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Abstract: For the planning and sustainable management of forest resources, well-managed plantations
are of great significance to mitigate the decrease of forested areas. Monitoring these planted forests
is essential for forest resource inventories. In this study, two ALOS PALSAR-2 quad-polarimetric
synthetic aperture radar (SAR) images and ground measurements were employed to estimate growing
stem volume (GSV) of Chinese fir plantations located in a hilly area of southern China. To investigate
the relationships between forest GSV and polarization characteristics, single and fused variables were
derived by the Yamaguchi decomposition and the saturation value of GSV was estimated using a
semi-exponential empirical model as a base model. Based on the estimated saturation values and
relative root mean square error (RRMSE), the single and fused characteristics and corresponding
models were selected and integrated, which led to a novel saturation-based multivariate method
used to improve the GSV estimation and mapping of Chinese fir plantations. The new findings
included: (1) All the original polarimetric characteristics, statistically, were not significantly correlated
with the forest GSV, and their logarithm and ratio transformation fused variables greatly improved
the correlations, thus the estimation accuracy of the forest GSV. (2) The logarithm transformation
of surface scattering resulted in the greatest saturation, value but the logarithm transformation of
double-bounce scattering resulted in the smallest RRMSE of the GSV estimates. (3) Compared with
the single transformations, the fused variables led to more reasonable saturation values and obviously
reduced the values of RRMSE. (4) The saturation-based multivariate method led to more accurate
estimates of the forest GSV than the univariate method, with the smallest value (29.64%) of RRMSE
achieved using the set of six variables. This implied that the novel saturation-based multivariate
method provided greater potential to improve the estimation and mapping of the forest GSV.

Keywords: polarimetric SAR; Yamaguchi decomposition; growing stem volume; saturation-based
multivariate method; Chinese fir plantation

1. Introduction

Through carbon sequestration and biomass accumulation, planted forests play a major role in
mitigation of global climate change, due to the reduction of natural forests and increase of plantations
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during the past four decades. However, it is often difficult to directly obtain forest above ground
biomass (AGB) for large areas. Rather than what is done for natural forests, instead, the AGB of
plantations is usually derived by first measuring tree heights and diameters at breast height and
calculating tree growing stem volumes (GSV) using allometric equations and then multiplying GSV
with biomass expansion factors; that is, gravity coefficients by tree species. Thus, GSV is a basic and key
factor in the planning and sustainable management of planted forest resources at regional scales [1–3].

However, GSV is often obtained by ground measurements by sampling, which is time-consuming,
labor-intensive and costly [4,5]. The topographic complexity of mountainous regions makes the
ground-based survey even more difficult and costly. Remote sensing images have been widely used to
map GSV on regional scales by combining them with field measurements of GSV at plot level. Because
of the impacts of clouds, fogs and moisture, it is very hard to acquire adequate optical images for
estimation of forest GSV in southern China, in which there is a subtropical monsoon climate. For that
purpose, microwave remote sensing imagery that is less affected by clouds, fogs and moisture bears
significant potential. Moreover, synthetic aperture radar (SAR) data coupled with quad-polarimetric
techniques have a stronger ability to account for the propagation and scattering mechanism than the
single polarimetric SAR images [6]. With the capacity to penetrate forest canopies and interact with
forest structures, quad-polarimetric SAR images provide great potential to improve the accuracy of
forest GSV monitoring and assessment [6–9].

Polarimetric characteristics that are highly sensitive to forest GSV can be used to accurately
estimate forest GSV [6–8,10,11]. There are three kinds of polarimetric characteristics associated
with forest GSV. The first one is the trio of backscattering coefficients—horizontal-horizontal (HH),
horizontal-vertical (HV) and vertical-vertical (VV) [7,8,12,13]. The backscattering coefficients of the
dual and quad-polarization SAR images have been proved to be appropriate for estimating forest
GSV [7,8,11–17]. The second one is the coherence of SAR interferometry (InSAR) with different
bands and polarizations [11,12,18–23]. The last one is the multiple features derived by polarimetric
decomposition [24–31]. There are often strong correlations between the powers of decomposition
components and forest GSV [27–31]. Polarimetric SAR images provide plenty of independent variables
that can be used to estimate forest GSV, but most of the models employ only one kind of polarimetric
characteristic and ignore other polarimetric properties related to forest structure parameters. How
to integrate the related polarimetric characteristics becomes meaningful to improve forest GSV
estimation accuracy.

