
remote sensing  

Article

Performance Evaluation of a Potential Component of
an Early Flood Warning System—A Case Study of the
2012 Flood, Lower Niger River Basin, Nigeria

Dorcas Idowu and Wendy Zhou *

Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA
* Correspondence: wzhou@mines.edu; Tel.: +1-303-384-2181

Received: 8 July 2019; Accepted: 15 August 2019; Published: 21 August 2019
����������
�������

Abstract: Floods frequently occur in Nigeria. The catastrophic 2012 flood in Nigeria claimed 363 lives
and affected about seven million people. A total loss of about 2.29 trillion Naira (7.2 billion US Dollars)
was estimated. The effect of flooding in the country has been devastating because of sparse to no flood
monitoring, and a lack of an effective early flood warning system in the country. Here, we evaluated
the efficacy of using the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage
anomaly (TWSA) to evaluate the hydrological conditions of the Lower Niger River Basin (LNRB) in
Nigeria in terms of precipitation and antecedent terrestrial water storage prior to the 2012 flood event.
Furthermore, we accessed the potential of the GRACE-based flood potential index (FPI) at correctly
predicting previous floods, especially the devastating 2012 flood event. For validation, we compared
the GRACE terrestrial water storage capacity (TWSC) quantitatively and qualitatively to the water
budget of TWSC and Dartmouth Flood Observatory (DFO) respectively. Furthermore, we derived
a water budget-based FPI using Reager’s methodology and compared it to the GRACE-derived
FPI quantitatively. Generally, the GRACE TWSC estimates showed seasonal consistency with the
water budget TWSC estimates with a correlation coefficient of 0.8. The comparison between the
GRACE-derived FPI and water budget-derived FPI gave a correlation coefficient of 0.9 and also
agreed well with the flood reported by the DFO. Also, the FPI showed a marked increase with
precipitation which implies that rainfall is the main cause of flooding in the study area. Additionally,
the computed GRACE-based storage deficit revealed that there was a decrease in water storage prior
to the flooding month while the FPI increased. Hence, the GRACE-based FPI and storage deficit
when supplemented with water budget-based FPI could suggest a potential for flood prediction and
water storage monitoring respectively.
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1. Introduction

Flooding is a major disaster in Nigeria, especially along the Niger and Benue Rivers. In Nigeria,
it occurs in three main forms: Coastal floods which occur in mangrove and delta coastlines; river
floods which occur on the flood plains of large rivers; and flash floods which are short-lived events
developing in less than 6 hours from rainfall to the onset of flooding [1,2].

In 2012, heavy rainfall during the wet season combined with the release of water from Ladgo
Dam in Cameroon led to a catastrophic flooding event that affected 30 states out of the 36 states of the
country. The flooding which was described by the Nigeria National Emergency Management Agency
as the worst in 40 years, claiming 363 lives, affecting about 7 million people, while a total loss of about
2.29 trillion Naira (7.2 billion US Dollars) was estimated.
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The developed countries are still affected by disasters resulting from floods but have flood alert
systems (such as the European Flood Alert System [3] and the US National Weather Service Automated
Flood Warning System [4]) in place which are effective in providing a monitoring and warnings service.
A significant portion of the economic losses caused by floods occur in developing countries where
ground flood monitoring and management programs are still inefficient, and the costs of building water
control infrastructure such as dams, weirs, embankments and gauging stations can be prohibitive [5].
Also, ground-based methods used to monitor floods are based on hydro-meteorological data such as
discharge and precipitation which are time-consuming in terms of collection and processing and are
also affected by varying weather conditions. Furthermore, worthy of mentioning is the recent problem
of security in Nigeria which may also inhibit the installation of these systems.

Over the years, there have been novel advances on remote sensing for forecasting and monitoring
hydrological extremes such as floods and droughts. Victor [6] studied the use of satellite data for
flood delineation, monitoring and prediction. Nasreddine et al. [7] developed a new flood forecasting
approach for flood disaster management in poorly or totally ungauged watersheds using precipitation
measurements. Sheffield et al. [8] and Zhang et al. [9] applied satellite data to monitoring and
forecasting drought.

