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Abstract: Over the past four decades, satellite observations have shown intensified global greening.
At the same time, widespread browning and reversal of or stalled greening have been reported at high
latitudes. One of the main reasons for this browning/lack of greening is thought to be warming-induced
water stress, i.e., soil moisture depletion caused by earlier spring growth and increased summer
evapotranspiration. To investigate these phenomena, we use MODIS collection 6, Global Inventory
Modeling and Mapping Studies third-generation (GIMMS) normalized difference vegetation index
(NDVI3g), and Global Land Evaporation Amsterdam Model (GLEAM) satellite-based root-zone soil
moisture data. The study area was the Far North of Ontario (FNO), 453,788 km2 of heterogeneous
landscape typical of the tundra-taiga interface, consisting of unmanaged boreal forests growing on
mineral and peat soils, wetlands, and the most southerly area of tundra. The results indicate that the
increased plant growth in spring leads to decreased summer growth. Lower summer soil moisture is
related to increased spring plant growth in areas with lower soil moisture content. We also found that
earlier start of growing season leads to decreased summer and peak season maximum plant growth.
In conclusion, increased spring plant growth and earlier start of growing season deplete summer soil
moisture and decrease the overall summer plant growth even in temperature-limited high latitude
ecosystems. Our findings contribute to evolving understanding of changes in vegetation dynamics in
relation to climate in northern high latitude terrestrial ecosystems.
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1. Introduction

High latitude ecosystems are responding more rapidly [1,2] and consistently [3] to climate
warming than other terrestrial ecosystems. Several recent satellite-based studies [4–7] have shown that
plant growth is increasing in response to changes in Earth’s climate system and atmospheric chemistry.
This increase is higher in temperature-limited ecosystems and seasons [1,2,4,5,8–10]. Warming-induced
advances in spring vegetation activity [11–13], increased peak productivity [14–16], and enhanced
carbon (C) uptake [2,8–10,17–19] in high latitude ecosystems are all well-documented and indicate
intensified greening. Yet, the trends to be expected in the future are uncertain.

Emerging evidence shows browning, reversal of greening, and stalled plant growth response to
increased temperature at high latitudes. For example, widespread browning has been reported from
satellite studies in areas where warming-induced greening was expected to continue [20–27]. Indirect
evidence also indicates that substantial area in northern heterogeneous landscapes is browning. This
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indirect evidence includes slower leaf unfolding response to temperature increase [28,29] indicating
saturation of the rate of bud ontogenesis during warm springs. Additionally, weakened plant
growth [30,31] and C uptake [32] responses to temperature by high latitude ecosystems have also
been reported. Local scale analyses suggest that warming-induced plant growth is weakening in part
due to increased water stress [19,33–35]. Particularly in summer months, water stress could result
from earlier arrival of spring, warming-induced increases in summer evapotranspiration, and soil
moisture depletion by plants caused by spring-ward shift of peak growth [14,15,36–41]. Empirical
evidence for this, however, is inadequate due to lack of systematic assessment of relationships among
spring and summer plant growth and soil moisture status. Far North of Ontario (FNO) provides ideal
experimental area with vast forested areas on mineral and peat soils, and heterogeneous landscapes
typical of tundra-taiga interface.

In this study, we use satellite observations independently recorded by multiple sensors to study
the relationships among spring and summer plant growth and soil moisture status on heterogeneous
landscapes typical of the tundra-taiga interface. We particularly focused on the influence of spring
plant growth on summer soil moisture content and plant growth in FNO ecosystems, comprising
boreal forest, wetlands, and the most southerly area of tundra.

