
remote sensing  

Article

Stepwise Disaggregation of SMAP Soil Moisture at
100 m Resolution Using Landsat-7/8 Data and
a Varying Intermediate Resolution

Nitu Ojha 1,*, Olivier Merlin 1, Beatriz Molero 1, Christophe Suere 1, Luis Olivera-Guerra 1,
Bouchra Ait Hssaine 2,3, Abdelhakim Amazirh 2,3, Ahmad Al Bitar 1 and
Maria Jose Escorihuela 4 and Salah Er-Raki 2,3

1 Centre d’Etudes Spatiales de la BIOsphère (CESBIO, Université de Toulouse
(CNES/CNRS/INRA,IRD/UPS), 31013 Toulouse, France

2 Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech 40000, Morocco
3 Center for Remote Sensing Application (CRSA), University Mohammed VI Polytechnic (UM6P),

Benguerir 43150, Morocco
4 isardSAT S.L, Parc Tecnologic Barcelona Activa, 08042 Barcelona, Spain
* Correspondence: ojhan@cesbio.cnes.fr or nituojha11@gmail.com

Received: 25 June 2019; Accepted: 4 August 2019; Published: 9 August 2019
����������
�������

Abstract: Global soil moisture (SM) products are currently available from passive microwave sensors
at typically 40 km spatial resolution. Although recent efforts have been made to produce 1 km
resolution data from the disaggregation of coarse scale observations, the targeted resolution of
available SM data is still far from the requirements of fine-scale hydrological and agricultural studies.
To fill the gap, a new disaggregation scheme of Soil Moisture Active and Passive (SMAP) data is
proposed at 100 m resolution by using the disaggregation based on physical and theoretical scale
change (DISPATCH) algorithm. The main objectives of this paper is (i) to implement DISPATCH
algorithm at 100 m resolution using SMAP SM and Landsat land surface temperature and vegetation
index data and (ii) to investigate the usefulness of an intermediate spatial resolution (ISR) between
the SMAP 36 km resolution and the targeted 100 m resolution. The sequential disaggregation
approach from 36 km to ISR (ranging from 1 km to 30 km) and from ISR to 100 m resolution is
evaluated over 22 irrigated field crops in central Morocco using in-situ SM measurements collected
from January to May 2016. The lowest root mean square difference (RMSD) between the 100 m
resolution disaggregated and in-situ SM is obtained when the ISR is around 10 km. Therefore,
the two-step disaggregation is more efficient than the direct disaggregation from SMAP to 100 m
resolution. Moreover, we propose a moving average window algorithm to increase the accuracy
in the 100 m resolution SM as well as to reduce the low-resolution boxy artifacts on disaggregated
images. The correlation coefficient between 100 m resolution disaggregated and in situ SM ranges
between 0.5–0.9 for four out of the six extensive sampling dates. This methodology relies solely on
remote sensing data and can be easily implemented to monitor SM at a high spatial resolution over
irrigated regions.

Keywords: disaggregation; soil moisture; DISPATCH; Intermediate spatial resolution; SMAP

1. Introduction

Knowledge of soil moisture provides key information about the coupling between the land
surface and atmosphere. By controlling the partitioning of water inputs (precipitation, irrigation) into
evaporation, infiltration, and runoff, the soil water content is related to the crop water consumption [1],
hydrological fluxes [2], weather predictions [3] and climate projections [4].
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L-band (1.4 GHz) microwave radiometry is currently the most adapted remote sensing technique
for the estimation of near-surface soil moisture (SM) from space [5–10]. Microwave observations at
L-band, as compared to higher microwave frequencies, are more sensitive to SM and less sensitive to
the soil surface roughness and vegetation optical depth [11]. In this context, European Space Agency
(ESA) and National Aeronautics and Space Administration (NASA) have launched the SMOS [6,12]
and SMAP [5] satellites in 2009 and 2014, respectively. Both satellites embark an L-band radiometer to
retrieve the 3–5 cm SM with a repeat cycle of less than 3 days globally. The spatial resolution of both
radiometers is approximately 40 km [5,6].

Despite the high radiometric accuracy achieved by L-band radiometers, the data provided globally
have a low spatial resolution, which makes the validation of remote sensing products difficult and
limits their application to large scale studies only [13]. For hydro-agriculture purposes, there is
a crucial need for SM data at a higher spatial resolution [14,15]. Consequently, disaggregation
techniques have been proposed to improve the spatial resolution of the SM data available at a high
temporal frequency [16–22]. Existing downscaling methods for SM can be classified into three major
groups (1) satellite-based methods; (2) methods using Geo-information data and (3) model-based
methods [23,24]. The satellite methods combine the use of radar and optical data to coarse scale
microwave radiometry [24]. Among optical-based methods, many studies have used as fine-scale
information the fractional vegetation cover and land surface temperature (LST) derived from
high-resolution (1 km to 100 m) optical/thermal sensors. The general idea of these methods is
to relate LST to SM via the evapotranspiration process [20,25].

Relying on this principle, the disaggregation based on physical and theoretical scale change
(DISPATCH) method [26,27] estimates the soil evaporative efficiency (SEE defined as the ratio of actual
to potential soil evaporation), and implements a downscaling relationship that links the disaggregated
SM to the low-resolution (LR) observation and the high-resolution (HR) SEE. The optical-derived
SEE is expressed as a linear function of the retrieved soil temperature [28] and the minimum and
maximum soil temperatures observed at HR within the LR pixel [26], according to the so-called
contextual approach [29]. Based on the DISPATCH algorithm, the CATDS Level-4 Disaggregation
(C4DIS) processor [30] was implemented at the Centre Aval de Traitement des Donnees SMOS (CATDS)
as a level 4 product. C4DIS produces 1 km resolution SM data at the quasi-global scale from SMOS
level 3 and Moderate resolution Imaging Spectroradiometer (MODIS) data.

The 1 km resolution SM disaggregated from SMOS produts are currently used in a range
of disciplines including root-zone soil moisture monitoring [31], detecting irrigated areas at the
perimeter scale [32,33], retrieving soil properties from space [34], preventing the spread of desert
locust swarms [35], evapotranspiration monitoring over rainfed areas [36], flood forecasting over large
basins [37], estimating crop yield [38], and the methods to produce them are continuously evolving
and maturing (Merlin et al. 2017). Note that few studies have applied the DISPATCH method to
SMAP SM using MODIS data [39]. However, the 1 km resolution is often insufficient for many other
fine-scale applications and areas where the surface is highly heterogeneous (e.g., [1]). SM data at the
sub-kilometric (typically hectometric) resolution are especially required in agriculture for early crop
detection, irrigation scheduling, water stress and yield monitoring [40] and in fine-scale hydrological
studies for flood risk prevention, drought monitoring and groundwater level assessment [41],
among other potential applications.