In recent decades, satellite data availability has improved dramatically and to complement the
ground-based observations, flood monitoring has increasingly relied on the products obtained
with space-borne sensors such as National Aeronautics and Space Administration (NASA)
advanced microwave scanning radiometer for EOS (AMSR-E) [10] and moderate resolution imaging
spectroradiometer (MODIS) [11]. Zhan et al. [12] explored the marginal benefit of incorporating
space-borne soil moisture measurements into a hydrologic model for improved streamflow and flood
prediction. They incorporated the surface soil moisture data from the AMSR-E into the Noah land
surface model within the land information system (LIS). Their findings suggested the potential for
improving flood forecasting through the assimilation of remotely sensed soil moisture data into
a hydrologic model. Among the remote sensing products that have been used for flood monitoring,
prediction and forecasting, data from the Gravity Recovery and Climate Experiment (GRACE) [13,14]
are unique in that the changes in the amount of terrestrial water can be directly measured.

The GRACE satellite mission was launched in March 2002. It presents a means to observe
monthly variations in total/terrestrial water storage within large (>200,000 km2) river basins based
on measurements of changes in Earth’s gravity field [15]. These changes result when the amount of
water stored in a region increases or decreases, which produces a ripple effect leading to the gravity
signal in that region increasing or decreasing proportionately. The predictive ability of a GRACE-based
flood potential has been compared to flood prediction models that use traditional input data sources
such as river heights, snow amounts and the wetness of surface soils [16]. The method of GRACE
storage deficit estimates could be used in combination with traditional remote sensing methods of
precipitation forecasting to help assess the likelihood for flooding [16]. However, their reliability and
efficacy for applications in developing countries need to be assessed due to the sparse availability of
ground measurement data.

Reager and Famiglietti [17] proposed the flood potential index (FPI) to estimate flood risks
worldwide based on GRACE terrestrial water storage anomaly (TWSA) and precipitation records.
A qualitative comparison of FPI with a record of observed floods from the Dartmouth Flood Observatory
(DFO) data set suggested that the proposed FPI product is useful for flood risk assessment in most
regions [17].

Molodtsova et al. [18] tested the FPI in the United States where a dense network of flood gauges
has been established, and reported that, potentially, a greater use of this method is in developing
countries, where due to inadequate monitoring capability, floods tend to cause significant damage and
the most loss of life. Additionally, they reported that floods in African countries, as found through the
DFO database, are mainly caused by heavy rainfall events, for which the FPI seems to perform well in
predicting flood potential.
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Molodtsova et al. [18] went further to study the Juba–Shabelle River Basin, a 783,000 km2 watershed
shared between Somalia and Ethiopia, and found an increasing FPI was in the watershed one month
prior to the flood and during the month of the flood, where both predictions agreed well with the actual
flood extent area reported by the DFO. Based on their analysis, they inferred that developing countries
with sparse or inadequate flood monitoring networks are potential beneficiaries of this approach.

Sun et al. [19] evaluated the GRACE FPI over the Yangtze River Basin (YRB) in China and
suggested that estimates of terrestrial water storage based on GRACE, measured as FPI, are critical for
understanding and predicting flooding. Thus, they concluded that GRACE data can be effectively
used for monitoring and examining large floods in the YRB and elsewhere.

For our study, we chose the Lower Niger River Basin, Nigeria (Figure 1) as our area of interest,
and the flooding event in 2012 as our case study (Table 1) because it was the worst in 40 years.
We investigated the capacity of the GRACE TWSA (terrestrial water storage capacity, TWSC) in
accurately capturing and predicting the 2012 flood event, and other flood years within the basin.
We also evaluated the hydrological condition of the basin in terms of the available storage and
predisposition to flooding. The GRACE-derived FPI was validated using the DFO report and compared
to a water budget-derived FPI.

