriers in HSI processing. Existing algorithms can be
classified into two groups: pure pixel-based algorithms and non-pure pixel-based algorithms.

The methods based on the pure pixel hypothesis assume that the image contains at least one pure
pixel corresponding to each endmember and look for the vertexes of the convex simple volume as the
endmembers that constitute a given image. Representative algorithms include the pixel purity index
(PPI) [10], vertex component Analysis (VCA) [11], N-FINDR [12], the automatic target generation
process (ATGP) [13], the simplex growing algorithm (SGA) [14] and so on. These kinds of algorithms
generally have low computational complexity and high efficiency, and can obtain good endmember
extraction results when the observed image satisfies the pure pixel assumption. However, in a real
situation, the pure pixel assumption is often difficult to satisfy.

Many endmember extraction algorithms based on the non-pure pixel hypothesis have been
proposed for highly mixed HSI data. Convex geometry-based algorithms are most widely used;
these are based on the assumption that a convex simplex contains all observation data points and
finds the endmembers through minimizing the simplex volume. Representative algorithms include
minimum volume simplex analysis (MVSA) [15], minimum volume constrained non-negative matrix
factorization (MVC-NMF) [16], robust collaborative NMF (RCoNMF) [17] and so on. Also, because
the results obtained by a single convex model are often not good enough, the piecewise convex
multiple-model endmember detection algorithm (PCOMMEND) was proposed in [18]. The model,
which is based on the multiple convex region assumption is better able to describe the spectral
variability in HSIs.

In addition to the aforementioned convex geometry-based endmember extraction algorithms,
methods based on dictionary learning have received extensive attention from scholars worldwide
because of the similarity of the basic mathematical models. Now, dictionary learning-based endmember
extraction approaches have become a popular research topic. A spectral unmixing method based
on sparse dictionary learning is proposed in [19], which obtains good results in the observed image
reconstruction. However, this approach requires quite a high signal to noise ratio (SNR). With regard
to dictionary learning theory, an endmember extraction algorithm based on online dictionary learning
(EEODL) has been proposed [20]. This method reduces the computational complexity by using the
online scheme and it performs well with highly mixed images, although it is still somewhat sensitive
to noise. Thus, an untied denoising autoencoder with sparsity (uDAS) was proposed in [21] to solve
the spectral unmixing problem, which improves the adaptability to noise to a certain extent.

In a real scenario, most hyperspectral endmember extraction methods are still challenged by
high-level noise and complex noise environments, which decreases the accuracy of endmember
estimation. At present, robust functions are rarely used in the objective functions of existing dictionary
learning-based endmember extraction algorithms, thus the endmember estimation process is easily
disturbed by noise and it is hard to obtain satisfactory results in terms of accurate endmember extraction
under the condition of a low SNR.

In order to adapt to the noisy environment, in this paper, a hyperspectral endmember extraction
approach based on online robust dictionary learning, termed EEORDL, is proposed, to robustly extract
the endmembers under the condition of a high noise level. In this method, we perform online updating
for the objective function with l1 data fitting the term to enhance the robustness of the endmember
extraction process in relation to noise.

The main contributions of the proposed endmember extraction algorithm in this paper are
as follows:

1. We model the hyperspectral endmember extraction problem as an online robust dictionary
learning problem, and use more robust l1 loss as the fidelity term in the objective function to
improve the adaptability to noise.
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2. Considering the non-smoothness of the objective function in the proposed EEORDL,
we minimize several quadratic objective functions iteratively to solve the online robust dictionary
learning problem.

The content of this paper is divided into four parts. The first part briefly introduces the background
and current status of the research topic. The second part explains the methodology of the proposed
EEORDL. In the third part, the experiment results of both synthetic and real-world data are presented
and analyzed. The final part concludes the paper.