In fact, there is still no routine application of DISPATCH to Landsat data, which yet would be
useful to increase the spatial resolution of available SM products up to 100 m [27,42]. One difficulty
is that Landsat data do not provide global coverage at the daily scale (like MODIS data) so that
a sequential approach is needed to “delineate” the 1 km resolution disaggregated SMAP data over each
Landsat scene separately before DISPATCH can be implemented at 100 m resolution. Another difficulty
is the contextual nature of DISPATCH, which relies on the extreme wet and dry conditions present
within the LR pixel to calibrate the SEE model. Especially, the accuracy in temperature endmembers
is expected to vary with the spatial extent over which DISPATCH is applied. A third difficulty is the
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presence of boxy artifacts visible at LR when combining multi-source/multi-resolution remote sensing
data within a disaggregation methodology. Boxy artifacts are common problems with downscaling
methods [26,27,43].

In this context, this paper presents a new methodology to disaggregate optimally the 36 km
resolution SMAP SM to 100 m resolution using Landsat data. The main objective is to assess the
usefulness of an optimal intermediate spatial resolution (ISR) between the SMAP and Landsat
resolutions. In practice, the 1 km resolution SM disaggregated from SMAP data using MODIS data
(similar to C4DIS product for SMAP) is aggregated at ISR ranging from 1 km to 30 km, and DISPATCH
is applied to ISR SM. The novelty of this paper thus lies in: (1) the application of DISPATCH to SMAP
data at 100 m resolution, (2) the use of an ISR between SMAP and Landsat resolutions and (3) the
removal of boxy artifacts on the 100 m resolution disaggregated images using a new technique.

Herein, the stepwise disaggregation approach is tested over an experimental area in central
Morocco, comprised of 22 irrigated field crops over which the 0–5 cm SM has been monitored during
the 2015–2016 season.

2. Materials and Methods

2.1. Study Area

The study focuses on a 30 km by 30 km area of the R3 irrigated zone (31.70N, 7.35W) located 40 km
east of Marrakesh city in the Haouz plain, central Morocco (see Figure 1). To assess the performance of
DISPATCH at the 100 m resolution, a set of 22 irrigated wheat fields, covering 3–4 ha each (Figure 1),
were selected within a 1 km resolution MODIS pixel. SM sampling was undertaken on clear sky
dates with almost simultaneous SMAP/MODIS/Landsat data over the 22 crop fields and repeated
measurements were made along the agricultural season to cover all the phenological stages of wheat.
Climate of the study area is mainly semi-arid with an annual average precipitation of 250 mm [44,45].
The soil texture in the R3 perimeter is mainly clayey. Flood irrigation is the most widely used method
in this district. Wheat is generally sown in November-December and a mean total of 6 irrigations is
applied to wheat crops from February till April, typically every 3 weeks. Harvesting is done in late
May or early June [46,47].

Marrakesh

NDVI 
(-)

30 km

22 experimental
�elds

R3

Figure 1. Location of Marrakesh, the Haouz plain in central Morocco and the 22 experimental crop
fields in the R3 perimeter.

2.2. In-Situ Data

The 0–5 cm SM was measured manually from January to May months during the 2015–2016
agricultural season. The sampling strategy was to use theta probes to collect 10 distinct measurements
for each of the 22 crop fields [48]. In practice, as the 22 parcels were chosen to be aligned and contiguous,
two transects along both sides of the crop fields were walked and 5 theta probes measurements
were taken on each crop side, at least 5 m from the field border. Theta probe measurements were
calibrated using the gravimetric method, based on soil samples collected on each sampling date. In this
study, the field-scale SM corresponds to the mean 0–5 cm calibrated theta probe measurements as in
Amazirh et al. [49]. Among the 7 available sampling dates, only 6 are used herein in order to satisfy the
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following criteria: SM measurements are available on a clear-sky Landsat overpass date, and the time
difference between SMAP and Landsat overpasses is one day at maximum. The clear-sky dates with
quasi-concurrent in-situ sampling and the satellite overpasses of SMAP, SMOS, MODIS and Landsat
were on DOY 6, 14, 30, 38, 62 and 78. The remaining sampling dates are suitable for our study and
help us identify the variability in SM along the growth of crops.

2.3. Remote Sensing Data

2.3.1. SMAP

SMAP was launched by NASA on 31 January 2015. SMAP is the first L-band mission combining
both radar (active) and radiometer (passive) data to provide SM at a range of resolutions from
3 km (active) to 36 km (passive) with a revisit cycle of 2–3 days. But due to the failure of the
SMAP radar, the SM produced from SMAP is currently provided on a ∼36 km and ∼9 km (by using
a re-sampling technique) resolution grid. Note that a product combining SMAP and C-Band Sentinel-1
data has been recently provided by the mission [50]. SMAP has a near-polar sun-synchronous orbit at
an altitude of 658 km with 6:00 a.m./p.m. local time descending/ascending overpass. SMAP works
on multi-polarization with a fixed incidence angle at 40 degrees and a swath of ∼1000 km [5]. In this
paper, the SMAP level-3 (product name SPL3SMP A/D, version 005, Colliander et al. [51]) is used.
The product is provided in HDF format on the version 2 cylindrical EASE grid at 36 km resolution.
Data can be downloaded from https://nsidc.org/data/SPL3SMP/versions/5.

2.3.2. MODIS

MODIS LST and NDVI data are used by the C4DIS processor [30] to provide the 1 km resolution
SM from the disaggregation of SMAP level-3 SM data. LST is extracted from version 5 MOD11A1,
Terra overpass (10:30 a.m.) on ascending node and MYD11A, Aqua overpass (1 p.m.) on descending
node. For each (ascending or descending) SMAP overpass, there are 6 MODIS LST products taken
as input to C4DIS (one day before, same day and one day after SMAP overpass for both Aqua and
Terra platforms). NDVI is extracted from version 5 MOD13, only for Terra overpass with an interval of
16 days [19,52].