Figure 1. Map showing the boundaries of the Lower Niger River Basin in Nigeria with the states prone
to Flooding (Nigeria National Emergency Management Agency).
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Table 1. Statistics for the most devastating flood disasters in 2012 (compiled by authors based on [20]).

Country Date Death Toll Number of
People Affected

Number of
People Displaced Cause(s) Cost of Damage

Pakistan September 455 >5,000,000 350,000 Heavy monsoon rains N/A
Nigeria July–October 363 7,000,000 2,100,000 Heavy rains and water release from Dam US $7.2 billion

North Korea July–September 330 N/A 241,547 Torrential rains and tropical storm Khanun N/A
Russia July 171 30,000 13,000 Heavy rainfall N/A

Philippines August 95 1,230,000 15,134 Torrential rains US $14.31 million
China July 79 >1,600,000 56,933 Heavy rainfall US $1.6 billion
India August 35 >12,000 N/A Monsoon rainfall US $89 million
Nepal May 26 N/A N/A Flooding from the outburst of a landslide dam N/A
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2. Data and Methods

2.1. Study Area

The Lower Niger River Basin (LNRB) is so termed because of its location within the Niger River
Basin (NRB). Located in West Africa, the NRB covers 7.5% of the continent and cuts across ten countries.
With a total area of approximately 2.2 million km2 and a total length of 4100 km, the NRB is the
third-longest river in Africa. It is divided into four parts, the Upper Niger River System, the Inner
Delta, the Middle Niger River System and the LNRB. The major river within the basin is the Niger
River which starts in the highlands of Guinea (upstream) threading eastwards mainly through Mali,
Niger and Nigeria (downstream) before entering the Gulf of Guinea to the Atlantic Ocean. Its unusual
crescent shape takes it inland towards the Sahara before turning south-west to the Gulf. Along its
route, the river hydrology changes from its rain-fed headwaters, it loses flow and volume as it nears
the Sahara where it forms an inland delta. The inland delta is an area of high evaporation that is
composed of a number of slow-moving channels. Only after the Benue River joins the river in Nigeria
does it become a large river once more. The Benue River (Figure 1) which is the major tributary that
feeds the Niger River Basin in Nigeria meets the Niger River (Figure 1) to form a confluence in Lokoja
(Figure 2), Nigeria. Rivers Niger and Benue (Figures 1 and 2) are the two largest rivers in West Africa.
The water in the Niger River is partially regulated through dams.

In September, the Benue reaches its flood level. It begins to fall in October and falls rapidly in
November, continuing slowly over the next three months to reach its lowest level in March and April.
Annually, these rivers experience flooding as a result of the annual heavy rainfall which coincides with
the wet season in Nigeria [21] and because of poor urban planning, settlements located within the
floodplains and in the proximity of the river get flooded [22] (Figure 2).

Figure 2. NASA’s Terra (Moderate Resolution Imaging Spectroradiometer) satellite images showing
the pre flood (normal river geometry) and post flood river geometry of the Benue River and Niger and
Benue confluence point. Post – flood image was captured in 2012. (Modified after [23])

In 2012, the flooding was devastating and in spite of the increasing awareness in combating flood
hazard in along the rivers, the menace had recurred. This is because past flood control strategies
have not achieved the desired result due to a lack of understanding of the hydrological variables that
influence the persistence of these floods. The Nigerian National Emergency Management Agency
(NEMA), in 2012 listed the flood-prone states in the country. Most of these states are within the LNRB
and along the Niger and Benue Rivers (Figure 1).
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2.2. Datasets

2.2.1. GRACE Terrestrial Water Storage Anomaly Products

The three official solutions (spherical harmonics solutions), the JPL (Jet Propulsion Laboratory),
GFZ (GeoforschungsZentrum Potsdam) and CSR (Center for Space Research at University of Texas,
Austin) of the GRACE RL05 TWSA product [24] were downloaded (http://grace.jpl.nasa.gov),
from January 2004 to December 2012. The workflow in Figure 3 was applied to the datasets to
derive the TWSA for the baseline of the study. The scaling factor suggested by the GRACE Tellus
data portal [24] was applied to the GRACE data to account for the attenuation of small-scale surface
mass variations [25]. For some years within our baseline of our study, some monthly TWSA data were
missing. This is because, since early 2011, the GRACE instruments were periodically turned off due to
active battery management. Those months were not considered in our study.

