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Abstract: Phenotyping provides important support for corn breeding. Unfortunately, the rapid
detection of phenotypes has been the major limiting factor in estimating and predicting the outcomes
of breeding programs. This study was focused on the potential of phenotyping to support corn
breeding using unmanned aerial vehicle (UAV) images, aiming at mining and deepening UAV
techniques for comparing phenotypes and screening new corn varieties. Two geometric traits (plant
height, canopy leaf area index (LAI)) and one lodging resistance trait (lodging area) were estimated
in this study. It was found that stereoscopic and photogrammetric methods were promising ways
to calculate a digital surface model (DSM) for estimating corn plant height from UAV images, with
R2 = 0.7833 (p < 0.001) and a root mean square error (RMSE) = 0.1677. In addition to a height
estimation, the height variation was analyzed for depicting and validating the corn canopy uniformity
stability for different varieties. For the lodging area estimation, the normalized DSM (nDSM) method
was more promising than the gray-level co-occurrence matrix (GLCM) textural features method.
The estimation error using the nDSM ranged from 0.8% to 5.3%, and the estimation error using the
GLCM ranged from 10.0% to 16.2%. Associations between the height estimation and lodging area
estimation were done to find the corn varieties with optimal plant heights and lodging resistance.
For the LAI estimation, the physical radiative transfer PROSAIL model offered both an accurate and
robust estimation performance both at the middle (R2 = 0.7490, RMSE = 0.3443) and later growing
stages (R2 = 0.7450, RMSE = 0.3154). What was more exciting was that the estimated sequential time
series LAIs revealed a corn variety with poor resistance to lodging in a study area of Baogaofeng Farm.
Overall, UAVs appear to provide a promising method to support phenotyping for crop breeding, and
the phenotyping of corn breeding in this study validated this application.

Keywords: phenotyping; unmanned aerial vehicle (UAV); remote sensing; corn plant height;
lodging; LAI

1. Introduction

Phenotyping is the process of rapidly profiling crop phenotypic traits such as plant height, canopy
cover, density, biomass, and yield [1–3]. The phenotypic traits of interest include geometric traits
(e.g., plant height, leaf area index (LAI)), physiological traits (e.g., contents of chlorophyll and other
pigments), indicators of abiotic and biotic stress (e.g., canopy temperature differences, leaf water
potential), nutrient contents (e.g., nitrogen and protein contents), and yield [4–7]. The performance
of crop breeding in terms of its ability to improve crop yield and productivity must be evaluated
under natural conditions to account for these factors. However, field breeding trial measurements are
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time-consuming and expensive, since they require hundreds to thousands of plots. In addition, the
measured results using traditional manual methods are subjective, with measurement error. Therefore,
researchers and breeders have been very interested in developing high-throughput phenotyping
techniques to overcome these bottlenecks and predict the outcomes of breeding programs rapidly,
accurately, and inexpensively. Fortunately, unmanned aerial vehicles (UAVs) are an effective way to
acquire crop information rapidly and nondestructively due to their rapid and relatively low cost [5,8].
Compared to satellite remote sensing technologies [9], UAVs provide better spatial resolution and
better temporal resolution. Therefore, they have the potential to improve the identification of desirable
traits and reduce the risk of data loss due to cloud/raining/smog cover and limitations resulting from
the long revisit periods of satellites [10], since UAVs generally operate below the clouds. In addition,
UAVs offer lower operating costs and operational complexity than piloted airborne technologies.
Therefore, remote sensing with UAVs will be an increasingly important and indispensable tool for
phenotyping to support genomics-assisted plant breeding [11].

UAV images have obvious improvements in spatial, spectral, and temporal resolution compared
to satellite images [12]. Thus, phenotyping based on UAV images is being rapidly developed [13].
Yang et al. [5] reviewed the advances in field-based phenotyping using UAVs. They summarized the
key traits that support crop breeding, such as geometric traits, phenotype-related spectral indices,
crop physiological traits, crop abiotic and biotic stress symptoms, nutrient status, and crop yield.
Specifically, they estimated corn plant height using UAV-based LiDAR point clouds, and a crop height
model (CHM) from LiDAR was created for the corn plant height estimation in their study. Corn
lodging estimation was reviewed using the spectral and textural difference between the lodging area
and nonlodging area. In addition, the LAI in soybean breeding was estimated using UAV-based
hyperspectral images, and the correlations between the triangle ratio vegetation index (TVI), vegetation
index (RVI), normalized difference vegetation index (NDVI), and renormalized difference vegetation
index (RDVI) with in situ-measured LAI were used to estimate soybean canopy LAI in their study.
Crop height [14], LAI [15], and lodging [13] are common, intuitive crop phenotypic traits, as they are
important phenotypic traits for crop breeding. These traits can be obtained rapidly by analyzing the
spectral, textural, and structural information contained in UAV remote sensing images.

Crop height is defined as the shortest distance between the upper boundary of the main
photosynthetic tissues on crop plants and the ground surface [10], which is a good proxy of biomass.
Shi et al. [1] estimated corn and sorghum plant heights using the steric UAV images. Their UAV images
were collected using a fixed-wing Anaconda UAV (Ready Made RC, Lewis Center, Ohio) and an X88
rotary-wing UAV. Holman et al. [10] utilized a structure from motion (SfM) photogrammetric method
to produce 3D topographic reconstructions of a wheat field and derive wheat heights. Their method
was able to produce measures of height comparable in accuracy to those of manually measured heights.
Watanabe et al. [11] calculated the 50th, 75th, 90th, and 99th height percentiles for a DSM derived
from an orthomosaic of UAV images to estimate sorghum plant height. They also found that height
estimation performance using UAV remote sensing was similar to that of traditional measurements in
genomic prediction modeling. Chapman et al. [13] identified the proportion of wheat lodging using the
estimated crop height calculated from a DEM. This application is crucial to breeders because lodging
resistance is an important inherited characteristic.

