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Abstract: Precise quantification of terrestrial gross primary production (GPP) has been recognized as
one of the most important components in understanding the carbon balance between the biosphere
and the atmosphere. In recent years, although many large-scale GPP estimates from satellite data
and ecosystem models have been generated, few attempts have been made to compare the different
GPP products at national scales, particularly for various climate zones. In this study, two of the
most widely-used GPP datasets were systematically compared over the eight climate zones across
China’s terrestrial ecosystems from 2001 to 2015, which included the moderate resolution imaging
spectroradiometer (MODIS) GPP and the breathing Earth system simulator (BESS) GPP products.
Additionally, the coarse (0.05o) GPP estimates from the vegetation photosynthesis model (VPM) at
the same time scale were used for auxiliary analysis with the two products. Both MODIS and BESS
products exhibited a decreasing trend from the southeast region to the northwest inland. The largest
GPP was found in the tropical humid region with 5.49 g C m−2 d−1 and 5.07 g C m−2 d−1 for MODIS
and BESS, respectively, while the lowest GPP was distributed in the warm temperate arid region,
midtemperate semiarid region and plateau zone. Meanwhile, the work confirmed that all these GPP
products showed apparent seasonality with the peaks in the summertime. However, large differences
were found in the interannual variations across the three GPP products over different climate regions.
Generally, the BESS GPP agreed better than the MODIS GPP when compared to the seasonal and
interannual variations of VPM GPP. Furthermore, the spatial correlation analysis between terrestrial
GPP and the climatic factors, including temperature and precipitation, indicated that natural rainfall
dominated the variability in GPP of Northern China, such as the midtemperate semiarid region, while
temperature was a key controlling factor in the Southern China and the Tibet Plateau area.
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1. Introduction

Gross primary production (GPP) refers to the total amount of organic carbon fixed by terrestrial
ecosystems through photosynthesis by green plants [1]. It directly reflects the productivity of vegetation
under specific environmental conditions and characterizes the growth characteristics and health status
of terrestrial ecosystems [2]. As it is the largest and most important component of global carbon cycles,
accurately evaluating the spatiotemporal dynamics of terrestrial GPP has significant implications for
rational use of land resources, increase of carbon sinks, and adaptive strategy to climate change [3–6].
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The common methods for estimating GPP mainly encompass the continuous observations using
the eddy covariance-based flux towers and satellite-based estimates with ecosystem models [7].
However, in situ measurements are usually constrained by scale and cost, leading to a spatially sparse
distribution until now. Satellite remote sensing can obtain large-scale land surface data reflecting
the vegetation-related and environmental variables quickly and cheaply [8]. In order to simulate the
productivity over regional and global scales, several GPP models using the remote sensing data have
been developed in past decades [9–13]. Subsequently, by means of these algorithms, the global GPP
products were produced over a long period. Nevertheless, different products have large biases in
performance due to the structures of models and the uncertainties in various input parameters.

The moderate resolution imaging spectroradiometer (MODIS) GPP data have been produced
continuously across the globe since 2000 and also experienced ongoing improvements in recent
years [14–17]. Currently, many studies on GPP in China are conducted with the earlier MODIS
collection 5 (C5) vegetation products [18,19]. However, the improved MODIS collection 6 (C6) GPP has
been openly shared since the end of 2015, with the biome property look up tables (BPLUT) updated
and the meteorological data of daily Global Modeling and Assimilation Office (GMAO) [20,21]. More
importantly, MODIS C6 contains significant revisions of the calibration approach to account for
sensor aging [22]. Hence, it is urgent to examine the performance of the newly-released C6 products
with 500 m resolution. Since the algorithm of MODIS GPP products was mainly restricted by the
uncertainties from various upstream inputs, the products have always been controversial [23–25].
Aiming at the complexity of MODIS algorithms, Jiang and Ryu provided an alternative set of global
GPP products using a simplified process-based model, the breathing Earth system simulator (BESS), for
8-day composite 1-km resolution [26]. The model is coupled with canopy photosynthesis, atmosphere
and canopy radiative transfers, energy balance, and transpiration [27]. BESS GPP products were
deemed reliable when compared against the MODIS C5.5 products, the coarse spatial resolution (0.5◦)
products from Max Planck Institute of Biochemistry, and the FLUXNET datasets at site scale (113 sites
in total). Thus, the process-based BESS can serve as an independent set to complement the official
MODIS GPP products. In addition, Zhang et al. [25] developed a global moderate resolution dataset of
vegetation GPP for 2000–2016 using the vegetation photosynthesis model (VPM), which was based on
the improved light use efficiency (LUE) theory [28,29]. This product showed satisfactory performance
across the wide range of biome types with regards to site-level validations [30–32]. Actually, all
these GPP datasets have experienced amounts of validation using the FLUXNET sites in recent years.
However, intercomparison among these new global GPP products particularly between BESS and
VPM over various climate zones remained scarce.