Figure 3. The basic workflow for the gravity recovery and climate experiment (GRACE) RL05 processing.

2.2.2. Evaluation of GRACE and Water Budget Terrestrial Water Storage Change (TWSC)

The GRACE TWSA was evaluated against the traditional water balance estimates before being
used in generating the FPI. First, we calculated the TWSC from GRACE TWSA, then from the traditional
water budget equation. The following water balance equation was used:

ds
dt

= P−R− ET − SM−GW (1)

where ds
dt is the monthly change in terrestrial water storage, P is monthly precipitation, R is a monthly

runoff, ET is monthly evapotranspiration, SM is soil moisture and GW is groundwater.
The change was calculated for our time steps using Equation (2).

ds/dt = TWSC(t) − TWSC(t− 1)/t (2)

For this study, the water balance data (P, R, ET, SM and GW) were obtained from the eartH2Observe
water cycle integrator (WCI) [26].

http://grace.jpl.nasa.gov
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2.2.3. Global Precipitation Climatology Centre (GPCC)

The 1 × 1 GPCC precipitation data, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA [27] were used for deriving the FPI. Monthly data from January 2004 to December 2012 were
downloaded while the datasets corresponding to the missing datasets in GRACE TWSA were removed
to create consistency in data comparison.

2.2.4. Dartmouth Flood Observatory

Since ground flood monitoring data range from sparse to not available in the study area, the DFO
data were used as validation of the performance of the DFO data beginning in 1985 and is based
on flood reports from news and governmental sources and therefore mainly refers to large floods in
densely populated regions. It also classifies a large flood event by the significant damage to structures,
agricultural land, loss to human life and/or long duration [18]. The DFO data was downloaded as
a GIS shapefile set providing catalog numbers and area affected map outlines, with much of the tabular
attribute data (e.g., dates, duration and fatalities) also included. It is worthy of note that DFO data are
mainly based on media reports which are expected to be biased towards the more densely populated
regions and/or regions of interest [18].

2.3. Methods

2.3.1. GRACE-Derived Flood Potential Index

We followed the methodology proposed by Reager and Famiglietti [17] to compute monthly
2004–2012 FPI for the study area using the GRACE TWSA product. For each grid, we defined and
computed the maximum water storage capacity (Smax) and storage deficit (Sdef ). Smax is the historic
maximum water storage capacity of the soil within a region [17] which for our study area we estimated
to be the maximum of GRACE TWSA for LNRB from 2004 to 2012. The Sdef, which represents the
available water on land before obtaining Smax, was calculated for each grid and month:

Sde f (t) = Smax− TWSA(t− 1) (3)

where TWSA(t − 1) is the saturation condition of the soil from the previous month [18]. The storage
deficit shows how much more water the soil within an area can store before achieving the maximum
capacity and was computed using the data from the previous month thus establishing a potential for
forecasting. It is, however, expected that Sdef is low during wetter parts of the year and high during
the drier part of the year. For visualization, Sdef for the study area was normalized to display the
hydrological state of the basin in terms of available water.

GPCC monthly precipitation anomalies (P) were multiplied by the length of each month to
estimate the amount of rainfall (in cm) that fell in the averaging interval:

Pmon(t) = P(t)dt. (4)

Example of GRACE TWSC, Sdef and Pmon are shown in Figure 7 for 9.5◦N, 12.5◦E. The flood
potential (F) for the month (t) was computed by:

F(t) = Pmon(t) − Sde f (t) (5)

where Pmon is monthly precipitation. Flood potential, F (t) is the quantity of incoming water that
cannot be stored based on the basin exceeding its maximum storage capacity. A high probability
of flooding in the current month would mean a low storage deficit and high precipitation for the
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previous month [17]. The flood potential was further normalized to derive the Reager’s flood potential
index (FPI):

FPI(t) = F
t

max[F[t]]
. (6)

The values of FPI vary from −∞ to 1 with positive values indicating that water input from
precipitation is above the mean water storage and should be interpreted as a potential risk for
flooding [17]. When normalized FPI nears 1, it indicates an abnormally high difference between
precipitation and regional storage ability and therefore high flood likelihood [17]. The derived FPI was
qualitatively validated against the DFO observational flood datasets.