The LAI is defined as the total one-sided leaf area per unit ground surface area for flat broad
leaves or half of the total light-intercepting area per unit ground surface area for non-flat leaves [16].
Because of its importance for describing photosynthetic characteristics, the LAI is one of the most
common phenotypic traits for characterizing crop growth, energy interception, and many other
physical processes of crop growing [17]. Many studies of LAI retrieval or estimation using satellite
images have been done, but the spatial resolution is too coarse to support plant breeding. UAVs
provide a convenient and efficient way to collect remote sensing images with high spatial and temporal
resolution [18]. There are two kinds of popular LAI retrieval methods based on UVV images, including
statistical approaches based on vegetation indexes (VIs) [19] and radiative transfer models such as the
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PROSAIL model [12,20,21]. The vegetation indexes method is simple and convenient. However, they
need numerous in situ-measured data. In addition, the vegetation indexes will be statured when the
crop canopy LAI is high [22].

Alternatively, radiative transfer models may be a more robust approach to characterize crop
canopy difference. The PROSAIL model is one of the most popular models for LAI retrieval [23,24]:
it is a coupling of the leaf level PROSPECT model and the canopy level SAIL model [25]. The key for
LAI retrieval using the PROSAIL model is finding the optimal math between simulated crop canopy
reflectance through the PROSAIL model and remote sensing image reflectance using a look-up table
(LUT) by minimizing the cost function [26]. The limitation of LAI retrieval using the PROSAIL model
lies in the ill-posed problem resulting from model uncertainties [27]. Duan et al. [12], Shi et al. [1,6],
Roosjen et al. [20], and Xu et al. [21] have studied LAI retrieval and estimation using UAV remote
sensing images. Duan et al. [12] used the PROSAIL model to evaluate the suitability of LAI estimation
using hyperspectral images. They found that the retrieved LAI was accurate, with a root mean square
error (RMSE) of approximately 0.62 m2 m-2 and a relative RMSE of approximately 15.5%. Shi et al. [1,6]
found a strong relationship (R2 = 0.93) between the UAV NDVI and the in sit- measured LAI of winter
wheat. They both concluded that UAV remote sensing images could be used to estimate the LAI
of winter wheat. Roosjen et al. [20] retrieved a potato crop canopy LAI using multiangle spectral
UAV images, aiming at alleviating the ill-posed problem through multiangle imaging approaches.
Xu et al. [21] retrieved a rice canopy LAI based on UAV images by coupling the PROSAIL model and
Bayesian network models. In our previous work, we tried to alleviate this problem through the use of
a priori information measured in fieldwork and improved PROSAIL inputs, such as the leaf angle
distribution function [28]. In this study, the potential of LAI retrieval in the entire growing season of
corn using VIs and the PROSAIL model was analyzed, aiming at finding the optimal LAI retrieval
method for the entire corn growing season.

Corn (Zea mays) is planted widely around the world and is a key component of food security
both for humans and for animals [29]. The phenotyping of corn would provide important support
for corn breeding to increase the yield of corn. Therefore, this study focused on finding methods for
phenotyping of breeding corn plants using UAV images. Our objectives were as follows:

1. Determine if the SfM photogrammetry method can be used to estimate corn plant height based
on stereoscopic UAV images and if it can be used to detect height differences and height variations for
different corn cultivars;

2. Compare the corn lodging area estimation accuracy using the differences in textural features
and the differences in plant height between lodging and nonlodging areas. Corn plant heights
were calculated from normalized DSM (nDSM) data calculated from stereoscopic UAV images using
SfM photogrammetry;

3. Explore the potential for LAI retrieval using our improved PROSAIL radiative transfer model
based on UAV images.

2. Materials and Methods

2.1. Materials

2.1.1. Study area

There were two corn breeding trials analyzed in this study: the Shunyi corn breeding trial located
in Beijing, China, and the Baogaofeng Farm located in Mazhuang Town, Xinji City, Hebei Province,
China. Figure 1 shows the locations of these two study areas. The Shunyi corn breeding trial is in
northern China (40◦11′44.82”N, 116◦33′59.49”E) at an elevation of 48 m and covers 20 ha. The region
has a warm-temperate semihumid continental monsoon climate with an annual average rainfall of
625 mm, with a dry winter and annual sunshine duration of 2750 hours. The temperature in corn
growing season ranges from 7.3 ◦C to 39.6 ◦C. The corn growing season is commonly from early June
to early September. The UAV flights occurred on 21 July 2016 and 14 September 2016. The UAV images
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acquired on 21 July and 14 September were used to estimate the corn plants’ heights and lodging areas,
respectively, which are the jointing stage and milking stage of corn (individually) in the study area.
There were 4 kinds of corn cultivars in field No. 12 of the Shunyi corn breeding trial: they were YY-1,
YY-2, YY-3, and QH50, and there were 215 plots in this field. The planting density in field No. 12
was 7500 plants/ha. For field No. 14, there were 324 plots in total, and the corn cultivars included
JK-A, JK-B, JK-C, LP-A, LP-B, LP-C, HN-101, HN-803, CY480, LY410, and JNK728. There were four
kinds of planting densities in field No. 14, i.e., 60,000 plants/ha, 67,500 plants/ha, 75,000 plants/ha, and
82,500 plants/ha.