As the largest developing country in the world, China has emitted a lot of CO2 accompanying
its fast economic development since the reform and opening up in the 1980s [33–35]. The increase in
atmospheric greenhouse gases could cause severe consequences on the climate system [36], which
will threaten the structures, function, and stability of natural ecosystems, altering the ecosystem
services provided to society [37]. Meanwhile, forecasts indicate that China will experience increasing
atmospheric temperature, a rising frequency of extreme weather events, thus enhancing spatiotemporal
heterogeneity in rainfall and enlarging drylands in the future [38,39]. To cope well with the impacts of
climate change, it is necessary to determine the responses of terrestrial GPP to environmental controls.
In addition, China has an enormous land area that occupies approximately 10% of the world, with
abundant vegetation resources having a large carbon sequestration potential distributed across a wide
variety of climate regions. However, the performances of different models or products of GPP vary
widely in various climate zones [17,25,26]. Essentially, the differences in diverse remote sensing-based
GPP products can be ascribed to that the different algorithms, using different input data, and having
different parameter values when explaining the environmental mechanisms over climate zones.

Therefore, this study aimed to: (1) compare the spatial differences of MODIS and BESS GPP
products over the eight typical climate zones in China over the past 15 years; (2) evaluate the
performance of MODIS and BESS GPP in describing seasonal variations, with the VPM GPP as auxiliary
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data; and (3) reveal the long-term trends of interannual GPP across different climate zones, as well as
the determining climate factors.

2. Materials and Methods

2.1. Description of the Study Area

The climate types in China vary from tropical to cold temperate with latitude and from humid
to dry with longitude (Figure 1). Many vegetation types of the world can be found in China due to
diverse climates bringing about high biodiversity [40]. Vegetation types are spatially dominated by
the local climate characteristics [41]. The grassland ecosystems are mainly distributed in the arid and
semiarid regions of Northwestern China due to relatively scarce precipitation, whereas deciduous
forest and evergreen forest are mainly planted in the cold northern and warm southern regions of China,
respectively. Generally, dense vegetation types cover the areas with ample precipitation and heat
resources [42,43]. Thus, the species composition and vegetation distribution are especially sensitive to
global climate change. In this study, a total of eight climatic zones across China were divided, including
(I) cold temperate humid region, (II) midtemperate humid region, (III) midtemperate semiarid region,
(VI) warm temperate arid region, (V) warm temperate subhumid region, (VI) plateau zone, (VII)
subtropical humid region, and (VIII) tropical humid region [44]. These climate zones can represent the
main climate characteristics in China, and the remotely-derived GPP products of terrestrial ecosystems
were evaluated over these contrasting climate regions. The details about three GPP datasets including
MODIS, BESS and VPM are listed in Table 1.
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Figure 1. Climate zones and vegetation types in China. The base map is derived from moderate
resolution imaging spectroradiometer (MODIS) product MCD12Q1 C5.5 (500 m spatial resolution)
based on the University of Maryland (UMD) global vegetation classification scheme in 2010. (I) Cold
temperate humid region, (II) midtemperate humid region, (III) midtemperate semiarid region, (IV)
warm temperate arid region, (V) warm temperate subhumid region, (VI) plateau zone, (VII) subtropical
humid region, and (VIII) tropical humid region.
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Table 1. Datasets of the satellite-based gross primary production (GPP) used in this study.