2.3.3. Landsat

Landsat-7 and Landsat-8 were launched by NASA in April 1999 and February 2013, respectively.
The images were downloaded from the USGS website, which provides surface reflectance and thermal
radiances data in different spectral bands. The revisit time of each sensor is 16 days and there is an
8-day lag between Landsat-7 and Landsat-8 so that the Landsat constellation potentially provides
(in cloud-free conditions) optical/thermal data every 8 days globally. The Landsat-7/8 30 m resolution
reflectance data are aggregated at 100 m resolution and used to derive the fractional vegetation cover.
The Landsat NDVI is calculated as the ratio of the re-sampled near-infrared reflectance to re-sampled
red reflectance difference divided by their sum, and the fractional vegetation ( fv) is estimated as:

fv =
NDVIHR − NDVIs

NDVIv − NDVIs
(1)

where, NDVIHR represents the NDVI at high (100 m) resolution, NDVIs the NDVI at bare soil and
NDVIv the NDVI at full cover vegetation. For this study, NDVIs and NDVIv are set to 0.1 and 0.9,
respectively. Landsat-7 and Landsat-8 provide thermal infrared (TIR) data with a spatial resolution
of 60 m and 100 m, respectively. LST is derived by using the single channel (SC) algorithm [53] from
Landsat-7 band-6 and Landsat-8 band-7 as:

LST = γ

[
1
ε

(
ϕ1.Lsen + ϕ2

)
+ ϕ3

]
+ δ (2)

https://nsidc.org/data/SPL3SMP/versions/5
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where, ε is the surface emissitivity, (γ, δ) are parameters depending on the radiance and brightness
temperature of the Landsat thermal band and ϕ1, ϕ2, ϕ3 are atmospheric variables function of the
atmospheric water vapor content (ω) and derived from radiative transfer simulations using the GAPRI
database [54]. The ω variable is obtained from the MODIS product MOD05.

2.3.4. SRTM

SRTM (Shuttle Radar Topography Mission) 1 arc second global data are used to correct Landsat
LST for topographic effects [27]. Although the study area is rather flat, the topographic correction is
applied by default in DISPATCH. The 30 m resolution SRTM data are aggregated to 100 m resolution,
consistent with the Landsat LST resolution.

2.4. DISPATCH

2.4.1. General Equations

The main equations of the DISPATCH method implemented at both 1 km and 100 m resolutions
are reminded in this subsection. The SM downscaled at HR (refers to either 1 km or 100 m resolution)
is written as:

SMHR = SMLR +

(
δSEE
δSM

)−1

LR
∗
(

SEEHR − SEELR

)
(3)

where, SMHR represents the disaggregated SM at HR, SMLR the SM at LR (refers to either SMAP or
ISR resolution) derived from SMAP data or from their disaggregation to 1 km resolution, SEEHR the

SEE at HR derived from MODIS or Landsat, SEELR the HR SEE aggregated at LR, and
(

δSEE
δSM

)−1

LR
the inverse of the partial derivative of the SEE(SM) model evaluated at LR. SEE is assumed to follow
a linear relationship with the soil temperature [28] and is thus expressed as:

SEEHR =
Ts,dry − Ts,HR

Ts,dry − Ts,wet
(4)

where Ts is the soil surface temperature, Ts,dry and Ts,wet the soil temperature in fully dry (SEE = 0)
and water-saturated (SEE = 1) conditions, respectively. Temperature endmembers Ts,dry and Ts,wet are
calculated from a graph between LST and fv derived at HR from MODIS or Landsat data. The soil
temperature is derived from a linear decomposition of LST into soil and vegetation temperature.
The trapezoidal method [26,55] is used to estimate the vegetation temperature, and the soil temperature
is expressed as the residual term:

Ts,HR =
THR − fv,HR ∗ Tv,HR

1 − fv,HR
(5)

where THR represents the LST at HR, Tv,HR the vegetation temperature at HR and fv,HR the fractional
vegetation cover at HR.

The downscaling relationship of Equation (3) is hence based on two SEE models: SEE as a function
of SM to estimate the first derivative at LR, and SEE as a function of LST (expressed in Equations (4)
and (5)) to estimate the spatial variability of SM at HR.

2.4.2. DISPATCH at 1 km Resolution

Note that C4DIS is labeled as DISPATCHLin (for linear SEE model) in this study to distinguish the
methodologies applied at 1 km and 100 m resolution. The current version of C4DIS/DISPATCHLin
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is based on the various studies that have been done in the past using 1 km resolution MODIS data
(Merlin et al. 2013, 2012b, 2010, 2009, 2008). In DISPATCHLin algorithm, the SEE(SM) model is linear:

SEE =
SM
SMp

(6)

where, SMp is a soil moisture parameter (in soil moisture unit), which depends on soil properties and
atmospheric conditions. It is calibrated at the SMAP pixel scale at the satellite overpass time using
LR SEE and SM estimates (SMp = SMLR

SEELR
). In this case, the derivative in Equation (3) is simply SMp.

The SEE(LST) model implemented in DISPATCHLin is based on Equation (4) using the temperature
endmembers calculated by the simplest extrapolation method within the LST- fv feature space: Ts,dry
and Ts,wet are set to the maximum and minimum soil temperature within a given LR pixel.

This approach is implemented for C4DIS/DISPATCHLin and has provided favorable results at
1 km resolution for arid and semi-arid areas [26,30].

2.4.3. DISPATCH at 100 m Resolution

When applying the DISPATCH methodology at 100 m resolution over extremely heterogeneous
areas like irrigated perimeters, one expects two main differences with the 1 km case. First, the range
of LST values should increase at 100 m resolution, thereby enabling a more accurate definition of
temperature endmembers, if the effect of outliers can be removed [56]. The second difference is that
the full SM range (from the residual SM to the SM at saturation) is likely to be present within each LR
pixel. Such extreme heterogeneity requires a robust representation of the SEE(SM) relationship over
the full SM range. Especially, given that the SEE(SM) is known to be nonlinear [28,57,58], the linear
approximation made in the 1 km case (Equation (6) is no more valid. Both differences between the
100 m and 1 km case involve two changes in the disaggregation algorithm: (i) the SEE model in
Komatsu [57] replaces the linear SEE model, and (ii) the method in Tang et al. [56] is used to robustly
determine the wet and dry edges. For clarity, the implementation of DISPATCH at 100 m resolution is
labeled DISPATCHExp (for nonlinear SEE model).