The three kinds of polarimetric characteristics have been successfully used to estimate GSV
of different forests. However, without physical meaning related to scatterings, the backscattering
coefficients from different polarizations become saturated at certain levels of GSV [10,11]. It is
also well known that the coherence of InSAR has great potential to map forest parameters, but the
approach requires two appropriate SAR images related to a temporal baseline, spatial baseline and
environmental conditions [18–23]. The polarimetric decomposition theorem has been developed
to extract physical parameters from SAR images without any ground measurements. Several
decomposition approaches have been proposed, including the Cloude decomposition, Freeman
three-component decomposition and Yamaguchi four-component decomposition [24–28]. The Cloude
decomposition has been commonly used and continuously improved for target classification [24,25].
The Freeman decomposition is developed based on the three-component scattering model related
to the surface, double-bounce and volume scatterings [24–27]. Based on Freeman decomposition,
Yamaguchi proposed a four-component scattering model by introducing an additional term, helix
scattering, for non-reflection symmetric cases [24,25,28–32]. Different from the Freeman decomposition,
the Yamaguchi decomposition takes into account the modification of the volume scattering matrix
and decreases the mistakes for distinguishing the volume scattering from double-bounce scattering.
With the explicitly physical property related to scattering, the scattering components from Yamaguchi
decomposition are more suitable for mapping forest parameters [28–32].
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Furthermore, polarimetric characteristics become saturated at a certain GSV level, which means that
the polarimetric properties are not sensitive to the changes of forest GSV after a certain value [9,20–22].
Analyzing the saturation levels of the polarimetric characteristics, therefore, has great potential to
improve the mapping accuracy of forest GSV [9,31]. Both parametric and non-parametric methods
(Table 1) have been employed to detect the saturation levels [7–10,12–20,32–35]. The non-parametric
methods mean that the saturation values can be indirectly retrieved by visually interpreting the
extreme values of linear models and the trends of nonlinear models [14,16,36,37]. For example,
Gonçalves et al. [36] and Abdullahi et al. [37] obtained the GSV saturation levels exceeding 300 m3/ha
for tropical forests and complex temperate forests using the extreme values of a linear model. But,
determining the extreme values is not easy and accurate. A semi-exponential model derived from
the simplified water cloud model (WCM) is one of the parametric methods in which the saturation
level is considered as one of parameters in the model [20–23,31,34–39]. Then, the saturation values
are directly solved by non-linear algorithms with initial values of parameters provided [14,38–40].
The saturation levels vary with polarimetric characteristics because of different sensitivities to forest
GSV. The selected independent variable with a low saturation level makes it hard to estimate the
values of forest GSV that exceed the saturation level. On the other hand, taking advantage of different
polarimetric characteristics and accurately capturing the saturation levels would help to improve the
accuracy for estimating forest GSV.

Table 1. Previous studies investigating the potential of growing stem volume (GSV) saturation using
synthetic aperture radar (SAR) images.

Authors Data Area Forest
Type Model Saturation

(m3/ha)
RMSE
(m3/ha)

RRMSE
(%)

Santoro
(2002) [18]

C-band
ERS-1/2

(coherence)
Sweden Boreal

coniferous,
Semi-Empirical

Model Max: 350 Min:22
Max:152

Not
estimated

Santoro
(2006) [14]

L-band
JERS-1

(backscatter)

Sweden,
Finland
Siberia

Boreal
coniferous,

Semi-Empirical
Model

Min: 100
Max: 300

Min: 36
Max: 152

Min: 25%
Max:68%

Pulliainen
(2003) [35]

C band
ERS-1/2

(coherence)
Finland

Norway
spruce/Scots

pine

Semi-Empirical
Model

Not
estimated

Not
estimated Max:48%

Askne
(2005) [34]

C band
ERS-1/2

(coherence)
Finland

boreal
coniferous

species

Semi-Empirical
Model

Interferometric
HUT Model

Not
estimated

Not
estimated

Not
estimated

Antropov
(2013) [10]

ALOS
PALSAR

dual
polarization
(backscatter)

Finland mixed
forest.

Semi-Empirical
Model 150–200 Min: 40

Max: 66
Min: 42%
Max:63%

Chowdhury
(2013) [7]

ALOS
PALSAR

Quad
polarization
(backscatter)

Central
Siberia

mixed
forest.

Semi-Empirical
Model

Min: 80
Max: 595

Not
estimated

Not
estimated

Chowdhury
(2014) [20]

ALOS
PALSAR

Quad
polarization
(coherence)

Central
Siberia

mixed
forest.

Semi-Empirical
Model 250 Min: 33

Max: 42
Not

estimated

The previous studies of using SAR images to determine the saturation values and estimate GSV
mainly focused on the use of semi-empirical models and boreal and natural forests (Table 1), and the
obtained saturation values of GSV varied from 80 to 595 m3/ha. There have been very few reports that
dealt with planted forests. The area of planted forests in China ranks the highest in the world. Chinese
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fir is the top tree species out of the plantations in China and distributed in more than 10 provinces
located in the East, Southeast, South and central south, and southwestern parts of China. Thus, Chinese
fir is the most important species for wood supply in China and its contribution to sustainable forest
ecosystems and global carbon cycling is also very significant. There have been few studies to explore
the saturation of GSV using SAR and optical images for estimation of Chinese fir forest biomass and
GSV. The planted Chinese fir forests have complicated and different canopy structures from other
species because of different climatic, topographic and soil properties. Determining the saturation
values of GSV and accurately deriving its spatial distribution become very important.

The previous methods for mapping GSV of Chinese fir plantations have concentrated on the
use of multi-source remote sensing data, but using quad-polarimetric SAR images has been rarely
reported [41–43]. In this study, two ALOS PALSAR-2 quad-polarimetric SAR images acquired on
June 30 and August 25 in 2016 were selected to estimate the GSV values of Chinese fir plantations
located in a hilly area of southern China. We analyzed and compared the single and fused polarimetric
characteristics to interpret forest structure parameters and estimate the saturation levels using the
aforementioned semi-exponential empirical model as a base model. We then developed a novel
saturation-based multivariate method in which the saturation values were considered as a model
parameter and the saturation-based models with different characteristics and saturation levels were
selected and integrated to map the forest GSV of the study area.