2.3.2. Water Budget-Derived Flood Potential Index

The methodology in Section 2.2.1 was used in estimating the water budget FPI. The water
budget Smax was estimated from the time series of the water budget TWSC. Then we calculated the
water budget-based Sdef using Equation (3) and flood potential using Equation (5). For consistency,
we used the GPCC precipitation in the equation for calculating the water budget flood potential.
Using Equation (6), we derived the water budget-based flood potential index.

3. Results

3.1. Analysis of GRACE TWSA and Validation

We compared the three official GRACE TWSA data to each other and generated the time series
for the three solutions which gave a correlation coefficient of approximately 0.99 (Figure 4) showing
similar accuracy although processed using different solutions. As a result, we used the ensemble
mean [28,29] from the three solutions in our analysis.

Figure 4. GRACE terrestrial water storage anomaly (TWSA) time series for the three solutions: CSR,
GFZ and JPL for 9.5◦N, 12.5◦E from 2004 to 2012.

Furthermore, the time series of the GRACE-based TWSC and the derived water budget-based
TWSC estimates show a considerable consistency with a correlation coefficient of 0.8. Additionally,
they both are generally negative during the dry months (November to March) and positive during the
wet months (April to October). Figures 5 and 6 display the graphical relationship between GRACE
TWSC and water budget TWSC in the LNRB.

3.2. Hydrological State of the LNRB

Figures 7 and 8 graphically explain the relationship among the variables; GRACE-based TWSC,
water budget-based TWSC and their respective Sdef and Pmon. It also shows how an increasing
GRACE and water budget TWSC increases with precipitation, while there is a decrease in available
storage relative to the other variables. The months during which these three variables intersect implies
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a potential for flooding to occur. In the LNRB, 2005, 2007, 2008, 2009, 2010, 2011 and 2012 were flooding
years [22,30,31] which is consistent with Figures 7 and 8. Figure 7 also reveals that the 2012 flood was
the worst event among all.

Figure 5. Comparison between GRACE terrestrial water storage capacity (TWSC) and derived water
balance TWSC from 2004 to 2012 at the location of longitude 12.5 and latitude 9.5.

Figure 6. Scatterplot for GRACE TWSC and water budget-derived TWSC.

Figure 7. Variations in time series of monthly GRACE TWSC, storage deficit and precipitation for
longitude 12.5 and latitude 9.5 from 2004 to 2012.
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Figure 8. Variations in time series of monthly water budget TWSC, storage deficit and precipitation at
the location of longitude 12.5 and latitude 9.5 from 2004 to 2012.

3.2.1. Precipitation within the LNRB

Rainy season varies for different geopolitical zones in Nigeria which by extension is applicable to
the LNRB. The GPCC precipitation data corresponds to the wet season within the basin (Figure 8).
The rainy season is between April and October. The driest months are January and December which
implies 0 precipitation in both January and December. The peak month in the north is August and
September in the south, which agrees well with our results as shown in Figure 9.

Figure 9. Spatiotemporal distribution of precipitation in the Lower Niger River Basin (LNRB) in 2012
from January to December. June and November were not displayed so as to show consistency when
compared to GRACE data.
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3.2.2. GRACE-Based Storage Deficit within the LNRB

Zooming in to the 2012 flood year in the LNRB, Figure 10 visually depicts how the available
storage changes from surplus to deficit; because the storage deficit was derived using GRACE TWSA
from the previous month, the amount of available storage for the coming month was approximated.
For example, as shown in Figure 10, available storage for the month of September 2012 was derived
using the GRACE TWSA from August and the result shows a low Sdef for September 2012. With this,
we estimate the amount of hydrological input necessary to cause the system to flood, hence, establishing
the potential for flood prediction. Comparing Figures 9 and 10, we can infer that the available storage
began to decline from the rainfall peak months, August and September.