2. Materials and Methods

2.1. Sparse Model of Hyperspectral Endmember Extraction

According to the linear mixture model, the observed HSI X can be expressed as

X = DA + N (1)

where X = [x1, x2, . . . , xn] ∈ RL×n represents the observed image and each column xi ∈ RL represents a
pixel spectral vector consisting of L spectral bands; D = [d1, d2, . . . , dk] ∈ RL×k denotes the endmember
matrix and each column represents one of k endmembers; A = [a1, a2, . . . , an] ∈ Rk×n represents the
corresponding abundance coefficient matrix with each column denoting the mixing coefficient of the
endmembers for one mixed pixel; and N ∈ RL×n represents noise in the HSI data. According to the
physical meaning of the endmember and the abundance coefficient, we have D ≥ 0 and A ≥ 0.

With the theory of dictionary learning and sparse representation, we can regard the endmember
matrix D in Equation (1) as a dictionary learned from the observed HSI. Each dictionary atom in D
represents an endmember that is latent in the observed HSI data. Considering the material distribution
in real scenarios, a single mixed pixel is usually composed of a limited number of endmembers
(i.e., two or three), though the number of spectral signatures in the entire HSI data is larger. Therefore,
here the dictionary D contains all the extracted endmembers in the image, but for each pixel only a
subset of D is utilized during the unmixing process. Obviously, this subset varies for different pixels.
Thus, the abundance coefficient vector ai corresponding to each pixel in the observed HSI data can be
regarded as sparse. So, we can regard the abundance coefficient matrix as the sparse codes according
to the theory of dictionary learning. Thus, we can model the endmember extraction problem as a
dictionary learning process.

Due to the above analysis, existing endmember extraction approaches based on dictionary learning
usually obtain the endmembers by optimizing the following objective function of the least absolute
shrinkage and selection operator (LASSO) form [11,13]:

min
ai≥0,D≥0

∑
i

1
2
‖xi −Dai‖

2
2 + λ‖ai‖1 (2)

where the quadratic norm is the data fitting term; the l1 norm represents a sparsity penalty; and λ > 0
is the regularization parameter that determines the weights of the former two items.

2.2. Endmember Extraction Based on Online Robust Dictionary Learning

In real situations, the HSI data often contain noise and outliers. Obviously, the square data
fitting term used in Equation (2) is sensitive to noise and easily prone to large deviation. Thus, in this
paper, to enhance the robustness of the endmember extraction process in relation to noise, a more
robust l1 data fitting term is used in the objective function for the online updating in the process of
dictionary learning.
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Therefore, in the proposed EEORDL, the endmember matrix D can be obtained by solving the
following optimization problem:

min
ai≥0,D≥0

n∑
i=1

‖xi −Dai‖
1
1 + λ‖ai‖1. (3)

According to the analysis in [22,23], the robust fidelity term ‖xi −Dai‖
1
1 makes it difficult for data fitting

to be affected by noise.
In the proposed approach, Equation (3) is the objective function required to be solved in order

to extract the endmembers of the observed HSI data. Obviously, the optimization of Equation (3) is
generally non-convex. However, when one of the variables is known, the global optimal solution of
the other variable can be obtained. Thus, a direct way to perform the optimization in Equation (3)
is to solve one variable by assuming that the other is a constant, that is, alternately optimizing the
endmember matrix D and the abundance coefficient ai with regard to the pixel spectral vector xi.

Due to the large scale of the HSI data, in a typical scenario consisting of 100 channels and
100 × 100 pixels, we have L = 100 and n = 10000. Thus, the optimization in Equation (3) is extremely
heavy. In order to reduce the time used by dictionary learning, in this paper, the online scheme is
introduced into the proposed approach to solve the optimization problem in Equation (3). Unlike
batch dictionary learning algorithms, the main idea of the online scheme is to use a small number of
samples that are randomly selected from the observed image in each iteration. In dictionary learning,
endmember matrix D can be considered as a combination of statistical parameters for the observed
HSI data X, and the update of D does not require complete historical information. Thus, in the online
scheme, all elements in X do not need to be recorded and processed in each iteration. In this way,
the online scheme is more suitable for large-scale and dynamic data, and it can greatly improve the
computational efficiency and reduce memory consumption.