Product Description Spatial
Resolution

Temporal
Resolution Release Time

MODIS
MODIS GPP product derived

from satellite observations
(MOD17A2H.006)

500 m day 10/2015

BESS BESS GPP product derived from a
process-based model 1 km 8-day 9/2016

VPM
VPM GPP product derived from
MODIS observations and NCEP

Reanalysis II climate data
0.05◦ 8-day 10/2017

2.2. MODIS GPP Product

The MODIS instruments on the satellites Terra and Aqua provide periodic observations of global
air, vegetation, and soil-related information [45]. MOD17A2 is a global-scale, long-term series of
terrestrial GPP with different time scales from weekly, monthly to yearly [46]. Version 6 is the latest
generation of the MOD17A2 GPP product, which is based on the radiation-use efficiency model. It
can be potentially used as input to ecosystem models for calculating terrestrial energy and carbon
and water cycles [17]. The newly-released data are produced using the 8-day LAI/FPAR composite
(500 m), and the native resolution is increased to 500 m in comparison with previous versions. In
order to match the spatial resolution of the BESS GPP data, the spatial resolution of MODIS GPP is
resampled to 1 km. This study used MOD17A2H (C6) from 2001 to 2015, which is available from the
website https://e4ftl01.cr.usgs.gov/MOLT/MOD17A2H.006/. A total of 13,110 scenes of MODIS GPP
images were obtained for analysis in this study. The detailed algorithm of MOD17A2 was proposed by
Monteith [47] in 1972. The equation is as follows:

GPP = ε × APAR (1)

ε = εmax × TMINscalar ×VPDscalar (2)

APAR = (SWRad × 0.45) × FPAR (3)

where ε is the estimated LUE and εmax is the assumed maximum LUE, mainly affected by the vegetation
type; TMINscalar is the temperature stress factor, VPDscalar is the water stress factor, APAR is the
photosynthetically active radiation absorbed by the vegetation, and SWRad is the short-wave solar
radiation received at the surface; FPAR is the fraction of photosynthetically active radiation absorbed
by green vegetation, which uses the MODIS FPAR product (MCD15A2H.006).

2.3. BESS GPP Product

The input data of the BESS GPP algorithm use three ancillary datasets, four reanalysis datasets,
seven MODIS atmosphere (Collection 6) and land (Collection 5) products, and four additional satellite
datasets [26]. A global continuous GPP product at high spatiotemporal (8-day, 1 km) resolutions is
generated by a process-based satellite-driven method, instead of those widely-used machine-learning
and semi-empirical models. The core algorithm comprises an atmospheric radiative transfer
model, a forest light environmental simulator, and a two-leaf canopy radiative transfer model [27].
Meanwhile, a two-leaf longwave radiative transfer model jointly with a carbon-water-coupled module
distinguishing C3 and C4 vegetation by employing Farquhar’s photosynthesis model [9,48], the
quadratic Penman–Monteith [49,50] and energy balance equations, and a stomatal conductance
equation are applied to calculate GPP and ET for sunlit and shaded canopy through an iterative
procedure. BESS GPP had a detailed description in the paper of Jiang and Ryu [26]. The work extracted
BESS products from 2001 to 2015 in comparison with MODIS GPP over different climate zones in

https://e4ftl01.cr.usgs.gov/MOLT/MOD17A2H.006/
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China. In this study, the BESS GPP from 2001 to 2015 over the different climatic zones in China was
freely extracted from http://environment.snu.ac.kr/bess_flux/.

2.4. VPM GPP Product

The VPM GPP product (V20) is based on an improved light-use efficiency model driven by
remote sensing data and climate data from National Centers for Environmental Prediction (NCEP)
Reanalysis II [25]. Two main input data sets, including the enhanced vegetation index (EVI) [51]
and land surface water index (LSWI) [52], in the VPM model are derived from the MOD09A1 (C6)
land surface reflectance data with a resolution of 500 m on an 8-day time scale. Additionally, poor
quality data were identified, gaps were filled, and the data were smoothed using the best index slope
extraction algorithm, linear interpolation, and the Savitzky–Golay filter. Furthermore, it considered
the C3/C4 difference in plant photosynthesis pathways [28], which solved several critical problems in
the previous GPP products. In this study, the VPM GPP products between 2001 and 2015 were used as
auxiliary data with a temporal resolution of 8-day and spatial resolution of 0.05◦ × 0.05◦. These data
were downloaded from the website https://doi.org/10.6084/m9.figshare.c.3789814. The algorithm can
be simplified as follows [53]:

GPP = ε× FPARchl × PAR (4)