2. Methods

2.1. Study Area

We study the FNO, which has heterogeneous landscapes typical of the tundra-taiga interface
consisting of unmanaged boreal forests in the south and southwest, the world’s third largest area of
wetlands (281,439 km2), and the most southerly area of tundra (Figure 1). The FNO is a 453,788 km2

area in Ontario, Canada, that represents two ecozones, Boreal Shield and Hudson Plains. In the Boreal
Shield, trees generally grow on drier elevated ground or lower latitude areas, while the poor drainage
and flat terrain in the Hudson Plains ecozone have resulted in continuous wetland. Forest composition,
typical of the tundra-taiga interface, consists of mostly black spruce (Picea mariana (Mill.) BSP) on
lowland sites, with white spruce (Picea glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.),
trembling aspen (Populus tremuloides Michx.), tamarack (Larix laricina (Du Roi) K. Koch), and white
birch (Betula papyrifera Marsh.) [42]. Based on the Ontario Ministry of Natural Resources and Forestry
Version 1.4 Far North Land Cover, the forested area on mineral soils comprises conifer (104,426 km2),
broadleaf (5,770 km2), and mixed (10,438 km2) forests, the area of which differs slightly from estimates
derived from earlier land cover data [43]. Treed- and shrub wetlands (184,783 km2) and other treeless
vegetated land (heath, peats, and bogs) (97,321 km2) are also prevalent in the study area (Figure 1),
while permafrost is estimated to occur only on ~1% of the entire Hudson Bay Lowland, mostly along
the Hudson Bay coast [44]. Although much of the study area is characterized as having the largest
organic soil C storage anywhere in the world [45], FNO has the lowest aboveground biomass and
productivity of any forested region in Canada [46]. The 1982–2015 FNO average (standard deviation)
temperature for December–March is −17.2 ◦C (±4.9), April–June is 5.8 ◦C (±6.6), July–September is
13.9 ◦C (±3.3), and October–November −2.4 ◦C (±5.4).
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Figure 1. A 30 m land cover map and images of landscape characteristics typical of ecosystems of the 
Far North of Ontario. Land cover data courtesy of Ontario Ministry of Natural Resources and 
Forestry, Version 1.4 (year 2014), Far North Land Cover; landscape scenes courtesy of Google Maps 
(www.google.ca/maps). 

2.1.1. Data 

We use the following satellite datasets: (i) MODIS collection 6 enhanced vegetation index (EVI), 
(ii) normalized difference vegetation index (NDVI) and (iii) vegetation continuous field; (iv) NDVI 
from Global Inventory Modeling and Mapping Studies third-generation (GIMMS NDVI3g); and (v) 
root-zone soil moisture from Global Land Evaporation Amsterdam Model (GLEAM). Satellite 
records of NDVI and EVI capture both structural (e.g., leaf area index, LAI) and physiological (e.g., 
leaf chlorophyll content) attributes of terrestrial ecosystems and thus are proxies of plant growth and 
productivity. 

MODIS EVI and NDVI: The collection 6 (V006) 16-day MODIS NDVI and EVI [47] composites 
(MOD13Q1) at a spatial resolution of 250 m were obtained for 2000−2017 from Earthdata 
(https://search.earthdata.nasa.gov/). The MODIS NDVI and EVI products are computed from 
surface reflectance corrected for molecular and aerosol scattering and ozone absorption [48]. 
Compared to NDVI, EVI is less sensitive to soil background variations and maintains sensitivity 
over dense vegetation conditions [47]. Both NDVI and EVI pixels corresponding to NDVI values less 
than 0.15 were interpreted as non-vegetated land pixels and were assigned a value of 0. 

MODIS Vegetation Continuous Fields: The fractional tree cover data is obtained from MODIS 
Vegetation Continuous Field 250 m product V006 (MOD44B) consisting a sub-pixel information on 
percent tree cover. The data layers in the MOD44B product are generated on an annual basis from 
monthly composites of surface reflectance data. We downloaded the MOD44B data for the study 
area for year 2008, the median year of the entire MODIS time series in this study. 

GIMMS NDVI3g: The GIMMS NDVI data for 1982–2011 were obtained from bi-weekly 8 km 
Global Inventory Modeling and Mapping Studies third-generation observations that are derived 
from satellite-based surface reflectance from the Advanced Very High Resolution Radiometer 
(AVHRR) series of sensors [49]. The GIMMS NDVI3g product was assembled from different AVHRR 
sensors and corrected for effects such as sensor degradation, orbit drift, and volcanic eruption. In our 
study, NDVI values less than 0.1, interpreted as non-vegetated land pixels, were assigned a value of 
0. 