The Baogaofeng Farm (37◦47′55.26”N, 115◦18′02.51”E) is in Mazhuang Town, Xinji City, Hebei
Province, which is to the southwest of Beijing at an elevation of 14 m and covers 20 ha. The climate is a
semihumid continental climate in a warm monsoon temperate zone with an annual average rainfall of
488.2 mm with a hot rainy season. Precipitation from June to August accounts for 67.9% of the total
annual precipitation in Baogaofeng Farm. The corn is sowed at the end of June, the jointing stage
is around the middle of July, the flare opening stage is around the end of July, the heading stage is
around the middle of August, and the milking stage is around early September. According to the
phenological stage of corn in Baogaofeng Farm, UAV image collection and an in situ measurement
campaign were carried out on 15 July (the jointing stage), 26 July (the flare opening stage), 11 August
(the heading stage), and 4 September (the milking stage) 2018. There were seven kinds of corn
cultivars and seven planting densities in Baogaofeng Farm. The corn cultivars involved Zhengdan 958,
Xianyu 335, JNK 728, Denghai 605, Xianyu 047, MC 812, and Jinhai 5. The plant densities included
60,000 plants/ha, 67,500 plants/ha, 75,000 plants/ha, 82,500 plants/ha, 90,000 plants/ha, 105,000 plants/ha,
and 120,000 plants/ha in total.
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Figure 1. Locations of the two study areas. The Baogaofeng Farm study was performed in Mazhuang
Town, Xinji City, Hebei Province (left), and the Shunyi corn breeding trial was performed in Shunyi
District, Beijing, China (right).

2.1.2. UAV Image Collection

A DJI S1000+ UAV (DJI-Innovations Co., Ltd., Shenzhen, China; Figure 2a) was used to obtain
UAV images. The UAV had an onboard GPS receiver with a 2D positioning accuracy of 10 cm. The
sensors mounted on the UAV were a Sony DSC QX100 digital camera (Sony Inc., Tokyo, Japan) and
a Parrot Sequoia multispectral digital camera (Parrot SA., Paris, France). The UAV had a maximum
flight time of 12 min before it was necessary to replace the battery. The Sony DSC QX100 is an RGB
camera with a 20.2-megapixel resolution (sensor size of 13.2 mm × 8.8 mm) and an equivalent focal
length of 28 to 100 mm. The Parrot Sequoia camera captures green, red, red-edge, and near-infrared
band reflectance with a 120-megapixel resolution. The UAV flights were conducted at a height of 50 m
above the ground at a travel speed of 6 m/s. Table 1 summarizes the characteristics of the cameras.
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In order to obtain reliable corn plant heights, an overlap of over 5 images was set for every pixel
for UAV image acquisition. Figure 2b shows the flight paths used to acquire images in this study.
To geometrically correct the images, the positions of obviously stationary objects were selected as
ground control points (GCPs), with their positions determined to an accuracy of 8 mm using the GPS
receiver. There were 21 GPS control points set in Baogaofeng Farm, and there were 36 GPS control
points set in the Shunyi corn breeding trials. These GPS points were distributed throughout the study
area as evenly as possible. Obvious objects such as the corner of a room for storing motor-pumped
wells in Baogaofeng Farm, the corner of a room for storing agricultural machinery in Shunyi, and
ridges of corn fields were commonly used as GPS points.

Table 1. Characteristics of the cameras used to obtain the unmanned aerial vehicle (UAV) images.

Parameters Parrot Sequoia Multispectral Camera Sony DSC QX100 Camera

Type Multispectral Visible RGB
Weight (g) 72 (camera) + 36 (light intensity sensor) 300

Spectral bands Green, red, red-edge, near-infrared, visible Blue, green, red
Effective pixels 1.2 Mpx (multispectral bands), 16 Mpx (visible bands) 20.2 Mpx
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Figure 2. The DJI S1000+ UAV (a) used in this study and (b) an example of its flight path. Note:
red points are the location of pictures taken by the UAV, and the blue plus signs are the locations of
ground GPS.

2.1.3. UAV Image Preprocessing

UAV image preprocessing was done after each flight, including an image mosaic, geometric
correction, and the creation of orthomosaics using Pix4Dmapper software (https://pix4d.com/). The
geometric correction was done to correct for any flight instability and errors in the airborne GPS
recording. Other preprocessing included radiometric calibration to convert the pixel values from
digital numbers to reflectance values using the measured reflectance for all spectral bands. Radiometric
calibration used vicarious calibration based on the absolute reflectance method [30] using the radiation
calibration board in Baogaofeng Farm. The radiation calibration board was placed on a flat ground
surface in the study area, and it was ensured that there were no shadows covering the radiation
calibration board (shown as Figure 3a). Figure 3b–e represents the captured green, red, red-edge,
and NIR band images for radiometric calibration in Baogaofeng Farm, Xinji City, Hebei Province,
China. These pictures taken of the radiation calibration board were added to Pix4Dmapper software
for radiometric calibration during the image mosaic process.

https://pix4d.com/
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Furthermore, a points cloud was produced using Pix4D software for corn plant height modeling.
For generating the expected height accuracy, the parameters were set in the Pix4D software as follows:
The pixel matching was 1, which could produce points and depict more corn plant structural details.
Next, a multiscale was ticked, which ensured that there were more densified 3D points and more
details of corn plants, too. In addition, the point density was set to high with a slow speed, and the
minimum number of matches per 3D point was 4.