ε = εmax×Tscalar×Wscalar (5)

FPARchl = (EVI− 0.1) × 1.25 (6)

Wscalar=
1 + LSWI

1 + LSWImax
(7)

Tscalar =
(T − Tmax) × (T − Tmin)

(T − Tmax) × (T − Tmin) −
(
T − Topt

) (8)

where PAR is photosynthetically active radiation; FPARchl is the fraction of PAR absorbed by chlorophyll,
which is approximated by a linear function of EVI [23]; and Tscalar and Wscalar represent the effects
of temperature and water on light use efficiency of vegetation, respectively [25]. The adjustment
coefficient, LSWI is the land surface water index; LSWImax is the maximum land surface water index
during the growth period; T, Tmax, Tmin, and Topt are the average, the maximum, the minimum, and
the optimum temperature for specific plant types.

2.5. Data Analysis

Two indices, including the root-mean-square error (RMSE) and the coefficient of determination
(R2), were used to comprehensively evaluate the performance of three remotely-derived GPP products
at 8-day period. The linear trend (k) was also calculated to represent long-term interannual variations
over diverse climate zones. Subsequently, to reveal the dominant environmental factors controlling
the dynamics in GPP ιν 2001–2015, the Pearson correlation coefficient (r) was calculated to examine
the relationships between the reliable GPP product and spatial temperature (T) and precipitation (P)
patterns. The equations of R2, RMSE, k, and r are as follows:

R2= 1−
∑

(ŷ− y)2/
∑

y2 (9)

RMSE =
√∑

(ŷ− y)2/n (10)

k = (
∑n

i=1
xiti −

1
n
(
∑n

i=1
xi)(

∑n

i=1
ti))/(

∑n

i=1
t2
i −

1
n
(
∑n

i=1
ti)

2
) (11)

rxy=

∑n
i=1[(xi − x)(yi − y)]√
(xi − x)2 ∑n

i=1(yi − y)2
(12)

http://environment.snu.ac.kr/bess_flux/
https://doi.org/10.6084/m9.figshare.c.3789814
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where y and ŷ represent the VPM GPP product and the GPP estimates of MODIS or BESS, respectively;
ti referred to the year i, xi and yi represented the interannual GPP and the associated annual mean T
and accumulated P of the year i, and x and y represented multiyear average GPP, T or P, respectively.
A minimum RMSE and a maximum R2 were obtained by the optimal satellite-derived GPP products
in general. All the statistics were performed through SPSS 19.0 (IBM, Chicago, IL, USA). Moreover,
the MODIS reprojection tool (MRT) and the interactive data language (IDL) in ENVI 5.3 were used to
process a large number of remote sensing data sets.

3. Results

3.1. Spatial Pattern

Using the 1 km resolution 8-day composite MODIS and BESS GPP data from 2001 to 2015, this
study calculated the spatial distribution of multiyear mean GPP across China. Figure 2 showed
that both GPP products exhibited substantial spatial heterogeneity with a decreasing trend from the
southeast coast to the northwest inland area. This can be attributed to the dry climate with sparse
vegetation cover in the northwest region, while the climate of the eastern area is relatively humid with
good thermal conditions appropriate for the growth of vegetation all year round. In addition, the
GPP of Southern China was apparently larger than that of Northern China because of differences in
vegetation phenology. Nevertheless, the study implied that both MODIS and BESS GPP products had a
great number of missing values in the arid and semiarid Northwest China including the midtemperate
semiarid region (III), the warm temperate arid region (IV), and the plateau zone (VI), which meant that
these approaches reduced the ability to estimate GPP in these areas.
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Figure 2. Spatial distribution of multiyear mean GPP across China from 2001 to 2015. (a) and
(b) represent MODIS and breathing Earth system simulator (BESS) GPP, respectively. The black
line delineates the boundary of eight climate zones. The insert shows the full southern extent of
China’s islands.

