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Abstract: Spatial models that provide estimates of wood quality enable value chain optimization
approaches that consider the market potential of trees prior to harvest. Ecological land classification
units (e.g., ecosite) and structural metrics derived from Airborne Laser Scanning (ALS) data have been
shown to be useful predictors of wood quality attributes in black spruce stands of the boreal forest of
Ontario, Canada. However, age drives much of the variation in wood quality among trees, and has
not been included as a predictor in previous models because it is poorly represented in inventory
systems. The objectives of this study were (i) to develop a predictive model of mean stem age of black
spruce-dominated stands, and (ii) refine models of black spruce wood density by including age as
a predictor variable. A non-parametric model of stand age that used a k nearest neighbor (kNN)
classification based on a random forests (rf) distance metric performed well, producing a root mean
square difference (RMSD) of 15 years and explaining 62% of the variance. The subsequent random
forests model of black spruce wood density generated from age and ecosite predictors was useful,
with a root mean square error (RMSE) of 59.1 kg·m−3. These models bring large-scale wood quality
prediction closer to becoming operational by including age and site effects that can be derived from
inventory data.

Keywords: black spruce; forest stand age; Airborne Laser Scanning (ALS); wood density modeling;
boreal forest; predictive modeling; k-Nearest Neighbor; forest resource inventory; LiDAR

1. Introduction

Airborne Laser Scanning (ALS) technology has become widely accepted as an important tool for
enhancing forest resource inventory (FRI) systems by increasing the accuracy of vertical structural
measurements [1]. Point clouds derived from ALS data have also been shown to support a variety of
ecological modeling initiatives that use implicit relationships to forest structures to make predictions
of variables that are traditionally measured or estimated in the FRI such as stand age [2], as well as
novel variables that could be used to optimize the value chain such as tree-level estimates of wood
quality attributes [3,4]. Adding general indicators of wood quality to FRI polygons would supply basic
information about where certain attributes are concentrated on the landscape. This information could
support harvesting decisions to reflect market trends, and may also be useful in facilitating broader
management goals such as climate change planning [5].

Wood quality attributes are strongly linked to environmental driving factors [6]. Variation in
environmental conditions among stands, and the resulting impact of these factors on wood quality,
is often detectible through analysis of ALS data. This suggests that some wood properties could be
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indirectly predicted from remotely sensed ALS data, which creates the opportunity to add wood quality
variables to FRI systems through spatial modeling [7]. From a modeling perspective, it is therefore
important to understand the processes and mechanisms that drive spatial variation in the characteristics
of woody tissues, and ultimately identify conditions that produce specific wood qualities (e.g., high
density). There are tree and stand-level variables known to be useful indicators of wood quality, such
as crown/canopy shape, stocking density, age, and site conditions, which can be derived from ALS
point cloud data [2,4,7]. Wood density is an important general indicator of wood quality, related to
marketable values such as stiffness, strength and hardness, which are important characteristics of
products that are produced from wood [8]. Considering these possibilities has led to the development
of models using site and ALS data to predict mean stand level wood density. Pokharel et al. [9] were
able to use ecological land classification and mensuration variables described in a FRI to explain 44.1%
of the variation in black spruce wood density in the first 50 years of growth, producing a model with a
root mean square error (RMSE) of 40.4 kg·m−3. Pokharel et al. [4] predicted wood density using ALS
structural metrics to explain 39% of the variation with a RMSE of 38.8 kg·m−3. In the boreal forest
of Newfoundland, wood quality attributes were modeled using ALS structural, environmental and
climate variables to predict wood density of black spruce with an RMSE of 20.9 kg·m−3 [3].

All of these predictive wood quality models in boreal forest were restricted in application, given
that age could not be included as a predictor variable due to the poor representation of age in the
respective FRI systems. The lack of age data required that the Ontario models be fit for only the first
50 years of growth, which limited their generalizability, since there is a far greater range in age than
50 years in any given boreal forest unit in Ontario. As the tree ages, the cambium matures and produces
higher density cells in a radial transition from corewood (low density tissue near the pith) to outerwood
(higher density tissue near the bark), which provides mechanical support in response to greater loads
produced by the upward growth of the tree [10]. The shape of this radial profile of wood properties
from corewood to outerwood changes depending on environmental factors [9]. For example, on sites
that experience frequent drought, where protection from embolism of cells is an important selective
pressure, the transition from corewood to outerwood occurs earlier [11]. Therefore, at any given age,
the stem will contain a greater proportion of higher density outerwood than a comparable tree on a
benign site that lacks drought. The interaction of these two factors, the developmental transition from
corewood to outerwood, and the influence of site conditions, determine the relative proportion of
high density wood in a given stem, and these factors are confounded when age is not included as a
predictor variable.

Stand age in FRI systems is typically estimated based on a standard curve of stand height and
tree age derived from a small number of field samples and linked to a photo interpretation for the
majority of stands. This type of estimate works best in single species stands that are the first cohort of
trees to be established after a stand-replacing disturbance [12]. However, in stands where there is a
mix of cohorts, species, or in nutrient poor or flooded sites, the relationship between age and height
becomes more ambiguous, especially when there are shade tolerant species involved [13]. In these
cases there are many influences impacting the rate of growth, and the species-specific height curve is
not necessarily a reliable predictor of age [12].