GLEAM root-zone soil moisture: The daily GLEAM root-zone soil moisture [50], version 3.1 
(GLEAM_v3.1a), calculated by combining satellite measurements of soil moisture in the top layer 
with a simple empirical drainage algorithm to estimate water content in the complete root zone at a 
spatial resolution of 0.25°, was obtained for 1982−2016 from the GLEAM archive (www.gleam.eu). 

Figure 1. A 30 m land cover map and images of landscape characteristics typical of ecosystems of
the Far North of Ontario. Land cover data courtesy of Ontario Ministry of Natural Resources and
Forestry, Version 1.4 (year 2014), Far North Land Cover; landscape scenes courtesy of Google Maps
(www.google.ca/maps).

2.1.1. Data

We use the following satellite datasets: (i) MODIS collection 6 enhanced vegetation index (EVI), (ii)
normalized difference vegetation index (NDVI) and (iii) vegetation continuous field; (iv) NDVI from
Global Inventory Modeling and Mapping Studies third-generation (GIMMS NDVI3g); and (v) root-zone
soil moisture from Global Land Evaporation Amsterdam Model (GLEAM). Satellite records of NDVI
and EVI capture both structural (e.g., leaf area index, LAI) and physiological (e.g., leaf chlorophyll
content) attributes of terrestrial ecosystems and thus are proxies of plant growth and productivity.

MODIS EVI and NDVI: The collection 6 (V006) 16-day MODIS NDVI and EVI [47] composites
(MOD13Q1) at a spatial resolution of 250 m were obtained for 2000−2017 from Earthdata
(https://search.earthdata.nasa.gov/). The MODIS NDVI and EVI products are computed from surface
reflectance corrected for molecular and aerosol scattering and ozone absorption [48]. Compared
to NDVI, EVI is less sensitive to soil background variations and maintains sensitivity over dense
vegetation conditions [47]. Both NDVI and EVI pixels corresponding to NDVI values less than 0.15
were interpreted as non-vegetated land pixels and were assigned a value of 0.

MODIS Vegetation Continuous Fields: The fractional tree cover data is obtained from MODIS
Vegetation Continuous Field 250 m product V006 (MOD44B) consisting a sub-pixel information on
percent tree cover. The data layers in the MOD44B product are generated on an annual basis from
monthly composites of surface reflectance data. We downloaded the MOD44B data for the study area
for year 2008, the median year of the entire MODIS time series in this study.

GIMMS NDVI3g: The GIMMS NDVI data for 1982–2011 were obtained from bi-weekly 8 km
Global Inventory Modeling and Mapping Studies third-generation observations that are derived from
satellite-based surface reflectance from the Advanced Very High Resolution Radiometer (AVHRR)
series of sensors [49]. The GIMMS NDVI3g product was assembled from different AVHRR sensors and
corrected for effects such as sensor degradation, orbit drift, and volcanic eruption. In our study, NDVI
values less than 0.1, interpreted as non-vegetated land pixels, were assigned a value of 0.