Figure 10. Spatiotemporal display of storage deficit (Sdef ) (normalized) in the LNRB from January to
December 2012. May and October 2012 are missing months in the GRACE TWSA time series due to
battery management. Hence, no Sdef and flood potential index (FPI) for June and November. The red
color shows areas with low Sdef while the blue areas represent areas with high Sdef.

3.2.3. GRACE Flood Potential Index (FPI)

The FPI for 2012 in the LNRB is shown in Figure 10. When compared to Figure 8, one could
see how sensitive the index is to precipitation. Different areas within the basin experiences flooding
at different rainfall peak times as shown in Figure 10. However, according to the Nigerian NEMA,
in September 2012, 30 out of 36 states in Nigeria was affected by flooding which corresponds to the
prediction by the FPI.

3.2.4. GRACE-Based RFPI Validation

We validated the GRACE-based FPI both quantitatively and qualitatively. The derived GRACE-based
FPI was quantitatively compared to the water budget-derived FPI from 2004 to 2012 (Figure 11) and
qualitatively validated against the DFO flood data for September 2005, 2007, 2009 and 2012 (Figure 11).
We found a good agreement between the FPI derived from GRACE and water budget estimates
as shown in Table 2, Figures 11 and 12. Figure 13 shows that both GRACE-based FPI and water
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budget-based FPI trend in the same direction. Table 2 further shows the similarities between the FPI
from GRACE and water budget.

Statistical Test for GRACE and Water Budget Flood Potential Index

For statistical significance, we posed a question of whether there is a significant difference in the
flood potential derived using GRACE TWSC and water budget TWSC. We used a Wilcoxon rank-sum
test to test the null hypothesis that there is no difference between the FPI estimates. We also tested
an alternative hypothesis, that there is a difference between the FPI estimates. Using an Alpha level of
0.05, our result showed that we can accept the null hypothesis, and at P > 0.05, we have no reason to
reject the null hypothesis that there is no difference in the flood potential estimates.

Figure 11. Scatterplot for GRACE-derived FPI and water budget-derived FPI.

Figure 12. Graphical comparison and validation of FPI from GRACE using the FPI from water
budget estimates.

Table 2. Tabular representation of the comparison between FPI from GRACE and water budget estimates.

Years Flood Potential Index

September GRACE-Based FPI Water Budget-Based FPI

2005 0.2 −0.3
2006 0.6 0.2
2007 0.7 0.3
2009 −0.3 −0.2
2010 0.4 0.2
2012 0.9 0.1
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Figure 13. Trend plots for GRACE-derived and water budget-derived FPIs.

We chose big flood events that got publicity within our period of study so as to see how well the
GRACE-based FPI compares to the DFO reported floods. However, because the DFO flood report is
based on news, it is more biased towards urban flood events. These flood events reported in our study
area in September 2005, 2007, 2009 and 2012 were also predicted by the GRACE-based FPI (Figure 14).
Also, the FPI values from GRACE (Table 3) predicted flooding for the flood-prone/worst-hit state in
September 2012 as reported by the Nigerian NEMA.

Figure 14. Comparison between GRACE-based FPI predicted floods and DFO reported floods.
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Table 3. GRACE-based FPI values for the flood-prone/worst-hit states in September 2012.