The paper was organized as follows. Section 2 introduced the study area and data from
the measured plots and the acquired quad-polarimetric SAR images. The polarimetric SAR data
pre-processing and the methods for estimating the saturation levels and mapping forest GSV were
demonstrated in Section 3. In Section 4, the results of the saturation levels and the forest GSV estimated
by the univariate and multivariate methods were compared. The factors affecting the saturation levels
and the estimation accuracy of forest GSV were discussed in Section 5 and the conclusions were drawn
in Section 6.

2. Study Area and Datasets

2.1. Study Area

This study was conducted in the Huangfengqiao state-owned forest farm in Youxian county
(113◦24′ N, 27◦15′ E), Hunan province of China (Figure 1a). The study area has a hilly landscape with
the elevation varying from 115 m to 1270 m and a slope ranging from 20 to 35 degrees. Located in the
subtropical monsoon climate zone, this area has an annual average temperature of 17.8 ◦C, an average
precipitation of 1410.8 mm and an average frost-free period of 292 days. About 86.24% of the region
(10,122.6 ha) is covered by Chinese fir (Cunninghamia Lanceolata), Pinus massoniana Lamb, bamboo,
Liriodendron chinense and Cinnamomum camphora. The planted Chinese fir is dominant species in the
hilly terrain (Figure 1b).
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Figure 1. (a) Location of the study area and (b) the distribution of tree species in the study area.

2.2. Ground Data Collection and Processing

Most Chinese fir plantations were distributed in the northern and eastern parts of the study area.
By the approach of random stratification sampling based on the spatial distribution of the Chinese fir
plantations and age groups, a total of 50 plots were measured from 2016 to 2017 (Figure 2a) and as
examples, the photos in Figure 2b showed three ground measured plots with young, immature and
mature forests. The random stratification sampling led to the sample plots that had a consistent spatial
distribution with that of the Chinese fir plantations in the study area (Figure 1b versus Figure 2a).
All the sample plots were pure Chinese fir plantation forests. There were only 6 sample plots in
which Chinese fir was mixed with broad-leaved tree species and Masson pine, but the percentages of
broad-leaved tree species and Masson pine were less than 8%. The ground measured plot GSV values
were used to investigate the relationship between polarimetric characteristics and the Chinese fir forest
GSV. The plots had a size of 30 m × 30 m or 20 m × 20 m depending on the topographic features. The
locations of the selected plots, including the corners and central points, were accurately obtained using
the real-time dynamic measurement (RTK) global positioning system (GPS). In each plot, the height
and the diameter at breast height (DBH) of each tree were measured. Trees with the DBH equal to or
greater than 5 cm were considered in the inventory.

In each plot, the stem volume of the i-th tree was estimated by:

Vi = gi × (Hi + 3) × fε (1)

in which Vi is the stem volume, gi is the cross-section area related to DBH, Hi is the height of the
ith tree and fε is the trunk taper coefficient of the planted Chinese fir associated with height and
DBH [44–46]. The GSV of each plot was the sum of all the tree stem volumes within the plot. In the
study, the maximum DBH was 29.48 cm and the maximum height was 20.5 m. The GSV values of the
forests at different age groups varied between 0 m3/ha and 480 m3/ha and statistical parameters of
ground measured plots are listed in Table 2.
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Table 2. Statistical parameters of stand variables for the ground measured plots.

Age Group Number
of Plots

Average DBH
of Plot (cm)

Average Height
of Plot (m)

Average GSV
(m3/ha)

Range of GSV
(m3/ha)

Seedlings
(DBH < 5 cm) 1 4.01 3.23 0 0

Young forest
(DBH > 5 cm) 4 8.72 6.15 98 55–126

immature forest 19 17.58 12.17 200 78–303
Near Mature forest 7 18.51 14.15 216 140–300

Mature forest 15 22.41 15.17 268 135–480
Over mature forest 4 23.73 18.64 291 259–321
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Figure 2. (a) Distribution of the selected plots; and (b) the photos of ground measured plots with
different age groups.

2.3. Quad-Polarimetric SAR Data and Digital Elevation Model (DEM)

The two L-band quad-polarimetric SAR images over the study area were downloaded from
the Japanese Aerospace Exploration Agency (http://global.jaxa.jp/), which were acquired on
30 June 2016 and 25 August 2016, on descending orbit with an incidence angle of about 38.99 degrees.
The resolutions in the azimuth direction and the slant range direction were 2.83 m and 2.86 m,
respectively. Based on the information from the local weather forecast, the weather when the
SAR images were acquired on 30 June and 25 August was cloudy and showering, respectively.
Moreover, it was rainy for three days before the image was acquired on 25 August. Figure 3a
shows a Pauli RGB composite image (R: HH + VV G: HV + VH B: HH − VV) on 30 June 2016.
The ASTER GDEM with a spatial resolution of 30 m × 30 m was downloaded from the website

http://global.jaxa.jp/
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(http://www.gscloud.cn/sources/dataset_desc/421?cdataid=302&pdataid=10&datatype=gdem_utm2)
and employed to geocode the SAR images (Figure 3b).
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Figure 3. (a) The ALOS PALSAR-2 Pauli RGB composite image acquired on 30 June, 2016 and (b) digital
elevation model (DEM) of the study area with the black line outlining the study area.