GLEAM root-zone soil moisture: The daily GLEAM root-zone soil moisture [50], version 3.1
(GLEAM_v3.1a), calculated by combining satellite measurements of soil moisture in the top layer
with a simple empirical drainage algorithm to estimate water content in the complete root zone at a
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spatial resolution of 0.25◦, was obtained for 1982−2016 from the GLEAM archive (www.gleam.eu).
The root-zone soil moisture calculation uses observed multi-source precipitation records as input with
satellite-observed soil moisture, vegetation optical depth and snow-water equivalent, and reanalysis
air temperature and radiation [50]. The multilayer water balance module in version 3.1 has been
adapted to represent the continuous drainage of precipitation through the vertical profile. Root zone
depth is defined as a function of land-cover type and comprises three model layers for the fraction of
tall vegetation (0–10, 10–100, and 100–250 cm), two for the fraction of low vegetation (0–10, 10–100 cm),
and only one for the fraction of bare soil (0–10 cm). Validations of GLEAM_v3.1a against measured
soil moisture data resulted in R = 0.67 and root mean square difference of 0.057 m3/m3 [50]. We
have further validated the GLEAM root-zone soil moisture against the satellite observed Climate
Change Initiative (CCI) soil moisture data [51] using all available observations. We find statistically
significant relationship between the GLEAM root-zone and the CCI total soil moisture values (Figure 2).
It should be noted that, at the latitudes of our study area, there are only few valid satellite soil moisture
observations from CCI. The CCI soil moisture shows larger values and dynamic ranges than the
GLEAM product (Figure 2). This is expected as CCI measures the soil moisture at 0.5–2-cm depth
where high variability is expected while GLEAM product is for the entire root zone depth that ranges
from 0–10 cm for bare soil to 250 cm for tall vegetation.
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NDVI <0.1 and <0.15 for GIMMS and MODIS, respectively: 

Figure 2. Comparison between summer-time data-model estimate of root-zone soil moisture (GLEAM)
and satellite observed Climate Change Initiative (CCI) soil moisture, both in m3/m3. The scatter points
include all 0.25◦ × 0.25◦ Latitude-Longitude grid cells which have June–August datasets between 1982
and 2015.

2.1.2. Analysis

After aggregating the entire land cover map (Figure 1) other than open water from 30 m to 250 m
of MODIS pixel size using a majority rule, we analyzed the relationships between spring and summer
vegetation activities per land cover types. Averaged across the study area, the growing season begins
in May and ends in November [14,52], so we defined the seasons to reflect the vegetation dynamics as
spring = April–June and summer = July–September. NDVI and EVI pixels from MODIS corresponding
to NDVI < 0.15 and pixels with NDVI < 0.1 for GIMMS were assigned a value of 0. The NDVI and
EVI values are then aggregated into seasonal values using the average of all observations. We use
different thresholds to differentiate vegetated and non-vegetated pixels as AVHRR series of sensors
used for GIMMS and MODIS NDVI have different spectral response functions [53]. In addition to
seasonal values, we also extract start of growing season (SOS), and peak season maximum NDVI value.

www.gleam.eu
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To extract SOS, the following seven-parameter logistic function [14] is fitted to bi-weekly GIMMS
NDVI3g and 8-day MODIS NDVI data records after assigning 0 to NDVI <0.1 and <0.15 for GIMMS
and MODIS, respectively:

Y(t) = α1 +
α2

1 + e−∂1(t−β1)
−

α3

1 + e−∂2(t−β2)
(1)

where Y(t) is the observed data value at a day of year (DOY) t; α1 is the winter dormant period value;
α2 − α1 is the amplitude between the winter dormant period, and the spring and early summer plateau;
and α3 − α1 is the amplitude between the winter dormant period, and the late summer and autumn
plateau. ∂1 and ∂2 are the transition in slope coefficients, while β1 and β2 are the mid-points in DOY of
these transitions for green-up and senescence/abscission, respectively. Data were fitted to the logistic
function with the first guess values of the seven parameters (α1 = 0.1, α2 = 1, α3 = 1, ∂1 = 0.04, ∂2 = 0.04,
β1 = 112, β2 = 218) and solved with maximum of 2000 iterations. SOS is estimated as β1 value in
Equation (1) for both GIMMS NDVI3g and MODIS NDVI. Satellite-based NDVI values are known to
be affected by atmospheric perturbation; therefore, we use two methods to estimate the peak season
maximum NDVI value. Firstly, we directly extract the maximum annual value (max) for each pixel
from the raw bi-weekly GIMMS NDVI3g and 8-day MODIS NDVI data records. Secondly, we estimate
the peak of season maximum NDVI value (POSvalue) by fitting Equation (1) on raw time series [14].