In single cohort stands and in places where there is a long, well documented history of forestry
activities or the time since fire is adequately reported, forest stand age can be assigned [14]. However,
in the boreal forest of Ontario, the disturbance history has not been well-documented. A promising
approach to estimating age in these forest stands is to examine ALS data, which can provide accurate
measurements of vertical canopy complexity, crown height, and surface roughness (rumple), all of
which are indicators of successional stage [15,16]. A number of studies have attempted to use ALS
metrics to assign age, time since stand replacing disturbance, or successional stage with varying
degrees of success [2,14,17]. The objectives of this study were to determine if forest structural variables
derived from ALS point clouds can be used to develop a predictive stand-level model of mean stem age
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for black spruce in the boreal forest of Ontario, and to improve upon previous approaches to modeling
mean stem-level wood density by including both age and site quality variables as predictors.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Hearst Forest (HF) management unit (83◦40′W, 49◦40′N), one
million hectares of productive forest land [18] within northeastern Ontario, Canada (Figure 1). The
HF falls within the northern claybelt of the boreal forest region, which is typified by low-lying
glaciolacustrine till, known for its poor drainage. The predominant topography is flat ground at
low elevation (e.g., ≤86 m a.s.l.); however, there are some upland glaciofluvial landforms that reach
elevations of up to 400 m [18,19]. The southern portion of the HF has sandy Humero-Ferric Podzols,
with some bedrock outcrops. The northern portion has poor drainage and the soils are mostly Mesisols
(24%) and Gleysols (18%) [20]. Black spruce (Picea mariana Mill. B.S.P.) is the most common tree species
found in the HF, occurring across a broad range of conditions from dry uplands to wet lowlands [21].
Meteorological data from the weather station in Kapuskasing, ON, (49.3803◦N, 82.4001◦W) indicate
that mean monthly air temperatures fall between −18.6 ◦C (January) and 17.2 ◦C (July). The yearly
mean temperature is 1.3 ◦C and the average yearly precipitation is 838.8 mm [22]. Growth rates in
the HF are limited by landscape level moisture and nutrient gradients, as well as a short number of
frost-free days (92) during the summer months [18].
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2.2. Sampling Design

In 2007, ALS data were acquired for the entire HF (1,231,707 ha). Northwest Geomatics LTD
acquired the data during the leaf-on period between 4 July 2007 and 4 September 2007. The ALS sensor
was a Leica ALS50 (Leica Geosystems, Heerbrugg, Switzerland) mounted on a Cessna 310 aircraft,
with acquisition parameters that allowed for a 30◦ field of view with a 20% overlap [21]. The 11900 Hz
pulse rate and 32 Hz scan rate produced an average point density of 0.82 points per square meter [23].
The raw point cloud data was summarized into structural predictor variables (Table 1) at the plot-level
and over a 20 × 20 m raster of the HF, as described in [23]. In addition to these structural variables, a
20 × 20 m topographic wetness index (TWI) from ALS-derived elevation data was calculated following
Bevin [24]. In 2010, a network of 446 circular 400 m2 (11.28 m radius) Temporary Sample Plots
(TSPs) were established across the HF (Figure 2) in order to support a series of collaborative research
projects [23].

Table 1. Complete list and description of predictor variables derived from ALS point cloud from which
a smaller subset was selected for fitting final models.

ALS Variable Description

MEAN_H Mean Height (m)
STD_DEV Standard deviation of height (m)
ABS_DEV Absolute deviation of height (m)

SKEW Skewness
KURTOSIS Kurtosis

MIN Minimum height (m)
P10–P90 First–ninth decile ALS height (m)

MAX Maximum height (m)

D1-D9 Cumulative percentage of the numbers of
binned returns

DA First returns/all returns
DB First and only return/all returns
DV First vegetation returns/all returns

MEDIAN_H Median height (m)
VDR Vertical Distribution Ratio = [MAX −Median]/MAX

COVAR Covariance (STD/Mean)
CanCOVAR Covariance (STD/Mean) of first returns only

SWI Shannon-Weaver Index

VCI Vertical Complexity Index (based on a 1m raster
analysis)

FIRST Number of First Returns
ALLRETURNS Number of all returns

FIRSTVEG Number of first Vegetation Returns only
ALLGROUND Number of ground Returns

cc0–cc24 Crown closure at 2 m increments (cc2 = crown closure
between 2 and 4 m)

QMDBH Quadratic mean diameter at breast height (trees
greater than 9 cm DBH)

Elevation (5 m) Elevation (m) (Derived from 5 m DTM
TWI Topographic Wetness Index (Derived From 5 m DTM)