In DISPATCHExp, the SEE(SM) model is expressed as [57]:

SEE = 1 − exp
(

SM
SMp

)
(7)

where SMp is calculated from LR SM (the 1 km resolution disaggregated SM aggregated at ISR) and
HR (Landsat-derived) SEE aggregated at ISR:

SMp =
SMLR

−ln
(

1 − SEELR

) (8)

Note that the derivative in Equation (3) of the SEE(SM) model of Equation (7) can be computed in
two different ways, as a function of LR SM:(

δSEE
∂SM

)−1

LR
= SMp ∗ exp

(
SMLR
SMp

)
(9)

or as a function of LR SEE: (
δSEE
δSM

)−1

LR
=

SMp

1 − SEELR
(10)

As both expressions of the derivative are valid, the average of both estimates is implemented in
DISPATCHExp in order to stabilize the slope estimation with respect to uncertainties in both LR SM
and SEE.
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Regarding the SEE(LST) model, the algorithm in Tang et al. [56] automatically calculates the
temperature endmembers by removing outliers. It processes pixels in an iterative manner to calculate
the highest temperature for each fv interval. A linear approximation of highest temperatures is used
to estimate the dry edge. In Tang et al. [56], the wet edge is assumed to be parallel to x-axis with
constant surface temperature. Herein, a slight modification is done to estimate the wet edge similar to
the dry edge (in that case, the wet edge temperature is not kept as a constant) by removing outliers.
This process thus removes specious dry and wet points before determining the dry and wet edges and
their corresponding temperature endmembers.

Figure 2 gives an illustration of the calculation of wet and dry edges from LST- fv graph by using
two different algorithms. For DISPATCHLin, the temperature endmembers (Ts,dry and Ts,wet) are the
minimum and maximum temperature within a given SMAP pixel. Dry and wet edges are calculated
independently for every SMAP pixel in the image. It can be seen that if we apply the same algorithm
for the calculation of temperature endmembers at 100 m resolution, the temperature endmember
calculation may overestimate the dry edge and underestimate the wet edge. When removing the
outliers from the temperature endmember calculation [56], the dry and wet edges follow more closely
the contour of data points, and the estimated temperature endmembers are supposedly more accurate.

outliers

Ts,dry

s,wetT

v,wetT

Tv,dry

Figure 2. Two different algorithms to calculate the wet and dry edges of the LST-fv feature space for
100 m resolution Landsat data on DOY 38.

2.5. Sequential Downscaling

Figure 3 presents a flow chart of the sequential disaggregation in 3 successive steps. SMAP SM is
first disaggregated from 36 km to 1 km resolution using MODIS data and DISPATCHLin algorithm.
Then the 1 km resolution SM is aggregated at ISR. Next, the ISR SM is further disaggregated at 100 m
resolution using Landsat data and DISPATCHExp algorithm.
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Individually 
downscaled

multiple grids

multiple grids

Moving 
average 
window
algorithm

1 km
MODIS LST

1km
MODIS NDVI

Figure 3. Flowchart of the stepwise sequential downscaling approach from 36 km resolution to 1 km
(DISPATCHLin), from 1 km to ISR (aggregation to variable ISR), and from ISR to 100 m (DISPATCHExp).

The reason for the selection of a range of ISRs is associated with the contextual nature of
DISPATCH, which makes the determination of temperature endmembers i.e., Ts,dry and Ts,wet,
and hence the 100 m resolution Landsat-derived SEE, dependent on the spatial extent [59]. In particular,
the larger the spatial extent, the more heterogeneous the surface becomes. Therefore, the accuracy in
temperature endmembers should increase with the spatial extent, as long as the meteorological
forcing data remain relatively uniform (underlying assumption of the contextual analysis).
Therefore, an optimal ISR in terms of SM accuracy at the 100 m resolution appears to be a compromise
between (i) the accuracy in temperature endmembers and (ii) the gap between LR and HR. One major
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objective of this paper is to check the sensitivity of the sequential approach to ISR and to propose
an optimal ISR for routine application.

Figure 4 plots the LST- fv feature space obtained for 100 m resolution Landsat data collected
on DOY 38 and for 4 distinct spatial extents within the study area: 1 km, 3 km, 10 km, and 30 km.
It can be seen that the range of LST and fv values increases with the spatial extent over which the
temperature endmembers are estimated. The mean LST is also larger for the smaller ISR values;
which may induce bias in the disaggregation. If we consider that the temperature endmembers
retrieved from the 10 km pixel resemble the real dry and wet soil temperatures, then more uncertainty
can be seen while decreasing the spatial extent. An inaccurate representation of the wet/dry
and bare/vegetated soil conditions within the spatial extent (ISR pixel) will directly affect the
calculation of temperature endmembers and hence the thermal-derived SEE, and finally downscaling.
Conversely, when extending (too much) the spatial extent, the spatial variability of air temperature
(and wind speed notably) may reach a critical level that invalidates the contextual approach’s
assumption regarding the uniformity of meteorological forcing. In this respect, the LST- fv feature space
plotted in Figure 4 for a spatial extent of 30 km indicates that two trapezoidal shapes appear separately,
which may be a signature of sub-areas having different meteorological forcing. Both constraints
(heterogeneity of surface conditions and homogeneity of meteorological conditions) actually represent
an important rationale for implementing a sequential method with an ISR between the 1 km and
SMAP resolution.

Figure 4. The LST- fv feature space is plotted for 100 m resolution pixels within a 30 km, 10 km, 3 km
and 1 km ISR pixel.

Once the spatial extent of the LST- fv feature space and the algorithm for estimating temperature
endmembers have been defined, one can check the linearity or non-linearity of the SEE(SM) model and
its consistency with the SEE(LST) model. Figure 5 plots Landsat-derived SEE as a function of in-situ SM
for DOY 14. The predictions of the SEE(SM) model of Equation (7) is also plotted, with SMp estimated
by setting in Equation (8) LR SM and LR SEE to the mean in situ SM and the mean Landsat-derived
SEE, respectively. The correlation coefficient and slope between SEE(SM) and SEE(LST) estimates are
0.87 and 0.41 for DISPATCHExp algorithm. For comparison purposes, Figure 5 also plots SEE(SM)
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and SEE(LST) predictions for the DISPATCHLin algorithm. The correlation coefficient and slope
between both models are 0.87 and 0.17 respectively. Even though the correlation coefficient shows
similar values for both DISPATCHLin and DISPATCHExp, the slope is significantly lower than that for
DISPATCHExp. Those results are fully consistent with our approach to make the SEE(SM) non-linear
(using the exponential form of [57]) and to improve the temperature endmembers algorithm [56] of the
SEE(LST) model within the new DISPATCHExp downscaling algorithm.