In order to assess the impacts of vegetation density and cover type on the relationship between
spring and summer vegetation activity, we separately analysed the statistical strength of the observed
relationships per fractional tree cover classes. The fractional tree cover data is categorized into classes
ranging from 0.0 to 0.7 at 0.1 interval. In order to assess the impact of average plant available soil
water on the relationship between spring and summer vegetation activity, we separately analysed the
statistical strength of the observed relationships per long-term average soil moisture classes. For this
particular purpose, the plant available soil water was estimated from the average value of the entire
GLEAM root-zone soil moisture data records and categorized into six classes ranging from 0.15 to
0.4 m3/m3 at 0.05 m3/m3 interval and classifying those above 0.4 m3/m3 as 0.4 m3/m3 and those below
0.15 m3/m3 as 0.15 m3/m3.

The spatial relationship analyses between datasets with different spatial resolutions are conducted
by reprojecting the finer data onto the spatial grid of coarser data using bilinear aggregation. For this
purpose, all pixels with NDVI < 0.1 for GIMMS NDVI3g and NDVI < 0.15 for MODIS NDVI and EVI are
given value of zero before spatial aggregation. Linear slopes are estimated using the robust Theil–Sen
slope estimator and correlations are estimated using the Kendall’s tau estimator. The Mann–Kendall
test was used to assess the statistical significance of both the linear slope and correlation.

3. Results and Discussion

We begin by comparing the relationships between spring and summer greenness from MODIS
NDVI and EVI for 2000–2017 per land cover class. Spring greenness from MODIS NDVI and EVI are
significantly negatively related (p < 0.05) with summer greenness for all land cover classes (Figure 3).
There was no significant difference in relationships between spring and summer greenness among the
land cover lasses. To strengthen the results presented in Figure 3, we further analysed the inter-annual
relationships between spring and summer greenness from MODIS NDVI and EVI for 2000–2017
relative to long-term mean soil moisture and tree cover classes. The results show that spring greenness
from MODIS NDVI and EVI are significantly negatively related (p < 0.05) with summer greenness
for all soil moisture (Figure 4a) and tree cover classes (Figure 4c). Although there was no consistent
difference in the relationships along the soil moisture classes, MODIS NDVI and EVI the strengthening
negative relationship between spring and summer greenness with decreasing tree cover (Figure 4c).
The strengthening negative relationship with decreasing tree cover is expected as trees have deeper
and more extensive root systems that facilitate larger access to available moisture than herbaceous
vegetation. However, strengthening negative relationship with decreasing tree cover is not observed
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in the GIMMS NDVI3g data. MODIS NDVI, EVI and tree cover data have the same spatial resolutions
while GIMMS is approximately 16 times coarser that may explain the discrepancy.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 12 
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per land cover classes. The dashed vertical lines indicate the mean value of slope while the solid 
vertical lines indicate the slope value of zero, the latter added for visual clarity. Mean of linear slope 
is significantly different from zero in all cases (p < 0.05, two-tailed one-sample t-test). 
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bars represent one standard deviation of spatial slopes in each soil moisture or tree cover class. The 
linear slopes are computed at native spatial resolutions of Global Inventory Modeling and Mapping 
Studies third-generation (GIMMS) and MODIS data. Mean of linear slope is significantly different 
from zero in all cases (p < 0.05, two-tailed one-sample t-test). 