Aspect Aspect (◦) (Derived from 5 m DTM)
Slope Slope (◦) (Derived from 5 m DTM)
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The TSP locations were chosen using a stratification that represented the full geographical range of
the HF as well as the entire range of stand development stages present in the forest. A comprehensive
breakdown of this sampling design including descriptions of how all ALS variables were calculated
can be found in Penner et al. [21]. In each plot, forest mensuration variables such as height (m) and
diameter at breast height (DBH) (cm) were collected from all living trees ≥ 10 cm DBH [23]. An ecosite
and substrate classification was designated for each plot based on information collected from a soil
auger profile [23]. Classification of substrate and overstorey species cover was used to identify an
ecosite classification according to the Ontario Ecological Land Classification Manual [25]. For this
study, ecosites were grouped according to soil moisture regimes and textures. There were nine groups
in total, describing site conditions from dry to hydric. Ecosite group 2 were dry sandy sites, ecosite
group 3 were fresh, sandy or dry to fresh coarse loamy sites, ecosite group 4 were moist sandy to
coarse loamy sites, ecosite group 5 were fresh clayey sites, ecosite group 6 were fresh silty to fine loamy
sites, and ecosite group 7 were moist, silty to fine loamy to clayey sites. Ecosite group 8 (hydric or
permanently flooded ecosites) was divided into three subcategories representing conifer swamps that
were rich 8r, intermediate 8i, and poor 8p in nutrients.
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2.3. Age Modeling

A subset of 134 TSPs was selected from the network to represent black spruce-dominated plots
for the development of an age prediction model. Plots with ≥50% black spruce cover (basal area)
were identified as spruce-dominated. A field campaign was initiated from December 2016 to August
2017 for the collection of a sample of approximately 10 increment cores from black spruce trees (DBH
≥10 cm) in each plot, which was expected to sufficiently capture the variation in age. This was similar
to the sample size used by Racine et al. [2] to model stand-age in the boreal forest of Quebec. Increment
core samples were mounted and sanded so that all annual rings were discernible using standard
dendrochronological techniques [26,27]. Dating and counting of annual rings was done under an
Olympus SZ61 bifocal microscope (Olympus Corporation, Tokyo, Japan) from 6.7–45×magnification.
For increment cores that did not strike the pith, an estimate of the number of missing rings was made
based on ring curvature following the method of Applequist [28], and ages were adjusted accordingly.
For consistency, all individual tree ages were determined to 2007, when the ALS was flown.

Non-parametric approaches such as imputation methods using k nearest neighbor (kNN)
classification derived from distances in multivariate space, are well suited to large ALS datasets
of forest attributes [29], and have been successfully employed in age prediction for regular single cohort
boreal forest stands [2]. A nonparametric, imputation approach allows a prediction to be made for a
target observation based on the most similar reference observation within the data set [29]. Various
methods of determining nearest neighbor reference observations can be employed. Random forests (rf)
is a classification method [30] that can be used to generate a distance metric to apply kNN and impute
predictions of a response variable across a landscape. Random forests distance is defined by Crookston
et al. 2019 as (1–P), where P = the proportion of random forest trees where a target observation is in
the same terminal node as a reference observation [31]. We conducted kNN with k = 1 and based on
the random forests distance (hereafter referred to as rf-kNN) using the “YaImpute” package version
1.0–26 [31] in the R statistical computing environment version 3.4 [32]. YaImpute was created to deal
with large numbers of predictor variables, and can be used to impute predictions as a raster output.
For model variable selection, an automated recursive process was followed using the varselection
function within YaImpute, which allowed predictors to be chosen that reduced the model’s error while
still providing unique information. The variables chosen using this method were TWI, Elevation, cc16,
P50, cc4, COVAR, cc10 and Max height. Model performance was assessed based on the root mean
square difference (RMSD), which is a measure of the model error based on the differences between
target and reference values, for all observations that have both [31]

Several subsets of the age dataset were examined to determine how model performance varied
based on stand characteristics [33]. In mixed stands with weak dominance of black spruce the model
produced poor age predictions. Thus, the final dataset was trimmed to include only plots that had
greater than 70% black spruce (% basal area) and contained no hardwood or eastern white cedar
(n = 116). The model also produced poor predictions in plots with a mean age greater than 120 years.
Based on this trend and an analysis of the pattern of height changes as a function of age, an old growth
age class was created for plots with mean ages ≥ 120 years to address this issue. A map layer depicting
the area of the HF representing the stands described by the restrictions of the final age modeling dataset
was generated from the FRI in ArcMap (version 10.1, ESRI, Redlands, CA, USA), and this map was
linked to the raster of ALS-derived predictor variables for the same area. Stand age was imputed across
the forest at the raster level (20 × 20 m pixel) using the YaImpute and the Asciigridimpute functions.