According to the principle of the aforementioned online dictionary learning, the steps of the
proposed endmember extraction approach can be summarized as follows. Firstly, we select a random
sequence of pixel spectral vectors from the observed HSI data, X, as the current training set. Next,
for the training set in the current cycle, the abundances are found and the current endmember matrix
is then updated. The proposed endmember extraction process is shown in Figure 1.
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Figure 1. The process of the proposed endmember extraction approach based on online robust
dictionary learning (EEORDL). HSI: hyperspectral image. M is the number of samples in a single scan,
N is the scan number in the image, L is the band number, h is the number of pixel spectral vectors used
per iteration, and k is the number of endmembers.
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In this paper, we performed the online updating for the objective function with the l1 norm data
fitting term. Due to the non-smooth l1 norm terms, solving the optimization problem of Equation (3) is
somewhat challenging.

The optimization of Equation (3) is a robust sparse coding problem with respect to the optimization
of the abundance coefficient ai. When the endmember matrix D is given, this robust sparse coding
problem can be formulated as

ai = arg min
ai≥0
‖xi −Dai‖

1
1 + λ‖ai‖1, i = 1, . . . , n (4)

Equation (4) represents an l1 measured and l1 regularized convex optimization. We solve the
optimization problem of Equation (4) with an equivalent l1 approximation robust sparse coding
scheme [24].

When the abundance matrix is known, we can obtain the endmember matrix D by minimizing
the function as

gt(D) =
1
t

t∑
η=1

‖Xη −DAη‖11 + λ‖Aη‖1 (5)

where t is the current iteration number, Xη is the training set consisting of h spectral vectors that are
randomly obtained from the pixel spectral matrix X, and the corresponding abundance matrix Aη is
already known. Thus, the second l1 norm term is constant here. Equation (5) is a standard l1 regression
problem, which lacks differentiability. Therefore, iterative reweighted least squares (IRLS) [25] are
utilized to optimize the minimization problem of Equation (5).

The j−th column of D is defined as d j. Considering the independence of the estimation of each d j,
without loss of generality, the corresponding optimization function can be represented as

d j = arg min
D( j,:)

1
h

h∑
i=1

∣∣∣∣xt
i j − d jat

i

∣∣∣∣, (6)

where d j ∈ R1×k, and xt
i j is the j−th element of the pixel spectral vector xt

i in the current training set Xt.
According to the theory of IRLS, Equation (6) can be converted to the following two problems:

d j = arg min
D( j,:)

1
h

h∑
i=1

ωt
i j

(
xt

i j − d jat
i

)2
(7)

ωt
i j =

1√(
xt

i j − d jat
i

)2
+ δ

(8)

where δ is a very small positive value. In this paper, δ is set to machine precision. Considering robust
statistical characteristics, the weighted squared term in Equation (7) is a reasonable approximation of
the l1-norm term in Equation (6). Then, we should minimize a quadratic objective function shown
in Equation (7) in each iteration. We can obtain the global optimum by taking the derivatives and
setting them to zero. Thus, we can represent the objective function of the optimization problem in
Equation (7) as

F
(
d j

)
=

h∑
i=1

ωt
i j

(
xt

i j − d jat
i

)2
(9)
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To obtain the derivative of Equation (9), we have

∂F
(
d j

)
∂d j

=
h∑

i=1

ωt
i jx

t
i j

(
at

i

)T
− d j·

h∑
i=1

ωt
i ja

t
i

(
at

i

)T
(10)

Then, we set Equation (10) to be zero, and obtain

h∑
i=1

ωt
i jx

t
i j

(
at

i

)T
= d j·

h∑
i=1

ωt
i ja

t
i

(
at

i

)T
. (11)

We cannot follow Equation (11) directly, since the optimized value of d j here is obtained only by
the training set in the current iteration. Because a fixed small size of the new training set is used to
update the dictionary at each iteration in the online scheme, we should take the statistical information
of historical data (the previous t− 1 training sets) into account. Therefore, we set

Mt
j = Mt−1

j +
h∑

i=1

ωt
i ja

t
i

(
at

i

)T
(12)

Ct
j = Ct−1

j +
h∑

i=1

ωt
i jx

t
i j

(
at

i

)T
(13)

M1
j =

h∑
i=1

ω1
i ja

1
i

(
a1

i

)T
(14)

C1
j =

h∑
i=1

ω1
i jx

1
i j

(
a1

i

)T
(15)

From Equations (12) and (13), we can find that the information for the current training set is stored

in
h∑

i=1
ωt

i ja
t
i

(
at

i

)T
and

h∑
i=1

ωt
i jx

t
i j

(
at

i

)T
.