Figure 5. Landsat-derived SEE as a function of in situ SM superimposed with the SEE(SM) model for
both DISPATCHLin and DISPATCHExp algorithms, for data on DOY 14.

2.6. Inclusion of Multiple ISR Grids

The use of multiple LR grids as input to disaggregation approaches has been proposed in
Hoehn et al. [60] and Merlin et al. [26]. Hoehn et al. [60] compared downscaling results obtained from
single coarse resolution grid (using fixed window) and using multiple overlapping coarse resolution
grids (by shifting windows). Shifting windows using multiple grids showed better performance as
compared to the fixed window case with respect to error and smoothness.

In this paper, we propose to define multiple ISR grids as an input to DISPATCHExp as in
Merlin et al. [26] and Hoehn et al. [60]. However, one difference herein is that the multiple ISR
grids are built from actual observations at the (higher) 1 km resolution and consequently, they are
derived neither from the LR overlapped observations [26], nor from the oversampling of LR (SMAP)
observations [60].

Figure 6 gives an illustration of the moving average window algorithm, over the 1 km resolution
grid of the DISPATCHLin output data. The algorithm successively shifts an ISR grid in both directions
(east-west and north-south) of a predefined constant distance. In the diagram of Figure 6, ISR is set
to 10 km and the distance separating the so generated ISR grids is set to 2 km. Once the multiple
grids have been generated, they are independently used as input to DISPATCHExp. As a first step,
multiple ISR SM grids are thus overlapped with 100 m resolution Landsat data and disaggregated
separately to get multiple 100 m resolution disaggregated SM images. As a second step, the separate
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100 m resolution downscaled SM images are composited (simple average) to produce a single 100 m
resolution SM disaggregated image.

m
3
/m

3
SM

2 km

ISR (10 km)

2 km

ISR (10 km)

Figure 6. Illustration of the moving average window algorithm applied to the 1 km resolution
DISPATCHLin SM with a shift of ISR (set to 10 km in this case) grids in both directions (east-west and
north-south) with a constant spacing of 2 km between ISR grids.

3. Results

This section analyzes the potential of the sequential downscaling approach by investigating (1) the
method calibration (2) the method accuracy for a range of ISR values using the single grid algorithm,
and (3) the usefulness of the multiple grid (compared to the single grid) algorithm.

3.1. Calibration

The calibration of SMp parameter in Equation (8) is undertaken using the DISPATCHLin data
sets derived from SMAP, on each date when Landsat data are available. Figure 7 plots SMp as
a function of ISR for each Landsat overpass date. The mean and standard deviation of retrieved SMp

are computed within the 30 km by 30 km study domain. It can be seen that for all dates, the retrieved
SMp behaves quite similarly with respect to ISR. It sharply increases for an ISR increasing from
1 km to 3–4 km and then keeps a relatively stable value for ISR values ranging between 3–4 km
and 30 km. Note that significant fluctuations of SMp are observed for ISR values larger than 15 km,
due to the bounded extent of the study area i.e., the mean SMp is computed using a single retrieved
value. However, the SMp value after convergence is not fully consistent for different dates. In fact,
the estimation of SMp in Equation (8) mainly depends on LR SM and SEE data, so that any error in
SMAP SM and Landsat-derived SEE estimates leads to temporal variabilities in retrieved SMp.

The standard deviation of the retrieved SMp values within the 30 km by 30 km area is also
plotted as a function of ISR ranging from 1 km to 30 km. It can be seen that the spatial variability
in retrieved SMp significantly decreases in the higher ISR range to reach a minimum for ISR values
larger than 10 km. Note that the standard deviation becomes zero for ISR equal or larger than 15 km
(not shown in the graph) because in such cases, a single ISR pixel is obtained within the whole extent
of the (30 km wide) study area. Figure 8 presents the images of SMp retrieved for ISR equal to
1 km, 3 km, 10 km, and 30 km. The spatial variability of SMp strongly increases when ISR decreases
and tends to 1 km and the average of 1 km resolution SMp is significantly different from the SMp
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retrieved over 10 km ISR pixels. Such behavior is explained by the non-linear impact of LR SEE on
SMp (see Equation (8), and by the non-representativeness of temperature endmembers for ISR lower
than 5 km.

Figure 7. Mean (top) and standard deviation (bottom) of the parameter SMp (Equation (8) plotted as
function of ISR ranging from 1 to 30 km for each Landsat overpass date separately.

m3/m3

SMp

Figure 8. SMp parameter images derived from SMAP data on DOY 38 for ISR equal to 30 km, 10 km,
3 km and 1 km from left to right, respectively

From the results presented in Figures 7 and 8, it can be concluded that (1) the retrieved SMp

is spatially and temporally representative for ISR equal to or larger than 10 km, and (2) significant
spatial/temporal variabilities of SMp (associated with uncertainties in temperature endmembers) and
non linear effects (associated with the non linear SEE(SM) relationship) are obtained for ISR lower than
5 km.

3.2. Evaluation of 100 m Disaggregated SM

The SMp retrieved from Equation (8) is first used to calculate the derivative from the average of
Equations (9) and (10). A range of different ISR values is then chosen to evaluate the sensitivity of
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100 m resolution disaggregated SM to ISR. To do so, the 1 km resolution disaggregated SM (the output
of DISPATCHLin) is aggregated to 1, 2, 3, . . . . . . , and 30 km and in each case, the aggregated ISR SM
together with its associated spatial extent is used as an input to DISPATCHExp. Such a sensitivity
analysis is undertaken for each SMAP overpass date, separately.

The statistical comparison in terms of correlation coefficient (R), slope of the linear regression
(slope), root mean square deviation (RMSD) and absolute mean bias (MB) between DISPATCHExp
disaggregated SM and in-situ SM is illustrated in Figure 9 for ISR ranging from 1 to 30 km for each
sampling date. The temporal variability (standard deviation) of R and of the slope of the linear
regression is relatively large in the lower range of ISR values. The slope gets even negative values for
ISR lower than 5 km on several dates, while the slope is always positive for ISR larger than 10 km.
This result is consistent with the stability of SMp retrievals observed previously for ISR larger than
5 km.