In view of the eight climate zones across China (Figure 3), terrestrial GPP of both MODIS and
BESS models exhibited the largest value in the tropical humid region (VIII) with approximately
5.28 g C m−2 d−1, followed by the subtropical humid region (VII: approximately 3.55 g C m−2 d−1).
Then, the GPP values over the warm temperate subhumid region (V), cold temperate humid region
(I), and midtemperate humid region (II) were quite close. The GPP of the midtemperate semiarid
region (III) was about 0.91 g C m−2 d−1, and the lowest GPP values were found in the warm temperate
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arid region (IV) and plateau zone (VI) below 0.7 g C m−2 d−1. However, obvious differences existed
between the MODIS and BESS GPP values over these climate zones with the biases ranging from
0.028 g C m−2 d−1 to 0.185 g C m−2 d−1. Generally, BESS GPP is relatively higher than MODIS GPP
due to a separate treatment towards C3/C4 photosynthesis pathways, except for the tropical humid
region (VIII). Most areas of cropland in the North China Plain and Northeast China planted the C4

maize, and 60% of C4 species were grasses, distributed in the grassland ecosystems of Northwest
China and the Tibet Plateau.
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Figure 3. Comparison of multiyear mean MODIS and BESS GPP over the eight climate zones in China
from 2001 to 2015. Error bars represent ±1 standard error. The asterisks mean significantly different for
GPP values in 2001–2015 (p < 0.05).

3.2. Seasonal Variations

The variability in multiyear mean MODIS, BESS, and VPM GPP in China exhibited a clear
seasonal pattern for 8-day periods (Figure 4). The changing trends throughout the year were quite
consistent, despite different magnitudes among these products. Specifically, during the wintertime,
GPP was quite low because of lack of active photosynthetic activity for the deciduous forests and
grasslands in most areas of China. However, GPP started to rise rapidly with vegetation growth in
the springtime, reached peak values in mid-to-late July of the year, and then gradually fell with leaf
withering in autumn. From the end of a plant growing season to the next growth cycle in early spring,
almost no difference existed between the MODIS and BESS GPP products, whereas the VPM GPP
estimates were a bit lower. However, during the summertime, both BESS and VPM GPP products were
apparently higher than MODIS GPP. This can be explained by the algorithms of both BESS and VPM
models considering the differences of C3/C4 plants, while the MODIS model neglected this point. This
resulted in MODIS overestimates for small values and underestimates for high values. Thus, treating
photosynthesis pathways of C3/C4 vegetation separately is crucial for the accurate estimates of regional
GPP. Meanwhile, the scatterplots in Figure 5 showed that compared with VPM GPP, both MODIS
and BESS GPP have strong correlations. Particularly, a strong linear relationship was found between
BESS GPP and VPM GPP, with R2 and RMSE attaining to 0.997 and 0.35 g C m−2 d−1. Therefore, this
study indicated that by comparison with MODIS GPP, the BESS product provided a more reliable GPP
estimate of terrestrial ecosystems over 8-day periods.
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products against the VPM GPP estimates at an 8-day period, respectively. The dashed line represents
the 1:1 line, and the red and gray lines represent the linear fits.

3.3. Interannual Dynamics

The long-term trends of MODIS, BESS, and VPM GPP products in China over the eight climate
zones from 2001 to 2015 are shown in Figure 6. From the perspective of the whole country of China,
both BESS and VPM GPP data exhibited an increasing tendency in the past 15 years compared to the
MODIS GPP. The correlation between BESS and VPM GPP attained an r = 0.85. Especially, GPP of all
these products increased significantly with time in the Northeast China regions (I and II) and in the
northwestern area (III). Meanwhile, the correlations between BESS and VPM GPP were apparently
higher, ranging from 0.81 to 0.92, compared to correlations between MODIS and VPM GPP, of r = 0.35
to 0.89. In addition, Figure 6 shows that MODIS GPP did not capture the interannual variations over
half of China’s area, including the Northeast China region (I and II) and the Southern China area (VII
and VIII). However, the rising trends had strong correlations between BESS and VPM products values
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(r = 0.74~0.86). Overall, BESS GPP is more consistent with VPM GPP than MODIS GPP on the annual
time scale.
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and p < 0.05 is significant); r and r’ represented the correlations between the auxiliary VPM GPP with
the MODIS and BESS GPP, respectively.