Therefore, we can obtain d j in the following linear system:

Ct
j = d j·Mt

j. (16)

A conjugate gradient approach is used here to solve Equation (16), and Dt−1 in the previous iteration is
used as the initialization in the current iteration, termed a warm start. Since Mt

j is usually diagonally
dominant, reasonable initialization is helpful for the rapid convergence of the conjugate gradient update.

With the aforementioned analysis, the proposed EEORDL flow can now be obtained. First, a set
of pixel spectral vectors are randomly selected from the observed HSI data as the training set in the
current iteration. Then, for each training set, we perform the robust sparse coding first, and then update
the endmember matrix. The endmember matrix D can be finally obtained with iterative convergence.
Algorithm 1 shows the pseudo code for EEORDL.
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Algorithm 1: Endmember extraction based on online dictionary learning (EEORDL)

Input: observed HSI X ∈ RL×n, iterations T ∈ N,
the number of the pixel spectral vectors used per iteration h ∈ N
Output: endmember matrix D ∈ RL×k

1 Preprocessing: Estimate the number of endmembers k with HySime [26]
2 Initialization: Initialize the endmember matrix D0 ∈ RL×k with VCA;
3 Given D0, initialize the abundance matrix A0 ∈ Rk×n with nonnegative
least squares algorithm: A0 = argminA≥0||X−D0A0||

2
F

4 for t = 1 to T do
5 Draw randoml Xt =

[
xt

i , i = 1, . . . , h
]

from X
/* abundances update (robust sparse coding) */

6 for i = 1 to h do
7 at

i = arg min
at

i≥0
‖xt

i −Dat
i‖

1
1 + λ‖at

i‖1

8 end for
/* endmembers update */

9 repeat
10 for j = 1 to k do

11 Mt
j = Mt−1

j +
h∑

i=1
ωt

i ja
t
i

(
at

i

)T

12 Ct
j = Ct−1

j +
h∑

i=1
ωt

i jx
t
i j

(
at

i

)T

13 solve linear system Ct
j = d j·Mt

j
14 ωt

i j =
1√(

xt
i j−d jat

i

)2
+δ

,

15 end for
16 until convergence
17 end for
18 return endmember matrix D

3. Experiments and Results

We used both synthetic data and real-world data in experiments to verify the effectiveness and
competitiveness of the EEORDL proposed in this paper. The results were also compared with the current
representative, effective hyperspectral endmember extraction algorithms, and the performance of each
algorithm is comprehensively evaluated—both qualitatively and quantitatively. The experiments were
implemented with MATLAB R2018a on a laptop equipped with eight Intel Core i7-7700HQ CPU and
16 GB RAM.

Five existing methods were used for comparison. Among them, VCA is a classical pure
pixel-based approach and it is also the initialization method for the proposed EEORDL; PCOMMEND
is based on the multiple convex region assumption; MVC-NMF and R-CoNMF are non-negative
matrix factorization-based endmember generation algorithms; and EEODL is an online dictionary
learning-based method.

3.1. Evaluation Indexes

Performance indexes used to evaluate the quality of the extracted endmembers include spectral
angle distance (SAD) and spectral information divergence (SID).