3. Methods

3.1. SAR Data Pre-processing

Two single-look complex (SLC) PALSAR data sets were selected to investigate the saturation level
and map the GSV of Chinese fir plantations. The polarimetrical calibration was performed to reduce
the impact of Faraday rotation. Then, the Papathanassiou algorithm was employed to calibrate the
L-band ALOS PALSAR-2 quad-polarimetric SAR images [47–52]. The speckle noise was reduced using
the Lee filter (7 × 7). After that, the coherency matrix was generated from the calibrated and filtered
scatter matrix. The terrain slope is also an important factor for SAR image calibration. The polarization
orientation angle (POA) between the assumed and the local horizontal polarization vectors [53–55]
should be compensated. The POA was estimated by the circular polarization as follows [56–61]:

θ =
1
4
[Arg(

〈
SLL × S∗RR

〉
) + π] (2)

where, Arg is the phase of complex data, SRR and SLL are the circular polarization components [7,48].
The facet method related to DEM was applied to deal with the terrain radiometric correction (TRC).
The relationship between the backscatter coefficient of object σ0 and radar brightness β0 is [50–52]:

σ0 =
σ

dσ
=
β0δrδa

dσ
(3)

where σ0 is the cross area, δr is the range resolution, δa is the azimuth resolution and dσ is related to the
local terrain and geometric parameters of SAR images. The software Polsarpro was used to process

http://www.gscloud.cn /sources/dataset_desc/421?cdataid=302&pdataid=10&datatype=gdem_utm2
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the SAR data and obtain the polarimetric characteristics, and the software SARscape was utilized to
conduct the geocoding.

3.2. Retrival of Polarimetric Characteristics

The four-component decomposition approach proposed by Yamaguchi can lead to polarimetric
characteristics from the coherency matrix without using any ground measurements, and was used
to extract the scattering features, including the surface scattering (Odd), double-bounce scattering
(Dbl), volume scattering (Vol) and helix scattering (Hlx) [24,25,28,29]. The contributions of the four
scatterings are related to the wavelength, incidence angle, forest structure properties, canopy shape
and terrain. The power of these scattering features was used to estimate the span (Pt) as follows:

Pt = POdd + PDbl + PVol + PHlx (4)

where POdd, PDbl, PVol and PHlx are the powers of surface scattering, double-bounce scattering, volume
scattering and helix scattering, respectively. A series of polarimetric characteristics after logarithm and
ratio transformation were also used to estimate the GSV. The logarithm transformation used to extract
the polarimetric characteristics is:

Pi−dB = 10× log 10(Pi) (5)

where Pi−dB is the polarimetric characteristic total after the logarithm transformation, and Pi is the
original polarimetric characteristic total. The ratio transformation was used to get the relative changes
between different scattering mechanisms as follows

Pi−RA = Pi/Pt (6)

in which, Pi−RA is the polarimetric characteristics after the ratio transformation and Pt is the span of
each pixel.

In addition, polarimetric characteristic combinations formed by multiplication or division of the
single polarimetric characteristics were called the fused variables such as PDbl/Odd, PVol/Odd, PDbl×Vol
and PDbl×Vol/Odd, and employed to estimate GSV. The single and fused polarimetric characteristics
were compared in terms of the sensitivity to forest GSV.

3.3. Forest GSV Estimation

In this study, an empirical model with an exponential form proposed by Wagner et al. [39,40]
was employed as a base model to estimate the saturation level, since the model obeys the scattering
mechanisms, and can simply account for the relationships between the polarimetric characteristics and
forest GSV [12–20,39,40]:

σ0
GSV = βs + (βn − βs) · e

GSV
−k (7)

where σ0
GSV is one of the selected polarimetric characteristics and GSV is the measured GSV (m3/ha).

βn refers to the polarimetric characteristic of non-vegetated area, βs refers to the characteristics of the
forests with the highest GSV, and k is the saturation level of the forest’s GSV. βn, βs and k are unknown
parameters, whose initial values were determined by the range of polarimetric characteristics. The
non-linear algorithm was employed to estimate the unknown parameters. The forest GSV (m3/ha) was
retrieved using the obtained univariate exponential model [12,40]:

GSV = −k× ln(
σ0

GSV − βs

βn − βs
) (8)

The forest GSV reaches the saturation level when σ0
GSV is larger than βs. Both the range of GSV

and the accuracy of GSV estimates are dependent on the saturation level. If the values of GSV exceed
the saturation level, the GSV estimation errors of the univariate method would obviously increase.
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The model was used as a base model to explore the sensitivity of the single and fused characteristics
from the images to the estimation of the saturation levels and forest GSV.

The polarimetric characteristics with different saturation levels are sensitive to the forest GSV
differently. Selecting and integrating these polarimetric characteristics may provide the great potential
to improve the forest GSV estimation accuracy. In this study, a saturation-based multivariate approach
for estimating the forest GSV was proposed by selecting the single and fused characteristics that
accurately captured the forest canopy structures and tree trunk features, and then combining the
corresponding models that could lead to reasonable saturation levels. The selection was conducted
based on the smallest relative root mean square error (RRMSE). In each pixel, the saturation levels
were considered as weight coefficients. The saturation-based multivariate model could be expressed
as follows:

GSV f (i, j) =

N∑
n=1

kn ×GSV(i, j, n)