2.4. Wood Density Modeling

A total of 80 plots were selected from the 446 TSPs originally established in 2010 for collection of
wood quality data. Large increment core samples (12 mm diameter) were collected from these plots
over two field campaigns, conducted in 2011 and 2014. The approach taken with the wood density
model was to predict an average tree level trait expected to occur within a given spatial area (in this
case a 20 × 20 m raster pixel), which would allow users to identify portions of the landscape expected
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to contain trees with specific wood traits [4,9,34]. To facilitate this approach, it was important that
the fitting dataset was composed of trees that were representative of the stands within which they
occurred. The following criteria were used to identify cores that represented the average or typical
tree for a given stand; cores were extracted only from co-dominant or dominant individuals, within
±10 centimeters of the mean diameter at breast height for the plot, and within 30 years of the mean
plot age. Some of the plots in this study were within multiple cohort stands where a large range of
ages and wood qualities were present. A mean wood density value from a single tree would not have
adequately represented the wood density measurements across multiple cohorts at the plot level and
therefore these plots were removed from the study. To use the imputed age from the rf-kNN analysis
in the wood quality model, the dataset was further subset to match the conditions of that model, which
meant removing plots that had less than 70% black spruce mixed with a component of hardwood or
eastern white cedar. The final dataset was made up of 109 increment core samples from 80 plots that
represented a range of ecosite groups. The majority of plots were classified as ecosite group 8i and 8p,
comprising 70% of plots represented in this model.

Increment cores were sent to FPInnovations (Vancouver), where they were analyzed using
SilviScan technology to obtain ring-level wood quality measurements [35,36]. Nominal density was
measured at the ring-level using an X-ray densitometer at 25 µm resolution, 0.5 mm below the core
surface. From the nominal density measurement, true density was calculated with a moisture content
of 8% from volume and mass measurements that were calculated with micrometry.

Prior to fitting classification models, a preliminary list of potential predictor variables was
developed based on the results of a stepwise multiple linear regression to prune the variable list
using the “car” package [37] in R. To ensure the model was not over fit, variables were removed
until all remaining had variance inflation factors less than 10. Regression tree analysis is a method
for predicting values of a single response variable using a hierarchical classification tree to split the
data into progressively homogenous groups. While regression trees are specific to the fitting data set,
they can provide insights into the ecological drivers of the response variable [38]. We developed a
regression tree of wood density from the list of predictors derived from the multiple linear regression
(MLR), using the “rPart” Package [39] in R. The regression tree was pruned to cp ≤ 0.015. Random
forests [40], a consensus-based modeling approach that can be used to provide a general simulation of
hierarchical classification, was used to predict wood density over the range of conditions represented
by the fitting data set. The final model was run with nine predictor variables, six derived from the ALS
point cloud (cc4, cc6, cc12, VCI, D2, and P50) one derived from the forest resources inventory (ecosite
group), one modeled from ALS data (QMDBH), and the final variable, age, derived from the rf-kNN
model. A regression type model was conducted, with 8 variables tried at each split, a maximum of
4 nodes permitted and a total of 5000 trees created. To predict wood density across the entire set of
spruce-dominated polygons in the HF, the subset of polygons that represented the same conditions
used in the rf-kNN age model was identified, and the random forests simulation was computed across
the entire area using the Modelmap package in R [41].

3. Results

3.1. Age Modeling

The sampling design captured a wide variation in age structure across the forest. The youngest
plots were 8 years old at breast height, and the oldest were 160 years (Figure 3). The height structure of
the plots varied with mean plot age, showing a clear decrease in height at the top (P90) and middle
(P50) of the canopy at approximately 80 years (Figure 4). At 120 years there was a conspicuous increase
in height of P90 and P50 (Figure 4). This notable increase in age complexity suggested a threshold
beyond which the mean stem age could not be predicted. For this reason, a single age class was created
for stands older than 120 years, which are hereafter referred to as 121+.



Remote Sens. 2019, 11, 2022 8 of 21Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 21 

 

 

Figure 3. Distribution for final age dataset with mean indicated by red dashed line, (a) the number of 
trees available per plot n = 116; (b) age distribution of all trees independent of plot n = 1277; (c) mean 
plot age n = 116; (d) standard deviation of plot age n = 116. 

  
Figure 4. Scatter plot of ALS fifth (P50) in orange and ninth (P90) in turquoise decile height (metres) 
at plot ages (years) shaded grey is 95% confidence interval. LOESS curves are fit to the distributions. 

Figure 3. Distribution for final age dataset with mean indicated by red dashed line, (a) the number of
trees available per plot n = 116; (b) age distribution of all trees independent of plot n = 1277; (c) mean
plot age n = 116; (d) standard deviation of plot age n = 116.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 21 

 

 

Figure 3. Distribution for final age dataset with mean indicated by red dashed line, (a) the number of 
trees available per plot n = 116; (b) age distribution of all trees independent of plot n = 1277; (c) mean 
plot age n = 116; (d) standard deviation of plot age n = 116. 

  
Figure 4. Scatter plot of ALS fifth (P50) in orange and ninth (P90) in turquoise decile height (metres) 
at plot ages (years) shaded grey is 95% confidence interval. LOESS curves are fit to the distributions. 

Figure 4. Scatter plot of ALS fifth (P50) in orange and ninth (P90) in turquoise decile height (metres) at
plot ages (years) shaded grey is 95% confidence interval. LOESS curves are fit to the distributions.