SAD was used to measure the geometric feature difference between two spectral vectors, and can
be represented as

SAD = cos−1

 aT ^
a

‖a‖·‖
^
a‖

 (17)

where a is the true endmember signature and â is the estimated one.
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The information theoretic index, SID, reflects the variability of the spectral vectors based on the
probability of the difference of elements in two vectors, and can be expressed as

SID =D
(
a
∣∣∣∣∣^a )

+ D
(

^
a
∣∣∣∣∣a) (18)

where

D
(
a
∣∣∣∣∣^a )

=
∑

j

p j log
(p j

p̂ j

)
(19)

p j = a j/
∑

j

a j (20)

Overall performance metrics for unmixing methods mainly include root mean square error (RMSE)
and signal to reconstruction error (SRE) [27]. SRE considers the relation between the signal power and
the error power, and can be calculated as

SRE(dB) = 10 log10


E
[
‖X‖22

]
E

‖^
X−X‖

2

2



 (21)

3.2. Synthetic Data

The synthetic data discussed in this subsection are a representative dataset for hyperspectral
unmixing [27]. The dataset was generated by nine spectral signatures, containing 100 × 100 pixels.
The abundance coefficient is piecewise smooth and spatial homogenous; thus it resembles that in real
situations. Similar to the noise in real scenarios, correlated noise was used here. In the experiments,
the noise was obtained by applying a low pass filter on independent and identically distributed (i.i.d)
Gaussian noise, normalizing cut-off frequency at 5π/L. The algorithms were performed at SNRs of
15 dB, 20 dB, 25 dB, 30 dB, and 35 dB, respectively.

To investigate the performance of each algorithm, after the endmember extraction of all the
algorithms, the non-negative least squares algorithm was used to estimate the corresponding
abundances to reconstruct the observed image. By calculating the corresponding RMSE and SRE
values of different algorithms, the effects of their endmember extraction performance on the final
spectral unmixing were compared.

Table 1 reports the endmember extraction evaluation of different algorithms with the synthetic
data. Most approaches achieve good results under a high level of SNR. When the level of SNR is
gradually reduced, the performance of each algorithm deteriorates to varying degrees. Since the
proposed EEORDL is initialized with VCA, the performance of the latter is also compared in Table 1.
When SNR > 25 dB, MVCNMF achieves very good results, but the performance decreases rapidly
when SNR is less than 20 dB. Since RCoNMF is somewhat sensitive to noise, its endmember extraction
performance is rather poor under various SNR conditions. PCOMMEND has a relatively stable
performance under different noise levels, and the performance is somewhat better than RCoNMF.
EEODL achieves very good results, especially under low SNR conditions, exhibiting the advantages of
dictionary learning and sparse representation theory applied to hyperspectral endmember extraction.
Since the proposed EEORDL uses robust l1 loss as the data fitting term in the objective function,
it achieves better endmember extraction than EEODL. In a word, the proposed EEORDL achieves the
best or comparable results under all SNR conditions, especially when SNR is low.
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Table 1. Quantitative assessment of different endmember extraction algorithms with synthetic data.

SNR (dB) Index VCA PCOMMEND MVCNMF RCoNMF EEODL EEORDL

35 SAD(deg) 0.3638 1.153 0.2452 1.792 0.5196 0.2618
SID 9.992 × 10−5 1.036 × 10−3 9.160 × 10−5 4.803 × 10−3 2.660 × 10−4 5.861 × 10−5

RMSE 7.995 × 10−4 4.890 × 10−3 2.994 × 10−4 2.900 × 10−3 1.108 × 10−3 3.589 × 10−4

SRE(dB) 24.04 17.54 27.76 17.60 22.19 27.13

30 SAD(deg) 0.7552 1.555 0.5469 2.281 0.5993 0.4396
SID 5.623 × 10−4 3.083 × 10−3 3.174 × 10−4 7.843 × 10−3 2.674 × 10−4 1.315 × 10−4

RMSE 2.204 × 10−3 1.691 × 10−2 1.102 × 10−3 5.123 × 10−3 2.822 × 10−3 1.087 × 10−3

SRE(dB) 19.16 12.06 22.19 14.97 18.58 22.62

25 SAD(deg) 0.9223 1.694 1.026 2.916 1.1567 0.6113
SID 8.529 × 10−4 3.413 × 10−3 1.200 × 10−3 1.160 × 10−2 1.119 × 10−3 2.615 × 10−4