N∑
n=1

kn

, (GSV(i, j, n) ≤ r× kn) (9)

where GSV f (i, j) is the GSV value of pixel (i, j) obtained by the saturation-based multivariate method.
GSV(i, j, n) is the GSV value of pixel (i, j) estimated by the univariate model using the nth independent
variable, and kn is the saturation level of the nth independent variable estimated by Equation (7); that
is, the nth univariate model. The N is the number of the selected univariate models. The r denotes an
adjustment coefficient that is used to help indirectly quantify the reasonability of a GSV estimate. In this
study, r was determined to range from 0.8 to 2, implying that a GSV estimate would be reasonable if it
fell within the range of a 0.8 timing saturation value to a 2 timing saturation value. The adjustment
coefficient (r) changes from 0.8 to 2 by an interval of 0.05, which could lead to a total of 24 r values.
With each of the r values, a product of r with kn could be created and utilized to help measure the
reasonability of GSV estimates. Given an r value, the reasonable estimates were then compared with
the observed GSV values at the plot level and an RRMSE value was yielded. The optimal value of r
could be finally determined using the smallest RRMSE value.

In order to obtain a forest GSV map using Equation (9), first, the unknown parameters of each
semi-exponential empirical model Equation (7) with the selected polarimetric characteristics were
solved by a non-linear algorithm. After that, the GSV in Equation (8) was estimated by the selected
single polarimetric characteristics on the basis of pixel by pixel. Given a set of multiple polarimetric
characteristics, the same set of forest GSV maps were generated. This meant that at each pixel, the same
set of GSV estimates were obtained. The plot estimates were used to determine the optimal value of
the adjustment coefficient r based on the smallest RRMSE. The optimal value of r was utilized to select
and integrate the reasonable estimates in Equation (9), which would lead to the final forest product of
GSV. Estimating GSV was conducted using the programs made by the first author based on Matlab,
and mapping forest GSV was finished using ArcGIS.

4. Results

4.1. Polarimetric Characteristics

The polarimetric characteristics derived by the Yamaguchi decomposition were employed to
interpret the interaction between forest GSV and the independent variables at the plot level (Figure 4).
The Pearson correlation coefficient (γ) was adopted to select the characteristics for the GSV estimation
based on a statistical test of correlation: Whether or not the correlation coefficients statistically were
significantly different from zero at the significance level of 0.01. To match the size of the measured
plots, the power value of scatterings in each plot was obtained by a window spatial averaging. Since
the power of helix scattering (−30 dB to 10 dB) was too low (Figure 4d) compared with other scatterings
(Figure 4a–c), it was not considered in the subsequent analysis. Moreover, the power of volume
scattering (less than −8 dB) (Figure 4c) was also lower than those of the surface scattering (−5 dB to
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−2 dB) (Figure 4a) and double-bounce scattering (−7 dB to−3 dB) (Figure 4b). Before the transformation,
the power of double-bounce (Figure 4b) and volume scattering (Figure 4c) increased slightly with the
increasing GSV. After the logarithm and ratio transformations, the positive correlation became stronger
(Figure 4f,g,j,k). All the correlation coefficients of the original scattering components were significantly
smaller than the critical value of 0.345 at the risk level of 0.01 and these components were thus omitted
in the subsequent analysis.
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Figure 4. The relationships between the forest GSV and the components obtained by the Yamaguchi
decomposition from the image of 30 June 2016: (a–d) are the original scattering features; (e–h) are
the scattering features after the logarithm transformation; (i–l) are the scattering features after the
ratio transformation. The Odd, Dbl, Vol and Hlx are the surface scattering, double-bounce scattering,
volume scattering and helix scattering, respectively.

As shown in Table 3, after the logarithm and ratio transformation, the Pearson’s correlation
coefficients were greatly improved and become statistically different from zero, with the maximum
of 0.70 achieved by the logarithm transformation of double-bounce scattering. Compared with the
original polarimetric characteristics, the combined or fused characteristics also significantly increased
the correlation coefficients with the forest plot GSV. After the transformations, the single and fused
polarimetric characteristics were significantly correlated with the forest GSV and considered as potential
independent variables to estimate the forest GSV.
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Table 3. Pearson’s correlation coefficients R between the forest plot GSV and the polarimetric
characteristics (Odd, Dbl and Vol indicate the surface scattering, double-bounce scattering and volume
scattering, respectively; dB and Ratio indicate the polarimetric characteristics after the logarithm and
ratio transformations).

Variables
Data Acquired on 30 June Data Acquired on 25 August

R P-Value R P-Value

Odd (dB) −0.56 0.000 −0.48 0.000
Dbl (dB) 0.70 0.000 0.53 0.000
Vol (dB) 0.44 0.002 0.21 0.154

Odd (Ratio) −0.57 0.000 −0.42 0.000
Dbl (Ratio) 0.69 0.000 0.40 0.000
Vol (Ratio) 0.45 0.001 0.25 0.074
Dbl/Odd −0.57 0.000 −0.48 0.001
Vol/Odd −0.63 0.000 −0.53 0.000
Dbl*Vol −0.71 0.000 −0.48 0.000

Dbl*Vol/Odd 0.62 0.000 0.50 0.000

4.2. Saturation Level of Planted Forest

Before the estimation, the plots in the shadow regions were discarded. The values of three unknown
parameters were obtained by solving the base empirical model using the non-linear algorithm and the
proposed initial values (Table 4). For the image acquired on 30 June 2016, the estimated saturation
values ranged from 140.05 m3/ha to 349.84 m3/ha, and the greatest value was obtained by the power of
surface scattering. Moreover, the saturation values varied with the polarimetric characteristics. The
saturation value obtained using the power of the double-bounce scattering after the ratio transformation,
260.88 m3/ha, was slightly larger than that obtained using the double-bounce scattering after the
logarithm transformation, 188.13 m3/ha. Additionally, the saturation values derived from the image
acquired on 25 August 2016 were much smaller than those derived from the images acquired on
30 June 2016. Some of the estimated saturation values were smaller than 100 m3/ha.