Remote Sens. 2019, 11, 2022 9 of 21

The predictor variables describing site conditions like elevation and TWI were the most important
explanatory variables in the model (Figure 5). Variables that represent the complexity of the canopy at
various heights (cc16, cc4, and cc10) and COVAR, which describes complexity as SD/mean, were also
somewhat important for explaining age. This was expected since age is highly related to structural
changes over time (Figure 4). The kNN age model using random forests as the special distance metric
explained 62.87% of the variation of age in the sample population (Figure 6) and had a root mean
square difference (RMSD) of 15 years. These are good results considering that many stands were from
naturally regenerating origin and represented a large amount of structural and site condition variation
across the landscape.
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To demonstrate the application of this model at an operational scale, a map of predicted mean
tree age was produced from the imputed age for all polygons in the FRI that met the rf-kNN variable
criteria (Figure 7). Age variation can be very high, even within one FRI polygon. The map shows
pockets of older stands in the northeastern portion of the HF where less road access is possible. The
map insert, shows that areas that were recently harvested appear as young stands with a single cohort
of trees displayed as purple patches on the map. It also shows that for the most part when older raster
cells (121+ years) are present they are normally interspersed with medium aged raster cells (~80 years),
which conveys the multicohort nature of these stands.
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3.2. Wood Density Modeling

The dry sandy ecosite groups (EG2–EG4) had mean top heights greater than 19 m and were
generally younger (64–80 years) (Table 2). The hydric sites had shorter, older trees with mean heights
between 14–18 m and mean ages of 100–120 years (Table 2). Plots in ecosite group 8p, poor conifer
swamps typified by poorly drained organic soil, had the highest mean density of 536 kg·m−3. In contrast,
the mean density for samples in ecosite group 4, dry sandy to coarse loamy sites, were the lowest
at 413.2 kg·m−3 (Table 2). The general trend was that ecosite groups that provided poorer growing
conditions tended to have the highest wood density, whereas the faster growing, drier sites had the
lowest wood density (Table 2).

Table 2. Summary statistics for wood density and stand characteristics by ecosite groups in black
spruce-dominated plots in the Hearst Forest in Northeastern Ontario.

Ecosite Group n DBH Ht. BA Age SD Age Dens.
(cm) (m) (m2

·ha−1) (yrs) (yrs) kg·m−3

Fresh
Sandy/Dry-fresh

coarse loamy
EG3 6 16.9 18.9 34.48 74 27 469.77

Moist Sandy to
Coarse Loamy EG4 2 19.3 19.7 30.05 85 2 413.21

Fresh Clayey EG5 14 15.8 16.2 23.46 76 36 487.00
Fresh Silty to Fine

Loamy EG6 7 17.3 18.6 32.27 92 27 468.53

Fresh Silty to Fine
Loamy to Clayey EG7 12 18.2 17.3 27.61 75 30 493.61

Intermediate conifer
swamp EG8i 25 15.1 15.3 20.73 108 27 526.35

Poor Conifer swamp EG8p 43 15.9 15.7 24.03 110 28 536.19
Overall 109 16.2 16.3 24.81 97 32 469.77

There was a clear separation of density values across the nodes produced in the regression tree
analysis (Figure 8). The regression tree model of wood density had a RMSE of 63.87 kg·m−3 and a
coefficient of determination of 0.52. Age and ecosite were both important variables in the classification
of wood density. The first split in the regression was based on ecosite groups, with EG 3–7 separating
into a node where mean densities were typically low (~400–500 kg·m−3) (Figure 8). Mean density
within the node containing the wet ecosites (EG-8i and 8p) was higher, with predictions ranging from
450–650 kg·m−3 (Figure 8). Other than the main division represented by ecosite differences, various
other predictors formed nodes on the tree within these two branches. On wet ecosites, higher densities
were predicted for sites with smaller canopy cover at 12 m and smaller QMDBH, and for sites with
higher VCI. On dry ecosites, higher densities were predicted for sites with higher canopy closure at
6 m and higher ages. The lowest predicted density occurred for sites on EG 3–7, with canopy cover at
6 m less than 58%. The highest densities were predicted for sites on EG 8i and 8p, with canopy cover at
12 m less than 15% and QMDBH less than 11.91 cm. Although age was not directly selected in the
nodes of the tree that included the wet sites, there was a strong correlation between age and VCI and
QMDBH, which were selected variables on those nodes.

The most important variable extracted in the random forests simulation was ecosite group,
which reduced mean squared error (MSE) by close to 50% when it was included in model fitting
(Figure 9). Other important variables that reduced MSE substantially (5–35%) were the same variables
that were elucidated in the regression tree analysis (e.g., cc6, cc12, age, QMDBH, and VCI) (Figure 9).
The variables D2, P50, and cc4 entered the random forests model; however these all had minimal
impacts on error when excluded from the model (Figure 9).
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Overall the final random forests simulation for all 109 black spruce plots described 13.54% of the
variation in the sample population with a RMSE of 59.31 kg·m−3 (Figure 10). Generally, the model
tended to over-predict the plots with low wood density (400 kg·m−3) and under-predict plots with
higher wood density (650 kg·m−3) (Figure 10).
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Figure 10. Predicted vs. actual values of wood density (kg·m−3) for random forests model of black
spruce wood density for the Hearst Forest of Northeastern Ontario (n = 109). The dashed red line is the
line of best fit through the distribution.