Figure 3. Density plot of linear slopes between the spring and summer greenness from MODIS
normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) for 2000–2017
per land cover classes. The dashed vertical lines indicate the mean value of slope while the solid
vertical lines indicate the slope value of zero, the latter added for visual clarity. Mean of linear slope is
significantly different from zero in all cases (p < 0.05, two-tailed one-sample t-test).
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Figure 4. Linear slopes of summer greenness with spring greenness (a) and start of growing season
(SOS) (b) along soil moisture (m3/m3) classes. Linear slopes of summer greenness with spring greenness
(c) and SOS) (d) along tree cover classes. VI is vegetation index (i.e., NDVI or EVI). Error bars
represent one standard deviation of spatial slopes in each soil moisture or tree cover class. The linear
slopes are computed at native spatial resolutions of Global Inventory Modeling and Mapping Studies
third-generation (GIMMS) and MODIS data. Mean of linear slope is significantly different from zero in
all cases (p < 0.05, two-tailed one-sample t-test).
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We further analysed the inter-annual relationships of SOS with summer NDVI and EVI. The results
indicate that the later onset of growing season is significantly (p < 0.05) related to increased summer
greenness for all soil moisture (Figure 4b) and tree cover classes (Figure 4d). Moreover, earlier onset of
SOS is consistently related to lower peak of season greenness values as estimated from two methods
throughout soil moisture and tree cover classes (Figure 5). Earlier arrival of spring leads to deceased
summer greenness and reduced maximum greenness consistently from both GIMMS and MODIS data.
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Figure 5. Linear slopes of start of season (SOS) with maximum productivity obtained from GIMMS
NDVI3g and MODIS NDVI plotted along the long-term mean summer soil moisture (m3/m3) (a) and
tree cover (b) classes. VI is vegetation index (i.e., NDVI or EVI). Error bars represent one standard
deviation of spatial slopes in each soil moisture or tree cover class. The linear slopes are computed at
native spatial resolutions of GIMMS and MODIS data. Maximum productivity values are obtained
from peak of season day (i.e., POSvalue) using the curve-fitting algorithm and directly from maximum
annual value of the raw data (i.e., max). Mean of linear slope is significantly different from zero in all
cases (p < 0.05, two-tailed one-sample t-test) except indicated as NS (not significant) otherwise.

Figure 6 further shows that spring NDVI values are negatively correlated with summer soil
moisture for the southern part of the study area with low average soil moisture while correlations
were positive for the northern part of the study area. This pattern clearly indicates that the effect of
spring vegetation growth on summer soil moisture content is highest in areas with relatively low soil
moisture content. This result implies that the timing and amount of spring greenness directly affect the
summer soil moisture and greenness, consistent with recent findings [36–41,54].

We have also analysed the spring and summer greenness relationships by substrate type, i.e.,
mineral soil and wetland pixels, and found no consistent discrepancy (Figures S1–S3). The lack of
discrepancy between mineral soil and wetland results in this study could arise from our resampling of
the 30 m land cover map (Figure 1) into coarser grids, which may not capture the actual heterogeneity
of the landscape in the analysis of soil moisture spatial distribution associated with vegetation activities.
Previous studies have hypothesized an emerging soil moisture constraint on the summer plant growth
rate of high latitude ecosystems [19,41,55–62]. This is consistent with our findings that increased
spring greening is depleting summer soil moisture. Therefore, our results support that the weakening
summer plant growth sensitivity to temperature reported in several studies [30–33] may be related to
summer soil moisture stress partly caused by increased plant growth in spring and earlier onset of
growing season.
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4. Conclusions

We used several satellite datasets (MODIS NDVI, EVI and tree cover, GIMMS NDVI3g, and GLEAM
root-zone soil moisture) to study the influence of spring plant growth on summer soil moisture content
and plant growth on heterogeneous landscapes typical of the tundra-taiga interface, consisting of
unmanaged boreal forest, wetlands, and the most southerly part of the tundra. Our results indicate
that higher vegetation growth in spring leads to deceased summer soil moisture and greenness.
We also found that earlier start of growing season leads to decreased summer and maximum greenness.
In conclusion, earlier and increased spring plant growth leads to reduced summer soil moisture
and plant growth. Our analysis supports that the weakening summer plant growth sensitivity
to temperature reported in several studies may be related to summer soil moisture stress partly
caused by increased plant growth in spring that depletes soil moisture. Our analysis, in a study area
representative of the northern high latitude terrestrial ecosystems, contributes to a better understanding
of the changing coupling between vegetation and Earth’s climatic dynamics.
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Figure S1: The spatial distribution of regression slopes between spring and summer greenness, Figure S2:
Regression slopes of start of season (SOS) with summer NDVI and EVI, Figure S3: Regression slopes of start of
season (SOS) with maximum productivity.
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