Table 4. Two unknown parameters and saturation level k estimated using different variables (Odd, Dbl
and Vol: Surface scattering, double-bounce and volume scattering, respectively).

Image of 30 June 2016 Image of 25 August 2016

Variable βs βn k βs βn k

Odd(dB) −5.15 −1.80 349.84 −3.53 −2.16 121.74
Dbl(dB) −3.01 −6.88 188.13 −4.24 −6.37 62.38

Odd(Ratio) 0.31 0.67 268.95 0.45 0.63 113.69
Dbl(Ratio) 0.52 0.20 260.88 0.39 0.23 82.84
Dbl/Odd 2.01 5.95 179.22 2.60 4.63 193.71
Vol/Odd 0.64 3.66 140.05 1.17 2.59 89.80
Dbl*Vol 26.18 78.20 206.42 41.50 69.07 101.79

Dbl*Vol/Odd −5.93 −41.30 141.05 −10.07 −28.83 130.81

The saturation values derived from the fused characteristics ranged from 140.05 m3/ha to
206.42 m3/ha for the image acquired on 30 June and from 89.80 m3/ha to 193.71 m3/ha for the image
acquired on 25 August, which were slightly smaller than those by single variables (Table 4). As shown in
Figure 5, the power of the surface scattering (Figure 5a,c) and the double-bounce scattering (Figure 5b,d)
had the highest saturation level for the image dated on 30 June. On the contrary, it was obvious that
the ranges of the saturation levels obtained by the fused variables were more stable (Figure 5e–h).
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Figure 5. Relationships between the forest GSV and polarimetric characteristics of the image acquired
on 30 June 2016 by the semi-exponential model; (a–d) are the results using the logarithm or ratio
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4.3. Forest GSV Estimated by the Univariate Method

With the estimated parameters, the GSV values of the planted forests were retrieved by the
univariate models (Table 5). The leave-one-out cross-validation (LOOCV) was utilized for the accuracy
assessment [60] based on the root mean square error (RMSE) and the coefficient of determination (R2)
between the estimated and observed GSV values. The relative RMSE (RRMSE = RMSE × 100/sample
mean) was also employed. We used 120 m3/ha as a deviation threshold value between the measured
and estimated GSV values and counted the number of the plots with the errors exceeding the threshold.
The reason for using the 120 m3/ha as the deviation threshold value was because this value was 50%
of the sample mean 240 m3/ha and when the error of an estimate was larger than 50% of the sample
mean, the estimate could be considered to be highly problematic.

Table 5. The GSV estimation accuracy of the selected variables (Note: * and ** indicate the percentages
of the plots with errors exceeding the threshold are larger than 10% and 20%, respectively).

Variable
Image of 30 June 2016 Image of 25 August 2016

R2 RMSE
(m3/ha)

RRMSE
(%) Notes R2 RMSE

(m3/ha)
RRMSE

(%) Notes

Odd (dB) 0.59 81.40 40.36 * 0.57 90.37 46.20 *
Dbl (dB) 0.64 69.19 33.94 0.51 80.03 39.17 *

Odd (Ratio) 0.57 78.30 38.27 * 0.24 68.67 36.89 **
Dbl (Ratio) 0.66 69.09 35.07 0.27 81.73 40.32 **
Dbl/Odd 0.62 75.62 31.13 * 0.39 125.70 56.60 **
Vol/Odd 0.53 71.13 33.70 * 0.62 78.35 38.61 *
Dbl*Vol 0.66 71.65 31.80 * 0.47 76.27 37.30 **

Dbl*Vol/Odd 0.59 71.04 35.14 0.52 74.06 41.67 *

In Table 5, scattering mechanisms had great impacts on the forest GSV estimation accuracy.
As mentioned previously, the power of volume scattering was insufficient to describe the relationship
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between the forest GSV and the polarimetric characteristics. The power of surface scattering could
successfully estimate the saturation value but more than one third of the selected plots were excluded,
since their errors exceeded the given threshold. The minimum RMSE (69.19 m3/ha) and RRMSE
(33.94%) between the estimated and measured GSV were obtained by the logarithm transformation of
Dbl. The Dbl was thus more sensitive to the change of the forest GSV than the others.

The fused polarimetric characteristics were also used to estimate the forest GSV (Table 5). For the
image acquired on 30 June, the fused characteristics led to the determination coefficients (R2) ranging
from 0.53 to 0.66 and the maximum coefficient (0.66) was obtained by Dbl × Vol. The RMSE ranged
from 71.04 m3/ha to 75.62 m3/ha. Therefore, using the fused characteristics could improve the accuracy
of forest GSV estimation. The correlation coefficients and saturation levels indicated that it was very
hard to accurately estimate forest GSV using the single variables from the image acquired on 25 August.