2.1.4. Field Campaign

Synchronous with the UAV flights, in situ measurements of the corn plant heights, lodging area,
canopy LAI, leaf chlorophyll content, and spectral reflectance of the corn canopy were done at each
site. The locations of the sample sites were obtained using a Huace i80 real-time kinematic (RTK)
GPS receiver (Huace Ltd., Shanghai, China). The corn plant heights were measured using a meter
stick from the ground to the tip of the corn plants. The measured plant heights were used to validate
the estimated height of a pixel at its location. The lodging areas were located using a Huace i80
real-time kinematic (RTK) GPS receiver, too. The lodged areas were labeled to validate the lodging area
estimation. The corn canopy LAI was measured using an LAI-2200 Plant Canopy Analyzer (LI-COR,
Lincoln, NE, USA), and the cover cap was set to a 45◦ field angle to eliminate the effect of nonplant
objects within the range of the sensor’s field of vision. There were six measurement values that were
acquired in each plot following a transect with a zigzag pattern. The chlorophyll content of the corn
leaves was measured using a SPAD-502 leaf chlorophyll meter (Konica Minolta Corp., Solna, Sweden).
There were five corn plants that were selected randomly in each plot, and the chlorophyll content of
six leaves per plant was measured. For each leaf, we measured the chlorophyll content near the leaf
tip, leaf bottom, and middle of the leaf. We used the average of these measurements to represent the
chlorophyll content for each leaf and the average for all leaves to represent the content in each plot. The
reflectance of the corn canopy, the white diffuse reflector, the black diffuse reflector, and the white cloth
were measured using an SVC HR-1024 spectroradiometer (Spectra Vista Corporation, Poughkeepsie,
NY, USA), and the data were used for radiometric calibration of the UAV remote sensing images.

2.2. Methods

There were three phenotypic parameters that were estimated for breeding corn plants using UAV
images in this study: plant heights, lodging area, and canopy LAI. During the phenotyping process,
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the plant heights were estimated using the difference in the DSM coming from the stereo UAV images
through the SfM method and the DTM by means of ordinary Kriging interpolation of bare earth points,
i.e., nDSM. For the lodging area estimation, there were two kinds of methods used: textural features
and the calculated nDSM. For the corn canopy LAI, the physical radiative transfer PROSAIL model
was used.

2.2.1. Corn Plant Height Estimation

Corn plant height is a morphological trait and is expressed as the shortest distance between the
upper boundary of the main photosynthetic tissues of a plant and the ground level [10]. To estimate
plant heights, a DSM characterizing the height of ground and corn plants was created in Pix4D software
using generated 3D points. The 3D points were created from stereo UAV images using the SfM method.
There were overlapping regions between adjacent UAV images. To account for these overlaps, all of
the UAV images and their position and orientation system (POS) data (acquired at the same time)
were used to calculate the exterior elements of adjacent UAV images using aerial triangulation. Next,
a digital terrain model (DTM) characterizing the height from the ground only was produced using
points located on the bare ground. The bare ground points were selected based on the DSM image
and true-color RGB UAV images using the hierarchical moving curve-fitting method [31]. Then,
intermediate points were generated in the DTM by means of ordinary Kriging interpolation. Last,
the nDSM was generated as the difference between the DSM and DTM elevations, characterizing the
corn plant height pixel by pixel. These three steps, including the selection of bare ground points,
interpolation, and a calculation of the difference between the DSM and DTM, were completed using
our custom code.

2.2.2. Lodging Area Estimation

Lodging is a major cause of corn yield loss and occurs as a result of extreme weather (e.g., strong
winds, heavy rain) or improper management (such as maintaining excessively high levels of soil
moisture) [3]. Thus, lodging resistance is an important genetically determined characteristic that is an
important criterion in corn breeding. The lodging area in the Shunyi corn breeding trial was estimated
using 2 kinds of methods: mining the textural differences or the height differences between corn plants
with and without lodging.

The textural differences between lodging and nonlodging areas were used to estimate lodging
areas first. The gray-level co-occurrence matrix (GLCM) is widely used to extract textural features from
high-resolution remote sensing images [32], and it was developed by Haralick et al. [33]. The GLCM
textural features of UAV images were calculated in the spatial domain to identify lodging areas in this
study. The gray-level co-occurrence matrix stores the probability of co-occurrence between two gray
levels, i and j, and the given relative orientation (y) and distance (d) [32]. Therefore, the essentials of the
GLCM method lie in the determination of the window size, the offset value, the channel, and which
feature to use. There were 14 original textural features developed by Haralick et al. [33], including
the mean, variance, homogeneity, contrast, dissimilarity, entropy, angular second moment (ASM),
correlation, etc. These features are shift-invariant and are effective texture discriminators. Because this
study did not focus on how to set reasonable values for these parameters, the details of decisions on
window sizes, offset values, the channel, and which features to use were referenced from principles
in our previous work [34]. In this study, ASM textural features were extracted based on the blue,
green, and red bands of the Sony DSC QX100 digital camera pictures, and a 5 × 5 window size and
an offset value of 1 were used simultaneously. The ASM computation was done in ENVI software
(version 5.3). Based on the textural differences between the lodging and nonlodging areas, the lodging
areas were classified using an SVM-supervised classifier in ENVI software (version 5.3) by selecting
training samples.
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The second method used height differences between the nDSMs in lodged and unlodged areas.
And the height differences were determined by the thresholds, which were captured by statistics of
lodging and nonlodging areas in the study area.