4. Discussion

4.1. Regional Differences in the GPP Products

All the three GPP products use the MODIS land cover type product (MCD12Q1) as input data to
depict the different underlying surfaces of terrestrial ecosystems. The MODIS land cover data identify
fourteen classes in total, including ten natural vegetation classes, two human-altered classes, and two
nonvegetated classes [54]. In the ecologically-fragile Northwestern China region, the nonvegetated
classes, which included perennial salt, inland fresh water, perennial snow and ice, and gobi with
sparse vegetation, are widely distributed. This caused large-area GPP values to be lost for both
MODIS and BESS products in Figure 2. However, both GPP products exhibited high coefficients of
determination (up to 0.997) with VPM GPP data, even though the GPP values varied substantially
(Figure 6). Zhao et al. [16] mentioned that the LUE should take into account spatial differences in the
application of the MODIS GPP algorithm. Because the land surface is heterogeneous, most of the pixels
are mixed in the medium and low resolution GPP remote sensing products [55], which will increase
the MODIS GPP estimation error when computed using a constant LUEmax. In the humid tropical
and subtropical regions, Nakaji et al. [56] have shown that LUE has a strong negative correlation with
water vapor pressure. Zhang et al. [57] proposed that the LUE is higher in the case of a small amount
of clouds than with no clouds, which was helpful to the vegetation photosynthetic activity. Consistent
with previous findings, MODIS GPP in the tropical region was notably higher than BESS GPP products,
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which can be partly ascribed to the effects of cloud cover and water vapor pressure [58]. Furthermore,
through analyzing the interannual variations of the three GPP products over varied climate zones
(Figure 6), the study found that the MODIS GPP in the subtropical humid region (VII), the tropical
humid region (VIII), and for all of China decreased sharply in 2015, which contrasted with the positive
directions obtained from the BESS and VPM GPP products. Interestingly, few studies have ever used
the MODIS GPP products from 2015 for analysis. Figure 7 revealed that in the terrestrial ecosystems
of Southern China displaying large annual carbon sequestration, the MODIS GPP products had the
zero values in 2015 more than in 2014.. Overall, the annual MODIS GPP trends still retained large
uncertainties across climate zones, whereas multiple GPP simulations from different models can help
to make the long-term changes clearer. It is normal that these satellite-based GPP products exhibited
contrasting performances across the different climate zones. On the one hand, terrestrial ecosystems are
strongly affected by the local climate characteristics. On the other hand, these GPP models, including
MODIS, BESS, and VPM, have different algorithms when estimating the variability in GPP. Generally,
C4 plant have higher LUEmax than C3 plants due to different physiological pathways [59–61]. The
MODIS algorithm simulated GPP across complex surface vegetation types with the same LUEmax

regardless of C3/C4 plant [17], but BESS and VPM models considered this photosynthetic pathway
difference. The use of different assumptions and input values is main reason which led to MODIS
GPP values that were apparently lower than those obtained with BESS or VPM GPP products in the
northern area of China.
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4.2. Environmental Controlling Factors of Different Climate Zones

With the increasing impact exerted by global climate change, the response of terrestrial ecosystems
is receiving more and more attention from the international community about the potential carbon sink
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capacity [62]. The climatic variables are considered to be the main causes of land surface vegetation
changes, whereas the dominant environmental factor controlling the interannual changes of GPP
would be distinctly different across various climate zones [40,63]. From the correlation analysis of
annual mean BESS GPP products in terrestrial ecosystems across China along the 2001–2015 period
(Figure 8, Table 2), GPP and temperature in most regions had a significant positive correlation over
59% of the study area, which indicated that the increase of temperature mainly stimulated the growth
of vegetation, particularly in the southern area (VII) and the Tibet Plateau region (VI). However, the
correlation analysis showed that GPP in Inner Mongolia and tropical humid region were negatively
correlated with temperature (Figure 8a). Generally, high temperature occurs during a period of little
precipitation, and so, the GPP is being limited by the lack of rainfall. Meanwhile, heat-induced
damage to vegetation is often accompanied by water stress, and thus, VPD and water stress are drivers
of GPP declines. Recently, many studies also found that the annual and seasonal maximum and
minimum temperatures in China have amplified in the last few decades [62–67], especially in North
China with extreme heat wave events, which exerted a significant impact on economic activities,
consumption of electricity and water, forest fires, and a reduction in grain yield. In addition, the
correlation analysis between terrestrial GPP and precipitation in entire China indicated that the area
with positive correlation (55.85%) was higher than that with negative correlation (44.15%). Consistent
with the findings of Wang et al. [20], for South China, with abundant precipitation, water is not a
limiting factor for vegetation growth. However, arid and semiarid areas such as the Inner Mongolia
region in Northern China are mainly controlled by yearly precipitation (Figure 8b), which agreed well
with the finding that water availability is a dominant factor in drylands across China, while climate
warming will greatly exacerbate the severity of drought [68]. Overall, contrasting mechanisms affect the
variability of GPP over China. In the northern regions, terrestrial GPP is more sensitive to precipitation,
while the thermal condition in the southern regions plays a critical role on vegetation GPP.
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Table 2. Area statistic of the correlations between annual mean BESS GPP and the corresponding
temperature and precipitation in China from 2001 to 2015.