Figure 6 compared the measured and estimated GSV values by the univariate method. The
estimated GSV values were highly affected by the saturation value. The power of Dbl with high
saturation levels (Figure 6a,b) had fewer plots with errors exceeding the threshold than that with
low saturation levels (Figure 6c–f). The selected polarimetric characteristics became insensitive to the
change of forest GSV if the GSV values exceeded the saturation value (Figure 6e,f).
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Figure 6. The scatter graphs between the observed and estimated GSV values of the plots using the
image dated on 30 June 2016: (a,b) are the GSV estimated by the powers of Dbl after logarithm and
ratio transformation, respectively; (c–g) are the GSV estimated by the fused variables; (g–i) are the GSV
estimated from the saturation-based multivariate approach with eight variables, six variables and four
variables, respectively.
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The independent variables with different saturation levels had different sensitivities to the forest
GSV. The range of the forest GSV estimates depended largely on both the independent variables and
the obtained saturation levels. The selected polarimetric characteristics with low saturation levels
could not be used to generate high values of forest GSV. The base empirical model is a univariate
approach, and in this approach, just one polarimetric characteristic was selected and others were
discarded because of low saturation levels. In fact, the discarded polarimetric characteristics might
also contain useful information and should be introduced into the multivariate method to estimate
forest GSV.

4.4. Forest GSV Estimated by the Saturation-Based Multivariate Method

To overcome the disadvantage of the base empirical model, we developed the saturation-based
multivariate method, Equation (9), to improve the estimation of the forest GSV. According to the
property of scattering mechanisms and the estimated saturation levels, three multivariate sets consisting
of eight, six and four variables, respectively, were selected from each image to investigate the sensitivities
of polarimetric characteristics. The set of the four variables consisted of four fused characteristics,
including Dbl/Odd, Vol/Odd, Dbl ×Vol and Dbl × Vol/Odd. The set of the six variables consisted of the
four fused variables, and the logarithm and ratio transformations of Dbl. The eight variables included
the four fused variables, and the logarithm and ratio transformations of Odd and Dbl. The results of
the saturation-based multivariate method are listed in Table 6.

Table 6. The estimation accuracies of forest GSV using the saturation-based multivariate method.

Acquired Date Number of
Variables

Average of
Errors (m3/ha)

Std of Errors
(m3/ha)

RMSE
(m3/ha)

RRMSE
(%)

30 June 2016
8 Variables 67.42 31.01 74.06 35.09
6 Variables 58.85 29.77 65.79 29.64
4 Variables 61.89 34.21 70.53 30.88

25 August 2016
8 Variables 58.67 35.80 78.49 36.23
6 Variables 66.72 35.01 80.15 38.84
4 Variables 68.52 35.15 88.81 44.70

Compared with the univariate method, the saturation-based multivariate method led to higher
estimation accuracy. The RRMSE ranged from 29.64% to 35.09% for the image acquired on June 30
and from 36.23% to 44.70% for the image acquired on 25 August. Moreover, the smallest RMSE and
RRMSE values were 65.79 m3/ha and 29.64%, obtained by the set of the six variables that were involved
in Equation (9). Additionally, the scatter graphs between the observed and estimated GSV values
(Figure 6g,i) showed that compared with those from the univariate method, overall, the overestimations
and underestimation were greatly reduced by the saturation-based multivariate method. Specially,
for the plot that had the forest GSV values larger than the saturation points, the estimation accuracy
was significantly improved by the saturation-based multivariate method. In Figure 7, the GSV of the
Chinese fir plantations was mapped using the saturation-based multivariate method with the set of
the six variables derived from the image dated 30 June 2016. The estimated GSV values varied from
50 m3/ha to 450 m3/ha.
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saturation-based multivariate method using the set of the six variables derived from the image dated
on 30 June 2016.

5. Discussion

5.1. Polarimetric Characteristics Related to Tree Species

In this study, the measured GSV of Chinese fir plantations showed strong positive correlations
with the power of double-bounce scattering, and strong negative correlations with the power of surface
scattering (Table 3), but weak correlations with the power of volume scattering. Several factors may
influence the correlations between the scattering mechanisms and forest GSV, and tree species might
be the dominant factor. In the mixed forests of Siberia, the power of the volume scattering derived by
the Yamaguchi decomposition showed high correlations with the measured GSV using L-band ALOS
PALSAR data [20,21,29,31,36]. In the fast-growing forests in Indonesia, the surface scattering showed a
negative correlation with the forest GSV (−0.70) and the volume scattering had a positive correlation
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with the forest GSV (0.45), but the double-bounce scattering was weakly correlated with the forest
GSV [29]. In tropical forests, the power of volume scattering derived from the airborne L-band SAR
data had positive correlations with the forest GSV [36]. The reasons for the different results might be
mainly due to different tree species, thus different forest canopy structures. In Siberia, the percentage
of broad-leaf species ranged from 29% to 44% [20,21,31], and in Indonesia and tropical forests [29,36],
broad-leaf species were considered as dominated tree species and the power of volume scattering
became strong by increasing the density of leaves. The strong correlations between the power of
volume scattering and forest GSV were thus observed in the studies. In this study, however, the planted
Chinese fir forests had narrow and short needles that led to many canopy gaps, thus the power of
volume scattering could not account for the interaction between the forest canopy structures and the
polarimetric characteristics. Moreover, tree trunks and big branches were the dominant scattering
objects under the canopies, thus the double-bounce scattering was much stronger than that of volume
scattering. This was especially true in the mature and over mature stands.