2.2.3. LAI Retrieval Using the PROSAIL Model

Compared to statistical and empirical vegetation index approaches, physical radiative transfer
models have shown great flexibility in retrieving crop LAIs because they can be parameterized for
a wide range of land cover situations and sensor configurations. The PROSAIL model is a popular
model for retrieving LAIs [24]. It was developed by coupling the SAIL bidirectional canopy-reflectance
model [35] with the PROSPECT leaf optical properties model [36,37]. PROSPECT pioneered the
simulation of directional-hemispherical reflectance and transmittance [38] using the leaf structure
parameter N and leaf biochemical content variables (e.g., chlorophyll a + b content (Cab), carotenoid
content (Car), and equivalent water thickness (Cw)) at the leaf level. The simulated reflectance and
transmittance are used as inputs for the SAIL model to retrieve the LAI using canopy inputs such
as measured LAI, the leaf inclination distribution function (LIDF), a hot spot parameter (hspot), the
solar zenith angle (θs), the viewing zenith angle (θv), the relative azimuth angle (ϕsv), soil reflectance
(assumed to be Lambertian or not; ρsoil), and the ratio of diffuse to total incident radiation (skyl) [39,40].
The forward simulation process uses the following model:

ρc = PROSAIL (N, Cab, Car, Cw, Cm, LAI, LIDF, hspot, θv, θs, ϕsv, ρsoil, skyl), (1)

where ρc is the canopy reflectance. There are four kinds of inputs for the PROSAIL model: leaf optical
properties (N, Cab, Cm, Cw), canopy structural properties (LAI, LIDF, hspot), soil and sky properties
(ρsoil and skyl), and sun sensor properties (θs, θv, ϕsv). Among these parameters, the leaf chlorophyll
(Cab) was measured with a SPAD-502 chlorophyll meter in this study. Equivalent water thickness (Cw)
is tied to the difference between fresh leaf weight and dry leaf weight (Cw = (Cfresh leaf- Cdry leaf)/LAI). The
LAI came from the measured LAI value in fieldwork using an LAI-2200 Plant Canopy Analyzer [41,42].
The values of θs, θv, and ϕsv were obtained from the acquisition parameters for UAV image collection.
These parameters were used to generate the LUT in order to reduce the ill-posed problem of the
vegetation canopy parameter retrieval.

For the PROSAIL input observations, LAI, LIDF, Cab, Cm, Cw, θs, and θv were sensitive inputs
within blue, green, red, and NIR bands, which meant that there would be obviously different simulated
reflectance when these inputs changed. Therefore, the ranging values and distributions (i.e., uniform
or Gaussian) for these inputs were set (Table 2). Especially, the LIDF was a sensitive input for corn
canopy LAI retrieval, which was revealed in our previous work [39]. Therefore, we improved the LIDF
by refining the corn leaf inclination distribution function using terrestrial LiDAR data. The inferred
maximum probability leaf angles were used in the Campbell ellipsoid leaf angle distribution function
of PROSAIL. This was our improvement of PROSAIL model used for corn canopy LAI retrieval in
Baogaofeng Farm using four UAV images acquired on 15 July, 26 July, 11 August, and 4 September.
The canopy reflectance forward simulation was done by coupling the leaf-level PROSPECT model and
the canopy-level SAIL model. By inputting the leaf-leveled N, Cab, Car, Cbrown, Cm, and Cw values listed
in Table 2, the directional-hemispherical reflectance and transmittance of a leaf [38] over the spectrum
from 400 nm to 2500 nm [36] of the leaf were simulated. Coupling the leaf reflectance and transmittance,
the canopy inputs, including LAI, LIDF, and hspot, were used to simulate canopy reflectance. The
code of forward PROSAIL Python Bindings was downloaded from https://pypi.org/project/prosail/,
and the codes on backward LAI retrieval using the PROSAIL model and the improvement of the corn
leaf inclination distribution function were our custom codes. In the next step, the best fit between the
simulated canopy reflectance and the observed canopy remote sensing reflectance was determined
using a look-up table (LUT). By finding the best fit using a LUT, the corn canopy LAI could be retrieved.
A cost function based on the root mean square error (RMSE) was used to quantify the difference

https://pypi.org/project/prosail/
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between the simulated reflectance in the LUT and the observed reflectance for multiple bands of the
remote sensing images, which was computed as

RMSE =

√√
1
n

n∑
λ = 1

(Rsim(λ) −RL(λ))
2 (2)

where Rsim(λ) is the simulated reflectance of band λ in the LUT, RL(λ) is the UAV image reflectance
in band λ, and n is the number of wavelength bands. The retrieved LAI is found when the RMSE
approaches 0.

Table 2. The ranges and distributions of the PROSAIL model inputs for LAI retrieval.

Model Variables Range or Value Distribution

Canopy
LAI Leaf area index (m2 m−2) 0.0 to 7.0 Uniform

LIDF Leaf inclination distribution function (◦) 0 to 90 Gaussian
hspot Hotspot parameter (m m−1) 0.12 Fixed

Leaf

N Leaf structural parameter in PROSPECT 1.518 Fixed
Cab Chlorophyll a + b content in PROSPECT (µg cm−2) 45.0 to 60.0 Uniform
Car Carotenoid content in PROSPECT (µg cm−2) 8.0 Fixed

Cbrown Brown pigment content (ug/cm2) 0.20 Fixed
Cw Equivalent water thickness in PROSPECT (cm) 0.05 to 0.30 Gaussian
Cm Dry matter content in PROSPECT (g cm−2) 0.002 to 0.012 Gaussian

Soil and sky psoil
Soil reflectance assumed to be Lambertian (1) or

not (0) 0–1 Gaussian

skyl Ratio of diffuse to total incident radiation Calculated by θs Fixed

Sun sensor
θs Solar zenith angle (◦) 29 Fixed
θv Viewing zenith angle (◦) 0 Fixed
ϕsv Relative azimuth angle (◦) 0 Fixed

Note: The symbol “-” represents a one-set value.