The mean wood density map shows an example of how wood qualities could be mapped across the
landscape based on a projection of the random forests simulations employed in this study (Figure 11).
The insert shows a close-up view of a small section of forest that has recently experienced forest
depletion through harvesting. There are clearly visible pockets of high (613 kg·m−3) and low density,
which could be used for operational planning. The map indicates that clearly defined patches of wood
with a relatively homogenous density can be found, as well as some places where there is a mixture of
densities within the same area. This level of detail could also easily be averaged by polygon to show
less variation as a more simplified tool for planning. Distinct areas of dense wood can be observed
even at this low resolution. At the forest management unit level, patterns of wood density are visible
such as the section of high density wood predicted in the northwest corner of the forest unit and
patches of low density wood in the northeast section.
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4. Discussion

4.1. Age Prediction

The final model we produced using the rf-kNN approach was useful for efficiently and accurately
predicting the mean age of black spruce-dominated stands in boreal Ontario within 15 years, explaining
62.87% of the sample population variance. The random forests distance produced the best results,
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compared to two alternative Euclidian distance metrics also used in forest mensuration that were
tried, most similar neighbor (MSN) and mahalanobis (MAL). These distance metrics produced poorer
root mean square differences (RMSD) than random forests, at 23.9 years for MSN and 25.5 years
for MAL. Our rf-kNN model results are comparable to those obtained by Racine et al. [2], who
successfully applied the kNN approach with ALS-derived variables (e.g., Weibull curves, P95, first
return penetration) as indicators of vertical forest structure and site characteristics to predict broad
patterns of age in the boreal region of Québec, reporting slightly lower error (10 years), and higher
explained variance (r2 = 0.84). The discrepancy in performance between these models was driven
by the greater range of age and canopy structure in our fitting data from the HF. The mean age of
plots in the Quebec study was 50 years, whereas it approached 90 years in the HF. Age is harder to
predict in older stands, since patterns of stand dynamics have a greater chance of being influenced
by small scale localized disturbances like wind-throw. Additionally, as multiple cohorts of different
aged trees replace the initial cohort that emerged after a stand-replacing disturbance, the mean age
can be influenced by individuals at either end of the distribution, making representative sampling
difficult. It would therefore be expected that model performance would decline in a forest with an
increasing proportion of old, multi-cohort stands. A study in Finland that used time series photographs
to determine age since last stand replacing disturbance had an overall accuracy of classifying stand
age of 78.9% [14]. However, their methodology limited estimations of age to areas with suitable aerial
photograph coverage. Their results showed that older photographs had poorer prediction accuracies
(before 1991) which is beyond the mean stand age (90+ years) in the HF. Maltamo et al. [42] used the k
most similar neighbor (k-MSN) approach to predict common FRI attributes including mean tree age,
and were able to predict age with similar error to our study, with an RMSE of 16 years for Norway
spruce. The consistent problem in all of these studies has been in predicting the age of old growth
stands where patterns of development are non-linear [14].

Examination of the pattern of P90 and P50 of ALS data in relation to mean tree age illustrated the
changes in canopy complexity expected as stands develop under single species stand dynamics [12].
The stem re-initiation phase began at 80 years as indicated by a decrease in top height and mid-canopy
height. At 120 years there was another clear increase in height for both P90 and P50, suggesting the
beginning of the transition old growth phase. Multiple cohorts of trees in these transition old growth
stands make it very difficult to predict a meaningful age, since the mean age of trees no longer describes
the majority of the stand, but rather represents a mid-point of a broad range of ages. For the HF, this
occurred in stands with a mean age of approximately 120 years, and therefore an age class was created
that indicates these stands are generally multi-cohort, and should be considered as transitional or true
old growth.

Age prediction accuracy in black spruce-dominated stands that had even a small proportion
of eastern white cedar and birch or trembling aspen was poor. The rf-kNN method uses ecological
neighbor stands with known ages to impute predictions. The model requires stand structures in the
fitting data set that are similar to those being imputed in the main data set, in order to find appropriate
neighbor matches. Since the canopy structure of eastern white cedar or hardwood trees is different than
black spruce, and the number of plots with examples of these eastern white cedar/hardwood structures
was low, there were not enough neighbors to appropriately match stands and make good predictions.
Specifically, eastern white cedar has an ellipsoidal crown structure, whereas spruce are conical. Most of
the foliage on hardwoods is in the upper canopy and the shape of their crowns is almost circular. The
point cloud derived variables were created from low-density ALS data, therefore, the various crown
structures could not be clearly differentiated. Instead, measurements of canopy height distribution
(e.g., cc16, P50) provided the best options for differentiating stand structures as a function of age. For
this reason, eastern white cedar or hardwood trees might have caused confusion in the model by
increasing canopy closure metrics that are similar to a different age in spruce-dominated stands.