Year Flood Prone States FPI

20
12

Adamawa 1
Anambra 0.5
Bayelsa 0.4
Benue 0.8
Delta 0.5
Edo 0.4

Kebbi 0.5
Kogi 0.7

Kwara 0.5
Nassarawa 0.4

Niger 0.8
Rivers 0.7
Taraba 0.6

4. Discussion

Reager and Famiglietti [17] demonstrated that GRACE TWSA data can reveal when river basins
have been filling with water over several months, when it rains, and the basin becomes full, and floods.
The available storage or Sdef for LNRB (Figure 10) began to decrease August to October 2012 which
represents the peak rainy season in the study area. Further, since soil moisture is critical in the accurate
prediction of floods and general runoff [17], the storage deficit serves as an indicator in flood studies.
The correlation coefficients of –0.7 for storage deficit and precipitation shows the inverse relationship
that exists between the two variables which further supports the conclusion made by Reager and
Famiglietti [17] that the storage deficit can be used with traditional methods of precipitation forecasting
to determine the likelihood for flooding during the coming weeks. We also analyzed the relationship
between storage deficit and FPI and found that storage decrease with an increase in the potential for
flooding had a correlation coefficient of -0.8.

The FPI seems to perform well where flooding is mainly caused by heavy rainfall events [18]
which was the case in Nigeria and by extension, LNRB. Heavy rainfall that occurred in August and
September 2012 caused the major rivers, especially the Benue River, to overflow its banks, which led
to authorities releasing water from the dams located within the basin (Cameroon). For our analysis,
the FPI captured and predicted the flood events in LNRB in 2012 (Figures 12 and 15) which was also
reported by the Nigerian NEMA and DFO (Figure 14) [30,31]. For validation of the GRACE-based FPI
using the water budget-derived FPI, we tested the hypothesis that there is no difference between the
indices using the alpha value of 0.05. With a correlation coefficient of 0.9 and P > 0.05 we have no
reason to reject the null hypothesis.

The GRACE-based FPI and storage deficit, though invaluable, have limitations. The coarse spatial
(>200 km2) and temporal (monthly) resolutions of the GRACE data also makes it limited and unsuitable
for forecasting local scale and flash floods [15,18], which may, therefore, make the FPI less effective.
It has, however, an unequaled capability to monitor available water storage when combined with
precipitation forecasting data and could increase warning lead time from one month to two months [17].

However, the relationship between the GRACE and water budget-based FPI shows promise when
finer spatial and temporal resolutions data are used in deriving water budget TWSC (Equation (1)),
thus making it a supplement to the GRACE-based FPI and possibly reducing the limitation of the
GRACE TWSA.
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Figure 15. Spatiotemporal distribution of the flood potential index for 2012 in the LNRB. The red and
blue areas indicate high and low probability or likelihood of flooding. According to the Nigerian
National Emergency Management Agency (NEMA), 30 out of 36 states experienced flooding.

5. Conclusions

We estimated the hydrological conditions of the study area in terms of available storage and
precipitation prior to the 2012 catastrophic flood using GRACE TWSA and GPCC data respectively.
We also validated the GRACE TWSC using the water budget estimates TWSC, calculated the
GRACE-based FPI for the basin, quantitatively and qualitatively compared the result to the water
budget-based FPI and DFO flood report respectively. Based on our findings, we can make the
following conclusions.

The GRACE TWSA and the derived FPI are both sensitive to precipitation by showing peaks and
troughs in their time series which corresponds to wet season (peak) and dry season (trough). Based on
the hydrological conditions of the study area in terms of precipitation and antecedent water storage
state prior to flooding, the basin had a high amount of rainfall in August 2012 and could not balance
the amount of incoming precipitation for September 2012 which then led to flooding.

The GRACE TWSA limitations could be managed assuming the GRACE-based FPI is supplemented
with the water budget-derived FPI and using the water budget TWSC calculated from lower spatial
and temporal data.

Therefore, the GRACE-based TWSA, Sdef and FPI in combination with other precipitation
forecasting data and water budget-based TWSC/FPI could be utilized for operational flood monitoring
in developing countries like Nigeria, where the unavailability of technical manpower, security and
the cost of implementing and installing sophisticated flood monitoring/predicting measures could be
prohibitive. In terms of cost, most satellite data are relatively cheap and readily available. Additionally,
the current issue of security in some of the northern parts of the country prone to flooding might hinder
the installation of flood monitoring devices, thus making remote-sensing products a viable option and
an invaluable resource in flood studies in regions with little or no flood monitoring data.
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