3. Results and Analysis

3.1. Corn Plant Height Estimation Results

The nDSM was used to estimate the corn plant height for two breeding fields in the Shunyi
breeding trial (fields No. 12 and No. 14). These small plots were used for a hybrid trial to test five new
corn cultivars. Figure 4b shows the calculated DSM within these plots using the SfM photogrammetry
method, Figure 4c shows the interpolated DTM using the bare ground points, and Figure 4d shows the
nDSM calculated by subtracting the DTM from the DSM. Figure 4c shows that there were three high
microreliefs of bare earth in the northern and southern parts of field No. 12 and in the southwestern
part of field No. 14. These three locations showed higher elevations in the DSM (Figure 4b). The nDSM
(Figure 4d) accounted for these factors to show the true height of the corn plants. The corn cultivars in
the fifth plot from the left within field No. 12 were taller than the other cultivars, and the corn cultivars
in the northern part of field No. 14 were taller than those in the southern part. The estimated corn
plant heights were compared to the corresponding heights measured in situ. There were 28 corn plants
that were randomly measured for their plant heights during the fieldwork for a height estimation
accuracy assessment, and the measured heights were compared to the estimated heights (Figure 5).
The locations of the measured heights were positioned using a Huace i80 real-time kinematic (RTK)
GPS receiver (Huace Ltd., Shanghai, China). The relationship between the measured and estimated
heights was strong and significant (R2 = 0.7833, p < 0.001) with reasonable accuracy (RMSE = 0.1677).

To test our ability to detect height differences between the different corn cultivars, the plant heights
and the coefficient of variation (CV) of all corn cultivars combined were measured in fields No. 12 and
14 in the Shunyi breeding trial. Figure 6a shows a map of the corn plant heights in two fields. The corn
plant height for the cultivars in the fifth plot from the left within field No. 12 were greater than those
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in the eastern and western parts. The corn plants with the lowest average height were in plot 6-12,
with an average height of 0.46 m. The corn plants with the greatest average height were in plot 1-2,
with an average height of 2.20 m. In field No. 14, the corn plants in the north were taller than those in
the south. Within this area, the corn plants in plot 13-21 were the shortest, with an average height of
0.78 m, and the tallest corn plants were in plot 2-4, with an average height of 2.09 m. These results
agreed with the spatial variability shown in Figure 4d.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 20 
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The CV of corn plant height represents the consistency of growth by the different corn cultivars.
A small CV indicates a high consistency of height. We chose a population standard of CV = 3% and a
95% probability of acceptance to identify corn height cultivars with consistent growth. Figure 6b shows
the spatial variation of CVs for the different cultivars. The CV was smallest for the corn cultivars in the
western and southeastern parts of field No. 12. The smallest CV occurred in plot 7-3, with a value of
0.09, and the largest CV occurred in plot 6-12, with a value of 1.02. The CVs were more variable in
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field No. 14 due to the different sizes of the corn plants. The smallest CV was 0.05, in plot 7-2, and the
largest CV was 0.55, in plot 10-20.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 20 
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3.2. Estimated Lodging Area

Because lodging resistance is an important characteristic for corn breeding, there were two
methods used to estimate the lodging area. First, the GLCM texture analysis method was used to
identify lodging areas using UAV RGB images, as described in Section 2.2.2. Figure 7a includes
preprocessed UAV RGB images of field No. 4, field No. 6, and field No. 8: the labeled light green
areas are lodging areas, and the labeled dark green areas are nonlodging areas. Figure 7b shows the
generated ASM texture feature, and Figure 7c shows the estimated lodging area based on this textural
feature. Second, the nDSM was used to detect lodging areas: Figure 7d shows the nDSM, Figure 7e
shows the resulting lodging areas, and Figure 7f shows the spatial variation within the lodging area.

To validate the estimation results of these two methods, an accuracy assessment was done by
comparing the estimated lodging area and the in situ-measured lodging area for all corn breeding
plots in fields No. 4, No. 6, and No. 8. Table 3 is a comparison of the total lodging areas in fields No. 4,
No. 6, and No. 8, which revealed that the measured lodging areas agreed reasonably well with the
estimates produced by both methods (Table 3). Specially, the accuracy of the nDSM method was much
more accurate than that of the textural method. Particularly, the estimation error using the nDSM in
fields No. 4 and 6 was 0.85% and 0.97%; however, the error using the ASM in these two fields was
10.0% and 16.2%. Its estimation errors were roughly an order of magnitude smaller than the errors
based on the texture analysis.

To compare the lodging resistance of different corn varieties, the proportion of the lodged corn
plants in each plot and its CV were calculated. Figure 7e shows the spatial distribution of the percentage
of lodging and reveals serious lodging in field No. 4, where there were relatively few lodged corn
plants. The lodging was most serious in plots 1-2 and 3-6, where lodging affected 100% of the plants.
The least serious lodging was in plot 7-4, with a value of 2.5%. This indicates that the corn variety in
plot 7-4 showed good lodging resistance. The lodging was not serious in field No. 6, and only some
plots in the east showed significant lodging, such as plots 6-10 and 8-10. The corn variety with the most
variable lodging was in field No. 8, with the maximum lodging rate reaching 100% and a minimum
lodging rate reaching 0%. Plot 2-1 was a circular area, and lodging was most serious in the center of
the plot, reaching 23.3%.