RMSE 5.362 × 10−3 1.817 × 10−2 2.912 × 10−3 8.702 × 10−3 1.030 × 10−2 3.085 × 10−3

SRE(dB) 15.73 11.41 17.69 12.53 13.28 17.96

20 SAD(deg) 2.092 1.857 1.937 2.977 1.166 0.6810
SID 4.534 × 10−3 4.285 × 10−3 4.812 × 10−3 1.180 × 10−2 1.072 × 10−3 2.989 × 10−4

RMSE 1.382 × 10−2 2.356 × 10−2 8.034 × 10−3 1.724 × 10−2 1.061 × 10−2 7.457 × 10−3

SRE(dB) 11.10 9.751 13.18 9.499 12.32 14.10

15 SAD(deg) 5.354 2.818 7.571 3.650 2.039 1.854
SID 4.605 × 10−3 7.895 × 10−3 2.060 × 10−2 9.406 × 10−3 2.769 × 10−3 1.946 × 10−3

RMSE 6.076 × 10−2 3.880 × 10−2 4.991 × 10−2 3.153 × 10−2 2.910 × 10−2 2.708 × 10−2

SRE(dB) 5.178 7.111 6.212 6.908 8.360 8.834

Figure 2 shows the endmember estimates obtained by different algorithms for SNR = 20 dB.
It can be seen that the endmember signatures extracted by the proposed EEORDL have the highest
degree of similarity to the ground truth spectral signatures, illustrating the qualitative accuracy of the
endmember extraction of the proposed approach. With the other algorithms, it is difficult to ensure that
all endmember spectral signatures are well matched with the ground truth spectra at the same time.
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Figure 2. The endmember estimates obtained by different algorithms for SNR = 20 dB: (a) Actinolite
HS116.3B; (b) Dry_Long_Grass; (c) Richterite; (d) Actinolite NMNHR16485; (e) Anthophyllite;
(f) Lazurite; (g) Alunite; (h) Clinochlore; (i) Carnallite.
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Table 2 reports the computational time of different algorithms when SNR = 20 dB. It can be
seen that the proposed EEORDL takes less running time than the other algorithms, except for VCA.
We notice that EEORDL is significantly faster than EEODL, which indicates that the dictionary update
in the proposed approach is more efficient.

Table 2. The computational time of different endmember extraction algorithms with synthetic data.

VCA PCOMMEND MVCNMF RCoNMF EEODL EEORDL

Time/s 1.0 513.2 58.0 11.1 13.3 3.4

3.3. Real-World Data

3.3.1. Jasper Ridge Dataset

The popular Jasper Ridge dataset [28] was used as the real-world data in this subsection. The image
includes 224 spectral bands between 0.4 and 2.5 µm, with a high spectral resolution of 10 nm. For the
convenience of analysis, a sub-image of 100 × 100 pixels was selected here, as shown in Figure 3a.
Water vapor absorption bands and blank bands (1–3, 108–112, 154–166, 220–224) were removed during
data preprocessing, and 198 spectral bands were retained. Figure 3b shows four reference endmember
spectra latent in the data, including trees, water, dirt and roads. In this dataset, the noise intensity
varies with different bands.
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Figure 3. Jasper Ridge hyperspectral dataset: (a) 3D cube form of the experiment area; (b) Reference
spectral signatures.

The SAD values of different algorithms with the Jasper Ridge dataset are reported in Table 3,
which illustrates that the proposed EEORDL achieves the best endmember extraction results for all four
endmembers, quantitatively. To qualitatively confirm this conclusion, Figure 4 shows the endmember
estimates obtained by different algorithms. We can see that the endmember signatures estimated by
EEORDL have the highest degree of similarity to the references. In contrast, with the other methods it
is difficult to ensure that all four endmember estimates can be well matched with the reference spectra
at the same time.

Table 3. SAD values of different endmember extraction algorithms with the Jasper Ridge dataset.