Topographic wetness index (TWI) was the most important predictor of mean stand age. The TWI
describes the pooling and flow of water on the landscape [24], and was also found to be an important
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predictor for age in boreal stands of Quebec [2]. It is derived from the digital terrain model and depicts
hydrological movement, however it is not a direct descriptor of soil moisture availability, since it
does not account for variation in soil texture. Thus, TWI can only be used to generally indicate areas
that may be affected by flooding (accumulation) or drought (dissipation). In areas where trees are
stressed by flooding or drought conditions, growth rate is slow. Elevation was another important
predictor of stand age. The terrain in the HF is mainly flat, and the substrates consist largely of heavier
organic/clayey soils on the low, flat areas, with dry sandy soils restricted to the higher elevations.
Although the differences in elevation among sites across the HF can be small, the effects of elevation
change can be clearly observed in the variation of the ratio of height and age. Ultimately, the effects of
TWI and elevation manifest as increased nutrient availability, better drainage and a slight increase in
soil temperature that collectively increase growth rate in upland stands compared to the slow growth
of stands in low-lying areas. Most of the black spruce-dominated stands in the HF were classified as
slow-growing lowland conifer swamps. Previous studies have demonstrated that poorer sites have
higher tree longevity and longer successional stages than more productive sites [43–45]. This is due in
part to the rate at which trees reach maximum growth and senescence [44]. Additionally, since growth
rate is linked to site conditions, it may also have driven some of the harvest patterns in the past, where
the largest and easiest to access trees were harvested first [45], creating a pattern on the landscape such
that slower-growing stands on wet sites are older.

Studies have shown that stand height is typically an important predictor of stand age [2,12,14,46,47];
however, it was not a key predictor of age in our study. The main reason for this apparent exception is
the range of ages and stand structures we considered for this study. The sample population of 116 plots
had a mean age of 90 years, and the scatter plot of canopy returns by age in these stands suggested that
gap dynamics start to affect the age structure of plots around 80 years. Thus, a large proportion of plots
in our study were likely influenced by multi-cohort stand dynamics. If we had restricted the model to
apply to only the development of single cohorts, which our data suggested occurs up to approximately
80 years, then it is likely that height would have been more useful for predicting age. The changes
in canopy structure that accompany this successional process can be characterized by examining the
vertical distribution of foliage over multiple layers or height bins, and quantities that describe this
change are often important predictors of age because they are linked to stand dynamics [12]. The
vertical complexity index (VCI), applies Shannon’s equation to binned point cloud returns to capture
the variation in vertical distribution of points in the point cloud [17]. Although VCI was entered as a
predictor for our model, it had relatively low importance to model performance. Nevertheless, VCI
was highly correlated to many of the variables that were important, including the canopy closure at
various heights (cc16 and cc4) and P50 height. Thus, variables that describe vertical canopy structure
were indeed useful predictors of stand age.

Ultimately, our model allowed for the prediction of a mean stand age with an error of approximately
15 years. It was necessary to truncate the predictions at 120 years, given the difficulties that arise
when dealing with multi-cohort stands; however, this is justified because the complexity of old growth
stands is effectively ignored when they are assigned a mean age. Perhaps a better approach in such
stands would be to attempt to predict the ages of individual trees and then examine various properties
of the distribution in addition to the mean. One way that the stand age map created in this study could
be useful is by identifying stands that have been classified as old growth, facilitating the use of the age
structure of the forest for natural disturbance emulation [48]. Imputing ages on a 20 × 20 m raster pixel
scale creates the opportunity for forest managers to account for age variation within FRI polygons,
and support better management of forest age structure. Ultimately, a higher density ALS point cloud
would improve the estimation of the key forest structural variables. The low-resolution of the point
cloud utilized for this study restricted age predictions to a plot level mean. Since there were only age
measurements for ~10 trees per plot, error in the models was caused by matching point cloud statistics
summarized for many trees at the plot level (including trees without age data) and the sample trees.
Higher resolution point clouds and age information from all of the trees in a plot could make single
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tree age prediction models possible. A source of potential error in the rf-kNN model is a bias towards
rare samples, since the dataset was found to be imbalanced in regards to plot age. In future studies,
special attention should be paid to attaining a balanced sample distribution to avoid this bias.