Figure 7f shows the CVs for the lodging area in each plot. The proportion of the plants that
experienced lodging roughly equaled the proportion of plants that did not when the CV reached
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0.5. When the CV is 0, this indicates that either all corn plants lodged or none of the plants lodged.
Figure 7f shows that the maximum CV (0.5) occurred in the northern part of field No. 4, whereas the
maximum CV occurred in the middle and western parts of field No. 6, and the CV in field No. 8 was
highly variable.
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Figure 7. Identification of lodging areas based on texture analysis and the nDSM. (a) A preprocessed
RGB UAV image; (b) the spatial distribution based on the ASM texture feature; (c) the estimated
lodging area based on the ASM texture feature; (d) the estimated lodging area using the nDSM; (e) the
proportion of the lodging area in every plot; and (f) the coefficient of variation (CV) of the lodging area
in every plot.

Table 3. The measured and estimated lodging areas and the resulting estimation errors using the nDSM
method and the ASM textural feature.

Parameters Field No.

4 6 8

Measured lodging area (m2) 6409 2993 2503
Estimated area using nDSM (m2) 6464 3022 2372
Estimation error using nDSM (%) 0.85 0.97 5.23
Estimated area using ASM (m2) 5768 2508 2203
Estimation error using ASM (%) 10.0 16.2 12.0

3.3. Retrieved LAI Using PROSAIL Model

The corn canopy LAI was retrieved using the parameterized PROSAIL model inputs in Table 2
based on our previous work [39]. According to the range and value of input variables (Table 2),
the program identifies a remote sensing image pixel by pixel through a cost function to find the
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best fit/match between the observed pixel reflectance and the simulated reflectance in the look-up
table. Figure 8 shows the retrieved LAI on 15 July (stem elongation stage) (Figure 8a), 26 July (the
flare opening stage) (Figure 8b), 11 August (the heading stage) (Figure 8c), and 4 September (the
milking stage) (Figure 8d). In Figure 8, the three horizontal rows are the three repetitions of different
fertilization amounts for each column, indicating each treatment with different corn varieties and
planting densities. For example, the field labeled 1-7 in Figure 8a had treatment with corn varieties
of Xianyu 335 with 82,500 plants/ha. Due to experimental secrets, the fertilization amount cannot be
listed here. Figure 8a,b show that the retrieved LAIs for treatments of *-7 (1-7, 2-7, and 3-7) and *-23
(1-23, 2-23, and 3-23) were higher than for other treatments at the stem elongation stage (Figure 8a)
and the flare opening stage (Figure 8b). Here, *-23 was treatment with corn varieties of Xianyu 335
with 12,000 plants/ha. This revealed that the corn variety of Xianyu 335 grew quickly with other corn
varieties. At the heading stage (Figure 8c), the LAI of most treatments reached 6.00–7.00, except for the
corn varieties that included *-13 (1-13, 2-13, and 3-13), *-15 (1-15, 2-15, and 3-15), and *-24 (1-24, 2-24,
and 3-24), which were 3.00–4.00. Figure 8d shows that there were two treatments, including *-7 (1-7,
2-7, and 3-7) and *-23 (1-23, 2-23, and 3-23), that got higher LAIs in the milking stage. Unfortunately,
this higher LAI was not a good growth condition, and these areas were lodged corn plants. This result
reveals that the lodging resistance of Xianyu 335 was weak.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 20 
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There were 47, 62, 61, and 42 in situ-measured LAIs in the field campaign on 15 July, 26 July,
11 August, and 4 September, respectively. All of the measured data were used to validate the LAI
retrieval accuracy. Figure 9 shows the accuracy assessment results of retrieved LAIs using the PROSAIL
model compared to in situ-measured LAIs on 15 July (stem elongation stage) (Figure 8a), 26 July
(the flare opening stage) (Figure 8b), 11 August (the heading stage) (Figure 8c), and 4 September
(the milking stage) (Figure 8d). The correlation coefficients of the retrieved and measured LAI (with
P < 0.01) on 15 July (Figure 8a), 26 July (Figure 8b), 11 August (Figure 8c), and 4 September (Figure 8d)
were 0.6052, 0.7490, 0.7450, and 0.7233, respectively. Comparably speaking, the retrieved accuracy of
LAIs in the early growing stage (i.e., 15 July, the stem elongation stage in this study) was lower than in
the middle and later growing stages because the corn canopy was not closed and the image pixels
were a mixture of the corn canopy and bare soil in the early growing stage.
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Figure 9. Comparison between the LAIs measured in situ and the retrieved LAIs using the PROSAIL
model on (a) 15 July (stem elongation stage), (b) 26 July (the flare opening stage), (c) 11 August
(the heading stage), and (d) 4 September (the milking stage). The broken lines represent the 95%
confidence interval.
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4. Discussion

Phenotyping is an urgent demand in crop breeding currently. Crop breeders need the geometric
traits and biochemical traits of crop plants and canopies to identify the genetic compositions of lines
within different crop species. UAV images are effective ways to phenotype nondestructively at a low
cost. A methodology for estimating breeding corn plant heights, lodging areas, and canopy LAIs using
calibrated UAV images has been proposed in this study. The motivation for this study was to find
effective ways to estimate corn plant height differences and their coefficients of variation, lodging
proportions and their coefficients of variation, and canopy LAIs. This phenotyping did help to test the
agronomic characters of new corn varieties, including lodging resistance, leaf color, etc.