Figure 9. Correlation coefficient (R), slope of the linear regression, absolute mean bias (MB) and root
mean square difference (RMSD) between 100 m resolution disaggregated and in situ SM for a range of
ISR values (from 1 km to 30 km) for each sampling date separately.

When considering the full ISR range (1–30 km), and despite the date-to-date variability, a slight
general increase of R is obtained in the 1–10 km range, whereas it keeps an approximately constant
value for larger ISRs. Regarding the slope of the linear regression, an opposite finding is obtained.
For ISR values larger than 5 km, the slope keeps decreasing with a value at ISR = 30 km mostly very
close to zero. Note that the sudden increase of the slope for ISR = 20 km on DOY 78 is due to the
fact that statistical results are obtained from a single (unrepresentative) ISR pixel that fits into the
30 km by 30 km study area. The decrease of the slope is attributed to the gap between the LR and the
HR, which increases with ISR. In fact, the disaggregation efficiency (as defined in [61]) is expected to
decrease with the LR to HR ratio, due to the decrease of the spatial variability represented at HR by
the LR observation. The slope of the linear regression was actually found to be a good indicator of the
disaggregation efficiency [61], consistent with the results presented in Figure 9. A second important
impact of ISR is the increase of the absolute MB between the 100 m resolution disaggregated and in situ
SM, especially in the 10–30 km range. The worsening of downscaling performances (in terms of the
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slope of the linear regression and MB) in the 10–30 km range is due to the linear approximation of the
downscaling relationship (Equation (3). An optimal ISR is thus found at around 10 km. Optimal results
in terms of RMSD between 100 m resolution and in-situ SM is actually obtained for ISR close to 10 km.
Therefore, ISR set to 10 km throughout the rest of the paper.

For illustration purposes, Figure 10 represents the sequential downscaling of SM from SMAP data
collected on DOY 38: the disaggregation of SMAP SM to 1 km resolution, the aggregation of the 1 km
resolution disaggregated SM to ISR (10 km), and the disaggregation of ISR SM to 100 m resolution. It is
reminded that the extra aggregation step is undertaken (i) to increase the representativeness/accuracy
of the temperature endmembers extrapolated from the LST- fv feature space, (ii) to increase the stability
of the disaggregation calibration (via the SMp retrieval) and (iii) to reduce random uncertainties in the
ISR SM used as input to DISPATCHExp.

SM
m3
/m3

Figure 10. From left to right: images of 36 km resolution SMAP SM, 1 km resolution DISPATCHExp SM,
10 km resolution aggregated DISPATCHExp SM and 100 m resolution disaggregated SM on DOY 38.

As a first evaluation of the disaggregation at 100 m resolution independently from the uncertainty
in SMAP data, DISPATCHExp is run for all sampling dates (DOY 6, 14, 30, 38, 62 and 78) by setting
the ISR observation to a fraction of the mean (daily areal average of) in-situ SM. By considering that
the average of all in-situ SM measurements is representative of the SM over the irrigated area and
that the SM over dry land is about 0, a rough estimate of the LR SM is derived as half the mean in
situ measurements (the fraction of dry land in the 10 km ISR pixel covering the experimental fields
is about 50%). Figure 11 plots the 100 m resolution disaggregated SM versus in situ measurements.
Statistical results in terms of R, slope of the linear regression, absolute MB and RMSD are reported
in Table 1 for synthetic LR. R is in the range 0.6–0.9 for four dates (DOY 6, 14, 30 and 78), while it
is in the range 0.1–0.2 on two dates (DOY 38 and 62). In terms of correlation, better results are
obtained on the sampling dates with a larger spatial variability in SM measurements, and reciprocally,
poorer results are obtained when SM is relatively uniform at the sub-pixel scale. In terms of bias,
however, relatively low absolute MB (lower than 0.03 m3/m3) is obtained except for DOY 6, 62 and
78 with an absolute MB of 0.07, 0.08 and 0.11 m3/m3, respectively. The reason is that the mean in
situ measurements (weighted by the fraction of irrigated land) may not be fully representative of the
real SM at the ISR (10 km) scale, as irrigation is not applied uniformly within the irrigated perimeter.
Nevertheless, the application of DISPATCHExp to synthetic LR (ISR) SM data allows for assessing
the performance of the downscaling methodology independently of SMAP data and DISPATCHLin
algorithm. We conclude that DISPATCHExp is relatively efficient when the sub-pixel variability is
larger than 0.06 m3/m3.

Next, DISPATCHExp is tested using SMAP data (ISR is still set to 10 km in the sequential
downscaling). Figure 12 represents the comparison between DISPATCHExp and in situ SM and
Table 1 for SMAP single grid reports the associated statistical results. It can be seen that results are not
significantly degraded in terms of R compared to the case when using synthetic LR observation
as input to DISPATCHExp (see Table 1). In fact, the sub-pixel variability of SM is represented
by the Landsat-derived SEE in both real and synthetic cases, which explains similar R results.
However, the DISPATCHLin data derived from SMAP data may involve LR differences in terms of MB
and RSMD at 100 m resolution.
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Figure 11. Graph plotting 100 m resolution disaggregated versus in-situ SM with the LR SM set to
a fraction of the mean in-situ SM.

Figure 12. Same as Figure 11 but with LR SM set to the DISPATCHLin SM obtained from SMAP and
aggregated at 10 km resolution (single grid).
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Table 1. Statistical results in terms of correlation coefficient (R), slope of the linear regression, absolute
mean bias (MB) and root mean square difference (RMSD) between 100 m resolution disaggregated and
in-situ SM for Synthetic, SMAP single grid and SMAP multiple grid LR SM cases separately (ISR is set
to 10 km).