5.2. Saturation Level of Forest GSV

For a single SAR image, the saturation value is determined by two factors, including the estimation
model and the polarimetric characteristics used. The empirical models have been widely employed
to map GSV, in which the saturation level is estimated as a parameter. In this study, using the base
empirical model with different independent variables, led to the different saturation values of GSV for
the Chinese fir forests. The saturation values ranged from 140.05 m3/ha to 349.84 m3/ha (Table 4) and
the greatest value was obtained using the power of surface scattering. The saturation values estimated
by the double bounce scattering acquired on 25 August were about 63 m3/ha, seeming unreasonable.
Some of variables, such as volume scattering, failed to result in the saturation values of the forest GSV,
due to their low correlation to the plot GSV.

Theoretically, the power of surface scattering seems to be more sensitive to the forest GSV but the
results of this study showed different (Table 5). The major reason was the existence of many forest
canopy gaps in the Chinese fir plantations, which made the power of surface scattering related to
the ground under the forest canopies, and led to a weak capacity to capture the forest GSV. This was
especially true in the mature forests. The double bounce scattering was directly related to tree trunks
and big branches and was very sensitive to the changes of the forest GSV. Furthermore, the fused
variables formed by multiplication or division of the polarimetric characteristics greatly reduced the
overestimations and underestimations of the saturation values, thus greatly improved the estimation
accuracy. The saturation levels from the models that used the fused polarimetric characteristics were
more reasonable and stable.

The great differences of the saturation levels derived from two SAR images were observed in
Table 4. This might be mainly due to different weather conditions when the images were acquired.
When the first image dated 30 June was collected, the weather was cloudy and the clouds had less
impact on the quality of the image. However, there were showers on 25 August, on which date the
second image was acquired. Moreover, it had been rainy for three days before 25 August. The showers
and moisture might have great impact on the quality of the second image, and thus resulted in a low
Pearson’s correlation between the GSV and the polarimetric characteristics from the image acquired
from 25 August. The saturation levels derived from the SAR image acquired on 25 August were
obviously lower than those from the first image acquired on 30 June.

5.3. Estimated GSV of Chinese Fir Plantation

The base empirical model has been frequently applied to express the interaction between
polarimetric characteristics and forest GSV [36–40]. When one independent variable was employed,
the estimated GSV values were closely related to the saturation level obtained (Table 4). For the power
of Dbl after the ratio transformation, the RRMSE of the estimated GSV values with a large saturation
value (260.88 m3/ha) was much smaller than that with a small saturation value (82.84 m3/ha). The error
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between the measured and estimated GSV values was significantly large when the measured GSV
was larger than the saturation value (Figure 6a,e,f). The accuracy of the estimated GSV values also
depended on the sensitivity of the independent variables. The different polarimetric characteristics
led to different saturation values of the forest GSV, and thus different estimation accuracies. Overall,
the fused characteristics resulted in more reasonable saturation values, thus much higher estimation
accuracies of the forest GSV (Table 5).

In this study, the univariate method led to the smallest RRMSEs of 31.13% and 36.89%, for the
images acquired on 30 June and 25 August 2016, respectively. Using the saturation-based multivariate
method, the corresponding smallest RRMSE values were 29.64% and 36.23%, for the images acquired on
30 June and 25 August 2016, respectively. Compared with the univariate method, the saturation-based
multivariate method obviously decreased the errors of the estimated GSV values. Additionally,
the accuracy of the estimated GSV values was not related to the number of the used variables. The
most accurate results were obtained by the saturation-based multivariate method with six variables
from the image acquired on 30 June.

6. Conclusions

In this study, the powers of scatterings derived by the Yamaguchi decomposition were used to
estimate the saturation values and forest GSV of Chinese fir plantations located in the hilly area of
southern China using two quad-polarimetric PALSAR-2 images. The saturation value of the forest
GSV was estimated by the univariate empirical model based on the single and fused characteristics.
A novel and saturation-based multivariate method was then proposed by selecting and integrating
the results from the univariate empirical models to improve the estimation accuracy of mapping the
forest GSV in the study area. It was newly found that all the original polarimetric characteristics
had weak correlations with the forest GSV and the power of double-bounce scattering was more
sensitive to the forest GSV than the other polarimetric characteristics. Overall, the logarithm and ratio
transformations of the scatterings greatly improved the correlations with the forest GSV, and further
improvement of the correlation was achieved by the fused polarimetric characteristics. Moreover,
the greatest saturation value was obtained using the logarithm transformation of surface scattering,
but among the transformations of the polarimetric characteristics, the logarithm transformation
of double-bounce scattering resulted in the smallest RRMSEs of the GSV estimates. Compared
with the single transformations, the fused variables led to more reasonable saturation values and
obviously reduced the values of RRMSE. More importantly, compared with the univariate method,
the saturation-based multivariate method led to more accurate estimates of the forest GSV by reducing
the overestimations and underestimations, with the smallest value (29.64%) of RRMSE achieved using
the set of six variables. In addition, the SAR image dated 30 June provided better performance than
the image dated 25 August. In summary, the novel saturation-based multivariate method provided the
potential to improve the estimation accuracy of the Chinese fir forest GSV.
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