Level Range Proportion of Area
(GPP–Temperature)

Proportion of Area
(GPP–Precipitation)

Highly negative correlation <–0.6 0.84% 1.60%
Moderate negative correlation −0.6~−0.3 9.77% 13.64%

Low negative correlation −0.3~0 30.28% 28.92%
Low positive correlation 0~0.3 37.37% 30.66%

Moderate positive correlation 0.3~0.6 19.47% 19.99%
Highly positive correlation >0.6 2.27% 5.19%

4.3. Associated Performance of the VPM GPP Products

Accurate estimation of GPP of terrestrial vegetation is vital for understanding the global carbon
cycles in the face of a changing climate. Multiple GPP products are currently available based on different
algorithms, but their performances vary substantially when validated against GPP estimates from eddy
covariance data. Recently, many studies indicated that FPARchl can capture well the seasonal variation
of vegetation photosynthetic capacity, which greatly improved the seasonal representation of GPP
variability [69,70]. Based on the tower-based flux measurements, these VPM products showed superior
performance with regard to site-level validations across a wide range of biome types [23,29,71,72]. The
developed VPM GPP dataset has been validated against 113 eddy covariance-based flux towers across
the globe, with the relatively high accuracy of the VPM GPP V20 [25]. For most biome types, the VPM
GPP did not show a systematic bias across different terrestrial ecosystems in a large area. Particularly
in the temperate steppe, VPM is an optimal model among eight satellite-based GPP models due to their
representation of the effect of water stress on vegetation productivity [73]. Except for the evergreen
forests, the VPM GPP dataset underestimated GPP to a certain extent [25]. Overall, VPM GPP offers a
reliable GPP estimation in nonforested natural vegetation and cropland by distinguishing the C3/C4

plants [74]. All these improvements aim to solve several critical problems existing in current GPP
products. With a satisfactory performance when validated against in situ GPP estimates, this dataset
offers an alternative GPP proxy for regional to global carbon cycle studies.

5. Conclusions

Satellite remote sensing observes the land surface continuously, providing a spatial and temporal
database for simulating terrestrial GPP from national to global scales. However, there are significant
differences in the performance of different remotely-derived GPP products. Spatially, both MODIS and
BESS GPP showed an increasing trend from northwest to southeast, which is closely related to the
spatial distribution of vegetation cover across China. Temporally, all these GPP products, including
BESS, MODIS, and VPM data, exhibited distinct seasonal patterns for an 8-day interval and reached
peak values in the summertime. However, the three GPP products performed differently in monitoring
the interannual dynamics of vegetation GPP over the eight climate zones across China throughout the
years from 2001 to 2015. Particularly, the MODIS GPP products were generally lower than the BESS GPP
data due to the influence of C3/C4 plants, except in the humid tropical region (VIII). Further analysis
based on the VPM GPP product found that BESS GPP had better consistency than MODIS GPP at the
annual and seasonal time scales. In addition, the spatial correlation analysis was applied to investigate
the impacts of climate factors (precipitation and temperature) on the variability in GPP over these
climate zones. The rising trend of GPP in Northern China can be explained by more precipitation in
recent years because natural rainfall was the dominant driver of GPP changes in these areas. However,
the uptrend of GPP in Southern China and the Tibet Plateau resulted partially from higher temperatures
in these regions as temperature exhibited a positive correlation with GPP. Therefore, our analyses
have important implications for evaluating the performance of these satellite-based GPP products
across different climate regions. Meanwhile, a multimodel comparison revealed the uncertainties in
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algorithms and subsequent improvements. With the development of ChinaFLUX and the data sharing
policy, it will be feasible to quantitatively assess the reliability of these remotely-derived GPP products
in future.
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