Day of Year
(DOY)

Synthetic SMAP Single Grid SMAP Multiple Grid

R
(-)

Slope
(-)

Absolute MB
(m3/m3)

RMSD
(m3/m3)

R
(-)

Slope
(-)

Absolute MB
(m3/m3)

RMSD
(m3/m3)

R
(-)

Slope
(-)

Absolute MB
(m3/m3)

RMSD
(m3/m3)

6 0.59 0.27 0.069 0.15 0.57 0.24 0.05 0.14 0.54 0.23 0.01 0.14
14 0.90 0.55 0.014 0.049 0.87 0.44 0.03 0.06 0.90 0.47 0.03 0.06
30 0.69 0.59 0.006 0.066 0.72 0.44 0.14 0.15 0.70 0.52 0.12 0.14
38 0.10 0.10 0.03 0.08 0.11 0.07 0.02 0.07 0.12 0.08 0.03 0.07
62 0.22 0.35 0.08 0.13 0.16 0.14 0.002 0.31 0.20 0.21 0.07 0.10
78 0.65 1.04 0.11 0.15 0.49 0.40 0.02 0.08 0.54 0.31 0.12 0.14
All 0.53 0.48 0.052 0.104 0.55 0.34 0.05 0.09 0.57 0.35 0.08 0.10

3.3. Reducing Boxy Artifact

As demonstrated and discussed above, setting an ISR between the SMAP and Landsat resolutions
has many advantages in terms of accuracy and robustness of DISPATCHExp. However, one drawback
with an ISR equal to 10 km, is that the ISR grid may be still apparent in the 100 m resolution
disaggregated image. Such effects are called boxy artifacts [62]. To reduce these boxy artifacts
and to potentially increase the accuracy in 100 m disaggregated SM, a Monte-Carlo sampling method
is proposed as an extra step in the pre and post-processing of input/output data of DISPATCHExp.

The preprocessing steps include: (i) selecting 10 km resolution SM pixels such that an equal
number of HR (Landsat) pixels falls within each ISR pixel (ii) shifting the 10 km ISR pixels with
a distance of 2 km in east-west and north-south directions, so as to generate a set of 25 ISR SM
images, (iii) overlapping each image with HR Landsat optical/thermal data, and (iv) disaggregating
individually each ISR image to 100 m resolution. Therefore, a set of 25 possible disaggregated 100 m
SM images is obtained. The post-processing step consists in combining the 25 disaggregated SM
images. The simple averaging is used to produce a single 100 m disaggregated image.

The multiple-grid procedure illustrated in Figure 6 is applied over our 30 km by 30 km study area
for SMAP data and for each date separately. Figure 13 presents the 100 m resolution SM disaggregated
images by applying the single grid and multiple grid algorithms for each date separately. It can be seen
on DOY 6, 38 and 78 that the boxy artifacts at 10 km resolution present on the image obtained using
the single grid algorithm have completely disappeared in the multiple grids application. Note that
the boxy artifacts are not visible for the other dates due to strips (data gaps) present in the Landsat
7 images. The moving window algorithm also smoothens the disaggregated image at the image
borders. Especially, the errors that generally occur at the corners of the image due to sudden changes
in temperature endmembers and coarse scale SM are reduced. The composited image is of better
quality by reducing the random errors associated with the uncertainty in LR observations and the
disaggregation methodology (involving non-linear relationships between SEE and SM), which make
the disaggregated image more realistic than using the single grid algorithm.

Table 2 reports the standard deviation of 100 m resolution disaggregated SM within each image
for the single and multiple grid algorithms, separately. The standard deviation is systematically lower
when applying multiple grids for all the dates. It means that the multiple grid application significantly
reduces the variabilities attributed to random uncertainties in DISPATCHExp input data. A quantitative
comparison between 100 m disaggregated SM and in situ measurements is also proposed in Table 1
for SMAP multiple grid. By comparing the statistical results from the single grid and multiple
grid (Table 1) algorithm, it can be seen that both the R and slope of the linear regression between
100 m resolution disaggregated and in situ SM are generally increased by applying multiple grids.
Therefore, the proposed moving window method not only provides continuous SM images but also
increases the efficiency of the disaggregation approach at 100 m resolution.
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SM

Figure 13. 100 m resolution disaggregated SMAP SM images when using an ISR set to 10 km for single
grid (top) and moving average window (bottom) algorithm for each Landsat overpass date separately.

Table 2. Standard deviation of 100 m resolution disaggregated SM within each DISPATCHExp image
for the single grid and multiple grid algorithm.

Day of Year (DOY) Single Grid (m3/m3) Multiple Grid (m3/m3)

6 0.135 0.115
14 0.075 0.069
30 0.075 0.068
38 0.058 0.055
62 0.096 0.092
78 0.094 0.052
All 0.089 0.075

4. Discussion

High spatial resolution soil moisture data are fundamental for hydro-agricultural purposes as
well as for other kind of applications. The DISPATCH method sequentially applied to SMAP data at
1 km resolution (using MODIS) and at 100 m resolution (using Landsat) has potential for providing
such data. However, the performance of the approach may depend on the surface and atmospheric
conditions. In addition, the temporal resolution of 100 m resolution DISPATCH data is currently
limited by (i) the repeat cycle (16 days) of Landsat and (ii) the cloud free conditions required to
use optical/thermal data. This section thus discusses the applicability and expected performance of
DISPATCH in a context wider than our semi-arid irrigated study area.

The disaggregation of coarse scale soil moisture data is still a relatively recent research avenue [24],
and consequently, few studies have compared the performance of existing methods. Sabaghy et al. [23]
undertook the first comprehensive and systematic comparison study of several radar-based and
optical/thermal-based SM downscaling methods. The SM downscaled from SMOS and SMAP
data were evaluated against in situ as well as airborne SM estimates using the AACES data set in
Southeastern Australia. DISPATCH was among the most efficient downscaling methods, especially when
evaluating the spatial representation at 1 km resolution. The results presented in this paper are consistent
with Sabaghy et al. [23] and previous validation exercises of DISPATCH. However, several intrinsic
limitations common to optical/thermal-based downscaling approaches needs to be acknowledged, while
several weaknesses specific to DISPATCH could be addressed in the future.

In this study, the mean RMSD (about 0.10 m3/m3) between disaggregated SMAP and in situ SM
is relatively large and need to be interpreted in terms of bias and precision and to be compared with
the spatio-temporal variability of SM existing within the study area. First, the mean RMSD is mostly
explained by daily biases (mean bias of about 0.08 m3/m3) while the slope of the linear regression
between disaggregated and in-situ SM is systematically and significantly positive. Second, the spatial
variability of SM at 100 m resolution is extreme over the irrigated area with surface conditions ranging



Remote Sens. 2019, 11, 1863 18 of 23

from bone dry to soil fully saturated. Over the sampled area, the minimum and maximum measured SM
value was 0.03 to 0.45 m3/m3, respectively. In such highly heterogeneous areas, relatively large errors in
SM estimates are thus expected. It is however reminded that the disaggregation error should be smaller
than the actual SM variability, as an indicator of the relevance of such disaggregated SM data [63].