4.2. Wood Density Modeling

The wood density models produced in this study have broadened the range of conditions under
which wood density predictions can be made in the boreal forest of Ontario, by adding age as a potential
predictor variable without substantially increasing error. The RMSE of our model that applies to stands
up to 120 years in age was 59.1 kg·m−3, and compares well to previous studies in which the range of ages
was restricted to the first 50 years of growth and RMSE values of 40.4 kg·m−3 [9] and 38.8 kg·m−3 [4]
were reported. Furthermore, including age effects achieves an operational implementation goal to
apply the model to black spruce-dominated polygons of all ages. There are still gains that could
be made in accuracy that might be achieved with higher density ALS data. Blanchette et al. [49]
developed a model from terrestrial laser scanning (TLS) data, which has a much higher point density
(30 pulses/meter), and were able predict wood density more accurately (RMSE 23.87 kg·m−3) at a finer
scale. The use of TLS, however, limits the generalizability of this type of predictive modeling, since it is
currently only suitable for use over a small area (plot level), whereas ALS allows for less accurate but
broader scale predictions to be made, which could be used in enhanced FRI’s.

Stand age was an important indicator of average wood density in both the regression tree and
random forests analyses. Young trees have a large proportion of corewood typified by low density and
short fibers [50,51]. In trees that have reached maturity, the density of wood stabilizes and therefore,
older trees have a greater proportion of outerwood, which is of higher density. Understanding which
logs have a higher proportion of high density wood, is useful for determining which trees are better
suited for structural timber products like saw logs [10]. Additionally, there is an important interaction
between stand age and site quality that clearly affects wood attributes such as density. In Ontario,
ecosites are defined by substrate characteristics like soil type and texture, and moisture regime, which
describe the availability of water across a landscape. In hydric sites like ecosite group 8i or 8p, pith to
bark profiles reach a stable state with generally high density wood after the first few years of growth.
This arises from a physiological response to consistently flooded conditions on these sites, and is caused
by selective pressure for thicker cell walls to protect cells from embolism. Cell diameter is also reduced
in the xylem of trees exposed to saturated conditions, which limits the risk of embolism when turgor
pressure is low [52]. On the mesic sites represented by ecosite groups 3–7, pith to bark profiles tend to
have greater variability of density in the first fifty years of growth [6,12]. Generally high density wood
is found directly adjacent to the pith, then there is a steep decrease in density, followed by a gradual
increase to a stable state within the first 30 to 50 years [6,12]. Drier sites tend to have less dense wood
and more variability across the pith to bark profile than wetter sites. These common trends explain
some of the descriptive power of ecosite group in the regression tree and random forests models. The
interaction of age and ecosite that is captured in our model could have important consequences for
operational application. For example, a mean density estimated for a typical tree on a dry to fresh
site where the stable density is reached around 50 years, will become increasingly influenced by high
density outerwood as the tree ages beyond 50. The effect would not be as important in trees on wet
sites, which tend to have higher and more uniform density from pith to bark. For this reason, age may
be a more important predictor on the dry or mesic sites, since young trees express this site-related
variation in the pith-to-bark more strongly than older trees.

Forest structure also influences intrinsic wood qualities [7]. The ALS variables related to canopy
closure and quadratic mean diameter were all found to be important in predicting wood density in
our study. These metrics could be indicators of competition and light availability at the site level,
which have been shown to have a negative relationship to wood density in shade tolerant species [53].
One reason for this negative correlation of wood density to variables that indicate a more open stand
structure could be the role of high density wood with long fibers and thick cell walls as an anatomical
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response to wind, especially when there is low stocking density and trees are unprotected [12]. These
metrics may also be indicators of average crown size, which would be related to stem structural
strength required to support the higher load of a large crown, and would have a positive correlation to
wood density [6,7,53]. Variation in density could also be affected by genetic variation within a species,
which could account for some of the error in the model [54].

Predictive mapping is a useful way to link structurally explicit ALS data and site characteristics to
show where specific wood qualities can be found in the forest. The wood density map created for this
project for example, could be used to display areas where there are pockets of wood with predicted
density greater than or less than a specific value. These pockets would be described by combinations
of age and ecosite; therefore, the performance of the model could be constrained by the reliability
of interpretations of ecosites in the FRI. Nevertheless, this approach could be useful for supporting
decisions about products with specification thresholds for raw materials (e.g., density ≥ 500 kg·m−3).
Enhanced forest inventories with wood quality variables that are not normally included could allow
for the industry to be responsive to market demands that are constantly changing and support value
chain optimization [55].

5. Conclusions

The non-parametric rf-kNN model of forest stand age developed for black spruce stands in the
boreal forest of Ontario from ALS structural information was useful for imputing accurate age estimates,
which could be subsequently included as a derived variable in a given FRI system. This type of indirect
predictive modeling of age creates estimates that can be obtained efficiently and consistently, given
that the technique applies the same rules to the entire land base. An age map derived from the model
could be used on an operational scale for a number of applications, including forest management
planning or other predictive modeling projects that require mean forest age. Predictive modeling of
wood quality attributes, using the derived age imputed from the rf-kNN approach, allowed for the
expanded application of a model of mean wood density using a random forests approach. Descriptive
wood quality maps can be developed from random forests simulations and used as planning tools
to optimize the value chain of forest timber harvesting by selecting specific wood qualities to target
prior to harvest. The efficiency with which wood density can be calculated from ALS data creates the
opportunity for enhanced forest inventories to be more reactive to economic demands that are difficult
to react to when they are based on more traditional FRI methods.
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