Endmember VCA PCOMMEND MVCNMF RCoNMF EEODL EEORDL

Tree 0.3228 0.1202 0.1705 0.2190 0.1897 0.1152
Water 0.2484 0.1889 0.9896 0.9460 0.2342 0.1105
Dirt 0.2263 0.1538 0.1567 0.1305 0.1601 0.1169

Road 0.2657 0.1120 0.1033 0.0546 0.0603 0.0502

Mean 0.2658 0.1437 0.3550 0.3375 0.1611 0.0982
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Figure 4. The endmember estimates obtained by different algorithms: (a) trees; (b) water; (c) dirt;
(d) roads.

3.3.2. Urban Dataset

The urban dataset is widely used in the hyperspectral unmixing field [28], consisting of 307 × 307
pixels. Each pixel in the image includes 210 spectral bands ranging from 0.4 µm to 2.5 µm, resulting in
a nominal spectral resolution of 10 nm. Figure 5a shows the 3D cube form of the dataset. Considering
dense water vapor and atmospheric effects, the bands 1–4, 76, 87, 101–111, 136–153 and 198–210
were removed before endmember extraction, and 162 spectral bands were retained. Four reference
endmember signatures that are latent in the data are shown in Figure 5b, including asphalt, grass, trees
and roofs. As presented in [29], some bands in the data are also corrupted by sparse noise.
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Figure 5. Urban hyperspectral dataset: (a) 3D cube form of the experiment area; (b) Reference
spectral signatures.
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Table 4 reports the SAD values between the endmember estimates and their corresponding
references from different algorithms with the Urban dataset. It can be seen that the proposed EEORDL
outperforms the other algorithms and obtains the best endmember estimation results, quantitatively.
To evaluate the endmember extraction performance of EEORDL qualitatively, Figure 6 shows the
endmembers extracted by different approaches. The endmember signatures extracted by the proposed
method obtain a good match with the references. In contrast, with the compared methods it is difficult
to guarantee the similarity between the estimates and the references, especially for the endmember
‘grass’, as shown in Figure 6b.

Table 4. SAD values of different endmember extraction algorithms with the Urban dataset.

Endmember VCA PCOMMEND MVCNMF RCoNMF EEODL EEORDL

Asphalt 0.1331 0.1055 0.1840 0.2450 0.1770 0.0999
Grass 0.3982 0.4568 0.5130 0.6206 0.3893 0.1258
Tree 0.0848 0.0541 0.1594 0.3587 0.1799 0.0530
Roof 0.1676 0.1135 0.1142 0.1640 0.2795 0.1075

Mean 0.1959 0.1825 0.2427 0.3347 0.2564 0.0966
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Figure 6. The endmember estimates obtained by different algorithms: (a) Asphalt; (b) Grass; (c) Trees;
(d) Roofs.

3.3.3. Cuprite Dataset

The well-known Cuprite dataset (http://aviris.jpl.nasa.gov/html/aviris.freedata.html) was used as
the real-world data in this subsection. The image scene was collected by AVIRIS, including 224 spectral
bands between 0.4 and 2.5 µm, with a nominal spectral resolution of 10 nm. For the convenience of
analysis, a sub-image of 250× 330 pixels was selected here, as shown in Figure 7. Water vapor absorption
bands and low SNR bands (1–2, 105–115, 150–170, 223–224) were eliminated during data preprocessing,

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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and 188 spectral bands were retained. The mineral signatures contained in the Cuprite dataset were
released in the USGS spectral library under the name splib06 (http://speclab.cr.usgs.gov/spectral.lib06),
in September 2007. Thus, the endmember extraction performance of the proposed EEORDL can be
verified by using the corresponding USGS library spectral signatures. Since a large number of mineral
alterations and spectral variabilities are presented in the Cuprite dataset, there is no official agreement
on the number of material spectral signatures. According to the analysis in [21,30], we set the number
of endmembers in the experiment as p = 12.
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Figure 7. 3D cube form of the experiment area in the Cuprite hyperspectral dataset.