It is reminded that the DISPATCH methodology relies on the relationship between moisture
and the LST. LST is in fact a signature of the surface energy balance, which is highly linked to the
evaporation flux and the associated soil water availability. NDVI data are used in DISPATCH to
partition the LST into its soil and vegetation components, given that the soil temperature is more
directly linked to the top SM while the vegetation temperature is related to the deeper root zone
SM [26]. Therefore, the application of the DISPATCH method over irrigated regions is fully relevant.
In our study area, flood irrigation consists in applying about 60 mm in several (typically 4) hours
so as to flood the entire field. However, the irrigation water rapidly infiltrates into the soil so that
there is little chance that the Landsat satellite actually “sees” any inundated field (although it may
potentially happen), all the more as the typical frequency of flood irrigations is one every 3 weeks.
The flood irrigation technique is still widely applied in Morocco and in many developing countries
where traditional practices persist. Note that the application of DISPATCH over drip irrigated crops
would require thermal data with a high repeat cycle, consistent with the irrigation frequency for the
drop-by-drop technique.

One major limitation of DISPATCH is the availability of optical/thermal data. DISPATCH has
been tested mostly under arid or semi-arid regions where the cloud cover is rather small. In particular,
the cloud cover of the Haouz plain is about 40% from January to May while its overall yearly
percentage is 30% [64]. The 100 m resolution downscaled SM time series is thus expected to be
much less dense over other regions having a larger cloud cover. In addition, as DISPATCH relies on the
LST-moisture relationship, the performance of downscaling depends on the atmospheric evaporative
demand. Therefore, testing its applicability to different climatic conditions will be needed in the future,
notably by identifying moisture-limited and energy-limited regions.

Other limitations specific to DISPATCH includes the non-linear behavior of the SEE(SM)
relationship and the so-called “boxiness” within the downscaled image. From Figures 11 and 12,
relationships between disaggregated and in-situ SM appear to be non-linear on several dates (DOY
6 notably). This is explained by (i) the non-linear behavior of SEE for a range of SM values and
(ii) the linear approximation of DISPATCH around the LR SM (Equation (3). It seems that using
a non-linear SEE(SM) model in Equation (3) is not sufficient to represent the nonlinear SEE(SM)
relationship when the SM variability is extreme. Future studies will address this issue by, for instance,
correcting the SEE(SM) relationship when the sub-pixel SM variability is larger than a given threshold.
Regarding the “boxiness” within the image, it is a relatively small effect compared to the spatial
variability of SM represented by the DISPATCH method. Quantitatively, the RMSD between the SM
produced from single grid and multiple grid applications is 0.019 m3/m3, while the standard deviation
of disaggregated SM within the study area is 0.089 and 0.075 m3/m3 for the single and multiple grid
case, respectively. In fact, as shown in Figure 13 the single grid application (without removing the
boxiness within the image) already provides 100 m resolution SM images with borders between ISR
pixels very consistent from one ISR pixel to another adjacent ISR pixel. Therefore, the stepwise method
proposed in this paper does transfer in a satisfying manner the SM information from the 36 km SMAP
resolution to the targeted 100 m resolution.

5. Conclusions

A stepwise disaggregation approach of SMAP SM is developed at 100 m resolution using
the DISPATCH methodology and Landsat data. SMAP SM is first disaggregated from 36 km to
1 km resolution using MODIS data and DISPATCHLin algorithm. Then the 1 km resolution SM is
aggregated as ISR. Next, the ISR SM is further disaggregated at 100 m resolution using Landsat
data and DISPATCHExp algorithm. In order to take into account the increase of resolution, the new
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DISPATCHExp algorithm brings several innovations compared to the DISPATCH version currently
implemented at CATDS (DISPATCHLin) in two aspects: (i) the SEE is a non-linear function of SM,
and (ii) the SEE(LST) model is improved by better constraining the determination of temperature
endmembers. The approach is evaluated using in situ measurements collected on the dates with
concurrent SMAP, MODIS, and Landsat overpasses.

ISR is varied between 1 km and 30 km with a 1 km step, and sensitivity of the calibration
parameter (SMp) of DISPATCHExp to ISR is analyzed. The retrieved SMp is spatially and temporally
representative for ISR equal or larger than 10 km, while significant spatial variabilities of SMp

(associated with uncertainties in temperature endmembers) and non-linear effects (associated with
the non-linear SEE(SM) relationship) are obtained for ISR lower than 5 km. Optimal results in
terms of RMSD between 100 m resolution and in situ SM are obtained for ISR close to 10 km.
Therefore, the two-step disaggregation is more efficient than the direct disaggregation from SMAP to
100 m resolution. This is due to the trade-off existing between the performance (increasing with the
ISR and its sub-pixel variability) of the contextual-based DISPATCH method and the statistical match
(decreasing with ISR) between ISR remotely sensed and field-scale SM estimates. The correlation
coefficient between 100 m resolution disaggregated and in situ SM ranges between 0.5–0.9 for four
out of the six sampling dates. Better results are obtained on the sampling dates with a larger spatial
variability in SM measurements, and reciprocally, poorer results are obtained when SM is relatively
uniform at the sub-pixel scale.

Finally, a new method is proposed to reduce boxy artifacts at 10 km resolution in 100 m resolution
disaggregated SM images. The multiple grid application perfectly smoothens the composited 100 m
resolution disaggregated SM image and, in addition, quantitatively improves the efficiency of the
downscaling approach by increasing the correlation coefficient and slope of the linear regression
between 100 m resolution disaggregated and in situ SM.

The DISPATCH-based sequential disaggregation scheme has the advantage of being independent
on ground-based measurements, as all input parameters (i.e., temperature endmembers and
SMp) are calibrated using remote sensing data. However, the unavailability of optical/thermal
(MODIS/Landsat) data in cloudy conditions is still a severe limitation for operational applications.
One key avenue for producing SM data sets at high spatial-temporal resolution could be the synergy
with radar-based approaches [18,24]. Recently, Amazirh et al. [49] calibrated the main parameters of
a radar-based SM retrieval method using a thermal-derived SM proxy. In the same vein, the 100 m
resolution DISPATCHExp SM data sets obtained from SMAP data on MODIS/Landsat clear sky days
could represent a cornerstone in the construction of synergies between passive/active microwave and
optical/thermal data.
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