The corn plant heights were estimated using the nDSM, which is the difference between the
DSM and DTM. In other words, the nDSM is a height model of land objects above the ground,
i.e., the corn plants in this study. The DSM is calculated from stereoscopic UAV images using SfM
photogrammetry [43]. The DTM is restored by selecting the bare ground points using the hierarchical
moving curve-fitting method [31] and interpolating using ordinary kriging interpolation [44]. The corn
plant height estimation results show that this method was effective in estimating regional corn plant
heights. Certainly, the height estimation accuracy was low, with R2 = 0.7833 in this study. The accuracy
could be improved by more longitudinal overlap and sidelap. Unfortunately, further overlap was
limited by the flying plans in the whole study area. The plant heights varied obviously for different
corn varieties in the Shunyi corn breeding trial, Beijing, China. The heights of the corn varieties planted
in plot 6-12 and plot 13-21 were lower, shorter than 1 m. Comparatively, the corn varieties planted
in plot 1-2 and plot 2-4 were a long-stalked variety with an average height taller than 2 m. Based on
the estimated corn plant height results, we estimated the CVs of the height changes from this plant to
that plant in studied fields No. 12 and No. 14, which were an indicator of corn plant height regularity
within the tested corn varieties. Our results show that the corn varieties planted in plot 7-3 and plot
7-2 had the best plant height regularity, with a CV value of 0.09 and 0.05, respectively. The corn variety
planted in plot 6-12 had the lowest plant height regularity, with a CV value of 1.02. Based on huge
previous corn height estimation research, we took advantage of the estimated corn plant heights of 215
plots in the Shunyi corn breeding trial. This height estimation was done to find the corn varieties with
optimal plant heights and lodging resistance. Moreover, the CVs of the plant heights were analyzed to
depict the corn canopy uniformity, which was used to validate the stability of a corn variety.

There were two kinds of methods used in the lodging area estimation in this study, the GLCM
texture analysis method and the nDSM calculating method: the former is an image analysis method [33],
and the latter is a photogrammetry method. Our estimation results from the Shunyi corn breeding trial
demonstrated that the nDSM method was more accurate than the GLCM texture analysis method, with
their smallest estimation error values being 0.85% and 10.0%, respectively. The lodging area estimation
results in this study show that the corn varieties planted in plots 1-2, 3-6, 6-10, and 8-10 had the poorest
lodging resistance, with a 100% lodging area, under the same meteorological conditions as other corn
varieties in the Shunyi corn breeding trial.

There are some studies used vegetation indexes of UAV images as crop growth, crop vigor, or an
indicator of crop leaf numbers [45–47]. Unfortunately, vegetation indexes such as the NDVI are easily
saturated when crop plants are thick and the canopy is closed [48,49]. Therefore, we used the PROSAIL
radiative transfer model to retrieve corn canopy LAI as a corn canopy geometric phenotypic trait based
on UAV multispectral images with green, red, red-edge, and near-infrared bands in Baogaofeng Farm,
Mazhuang Town, Xinji City, Hebei Province, China. Our results revealed that (1) the PROSAIL model
could be used to get high-accuracy LAI retrieval results at all growing stages of corn. The correlation
coefficients (R2) between retrieved LAI and in situ-measured LAI were 0.6052, 0.7490, 0.7450, and
0.7233 on 15 July, 26 July, 11 August, and 4 September, respectively. (2) For the tested corn varieties in
Baogaofeng Farm, the corn variety of Xianyu 335 had rapid growth in the early and middle growing
season. However, the lodging resistance of Xianyu 335 was weak.
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This study demonstrates the ability to estimate corn plant height, lodging area, and canopy LAI
using UAV RGB images and multispectral images. These attempts benefitted the phenotyping of corn
breeding. However, there was one limitation that are worth noting. It is that there were only three
phenotypic parameters that were studied. This is just a glimpse into phenotyping using a UAV technique.
There are more phenotypic parameters that should and can be estimated from UAV images [4,5] to
mine the big potential of UAV techniques and promote modern corn breeding development.

5. Conclusions

In this study, the potential of phenotyping to support corn breeding based on an analysis of UAV
images in visible and multispectral bands was investigated. Structural characteristics (plant height,
canopy LAI) and gene expression (lodging area) were estimated using visible bands. The following
was found:

1. The stereoscopic and photogrammetric methods showed promise for calculating corn plant
heights from UAV images, with R2 = 0.7833 and RMSE = 0.1677. This approach let us distinguish
corn cultivars with different heights over a wide range of heights and estimate the CV of heights for
each variety;

2. The nDSM method provided a more accurate estimate of the corn lodging area than the GLCM
textural features method sis, with errors <6% and >10%, respectively. In addition, we were able to
estimate the percentage of corn lodging in each plot and its CV, thereby identifying cultivars with
potentially higher lodging resistance;

3. The PROSAIL radiant transfer model with multispectral inputs offered more accurate and
robust characterization of corn phenotypes in terms of corn canopy LAI.

These comparisons and analyses on corn plant heights, lodging areas, and canopy LAIs were done
to find the optimal method for phenotyping with high-throughput nondestructively. In our future
work, we will investigate the potential of UAVs in phenotyping by examining this technique’s ability
to detect other phenotypic traits, such as vegetation cover, emergence dates, signs of abiotic or biotic
stress, and leaf nitrogen concentrations. In addition, we will examine the phenotypic responses of corn
plants at different planting densities and under different fertilization regimes. Finally, we will test the
association between field UAV results and laboratory determinations of genomic characteristics for a
range of corn cultivars.
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