To investigate the performance of the proposed EEORDL after the endmember extraction,
the non-negative least squares algorithm was used to estimate the corresponding abundances. We used
the MATLAB function lsqnonneg to perform the abundance estimation in this experiment. Considering
that the true abundance maps are unknown, the results of the abundance estimation were only
evaluated qualitatively by using a material map produced by Tricorder 3.3 software (http://speclab.cr.
usgs.gov/cuprite95.tgif.2.2um_map.gif) as a reference, as shown in Figure 8.
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Table 5 reports the SAD values between the endmember estimates and their corresponding USGS
library spectral signatures of different algorithms with the Cuprite dataset. It can be concluded that the
proposed EEORDL achieved the best endmember extraction results for over half of all 12 endmembers.
In addition, EEORDL obtained the best mean SAD results, which demonstrates the effectiveness and
competitiveness of the proposed approach.

Table 5. SAD values of different endmember extraction algorithms with the Cuprite dataset.

Endmember VCA PCOMMEND MVCNMF RCoNMF EEODL EEORDL

Alunite GDS84 Na03 0.1069 0.1331 0.1070 0.0889 0.1158 0.0864
Andradite 0.0782 0.0726 0.1018 0.2864 0.0791 0.0718

Buddingtonite GDS85 D-206 0.2019 0.1661 0.2189 0.3351 0.2373 0.1656
Dumortierite 0.1375 0.0894 0.1804 0.1517 0.0881 0.0880

Kaolinite KGa-2 (pxyl) 0.2642 0.1118 0.3588 0.1072 0.2560 0.1121
Kaolin/Smect KLF508 85%K 0.0759 0.0893 0.0942 0.1471 0.1309 0.0906

Muscovite IL107 0.1485 0.1217 0.1637 0.0705 0.1260 0.1216
Montmorillonite+Illi CM37 0.1035 0.0605 0.1252 0.0727 0.1011 0.0600

Nontronite SWa-1.a 0.1072 0.1163 0.1776 0.1079 0.1551 0.1164
Kaolin/Smect H89-FR-5 30K 0.0817 0.0820 0.0987 0.0947 0.1574 0.0795

Sphene 0.0658 0.0543 0.0685 0.2036 0.0626 0.0539
Chalcedony CU91-6A 0.0666 0.0720 0.0737 0.4807 0.0639 0.0748

Mean 0.1198 0.0974 0.1474 0.1789 0.1311 0.0934

Figure 9 shows the endmember estimates obtained by the proposed EEORDL along with their
corresponding USGS library spectral signatures. Considering the reference signatures from the
USGS library acquired without atmospheric interferers and in ideal conditions, the results shown
in Figure 9 illustrate that the extracted endmembers generally achieve a good match with the
corresponding references.

Figure 10 shows the corresponding estimated abundance maps obtained by the non-negative
least-squares algorithm. Moreover, it can be observed in Figure 10 that the estimated abundance maps
are piecewise smooth and have high spatial consistency, further demonstrating that the proposed
EEORDL can efficiently complete the endmember extraction task in spectral unmixing.
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Figure 9. The extracted endmembers and their corresponding USGS library spectral signatures with the
Cuprite data: (a) Alunite GDS84 Na03; (b) Andradite; (c) Buddingtonite GDS85 D-206; (d) Dumortierite;
(e) Kaolinite KGa-2 (pxyl); (f) Kaolin/Smect KLF508 85%K; (g) Muscovite IL107; (h) Montmorillonite+Illi
CM37; (i) Nontronite SWa-1.a; (j) Kaolin/Smect H89-FR-5 30K; (k) Sphene; (l) Chalcedony CU91-6A.
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4. Conclusions

In this paper, an endmember extraction algorithm based on online robust dictionary learning,
termed EEORDL, was proposed to solve the problem of endmember estimation in a noisy environment.
Unlike the current dictionary learning-based endmember extraction methods, in EEORDL, a more
robust l1 norm is used as the data fitting term during the dictionary update to improve the performance
of the endmember extraction. Compared with the state-of-the-art endmember extraction approaches,
the proposed EEORDL achieves better performance, especially under the conditions of low SNR.
Because of these aforementioned properties, the proposed algorithm may have a positive impact on
hyperspectral subpixel target detection.
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