
remote sensing  

Article

AdTree: Accurate, Detailed, and Automatic Modelling
of Laser-Scanned Trees

Shenglan Du 1, Roderik Lindenbergh 2, Hugo Ledoux 1 , Jantien Stoter 1

and Liangliang Nan 1,*
1 3D Geoinformation Research Group, Faculty of Architecture and the Built Environment, Delft University of

Technology, 2628 BL Delft, The Netherlands
2 Department of Geoscience and Remote Sensing, Delft University of Technology,

2628 CN Delft, The Netherlands
* Correspondence: liangliang.nan@gmail.com or liangliang.nan@tudelft.nl

Received: 30 June 2019; Accepted: 28 August 2019; Published: 4 September 2019
����������
�������

Abstract: Laser scanning is an effective tool for acquiring geometric attributes of trees and vegetation,
which lays a solid foundation for 3-dimensional tree modelling. Existing studies on tree modelling
from laser scanning data are vast. However, some works cannot guarantee sufficient modelling
accuracy, while some other works are mainly rule-based and therefore highly depend on user inputs.
In this paper, we propose a novel method to accurately and automatically reconstruct detailed 3D
tree models from laser scans. We first extract an initial tree skeleton from the input point cloud by
establishing a minimum spanning tree using the Dijkstra shortest-path algorithm. Then, the initial tree
skeleton is pruned by iteratively removing redundant components. After that, an optimization-based
approach is performed to fit a sequence of cylinders to approximate the geometry of the tree branches.
Experiments on various types of trees from different data sources demonstrate the effectiveness and
robustness of our method. The overall fitting error (i.e., the distance between the input points and the
output model) is less than 10 cm. The reconstructed tree models can be further applied in the precise
estimation of tree attributes, urban landscape visualization, etc. The source code of this work is freely
available at https://github.com/tudelft3d/adtree.

Keywords: laser scanning; point cloud; tree modelling; precision forestry

1. Introduction

Trees are an important component throughout the world. They form and function in natural
ecosystems such as forests, and also in human-made environments for instance parks and gardens [1].
Urban scenes without trees or plants are lifeless. Furthermore, satisfying environmental goals
always require heavy reliance on vegetation mapping and monitoring [2]. Models of trees,
therefore, have a wide range of applications, including urban landscape design, ecological simulation,
forestry management, and virtual entertainment. While applications such as landscape design and
visualization only require modelling virtual trees, lots of other applications relevant for ecological
modelling and forestry management require accurate estimation of tree parameters (e.g., height,
stem thickness). Accurate tree modelling not only enhances the realism of a scene, but also provides
promising approaches to scientifically manage vegetation and forests, which will in return contribute
to ecosystem protection, resource preservation, preventing degradation, and many other human
activities [3]. Hence, obtaining accurate 3D tree models is necessary and of great importance to the
modern society.

The traditional way of measuring trees is to manually conduct fieldwork, which is usually
expensive and time-consuming [4]. Since the last several decades, remote-sensing technology has been

Remote Sens. 2019, 11, 2074; doi:10.3390/rs11182074 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-1251-8654
https://orcid.org/0000-0002-1393-7279
https://github.com/tudelft3d/adtree
http://dx.doi.org/10.3390/rs11182074
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/11/18/2074?type=check_update&version=3


Remote Sens. 2019, 11, 2074 2 of 19

widely exploited in extracting different information on forests and plants [5]. Both satellite sensors
and airborne sensors can effectively acquire digital images with high spatial resolution, which provide
viable data sources for forestry analysis at individual tree level [3]. Moreover, with the development
of digital image processing technologies, researchers considered reconstructing digital tree models
from photographs [6]. The work of [7] utilized visual hulls of the original tree shape to approximate
the main skeleton of the tree, based on which small twigs and leaves are synthesized to generate a
plausible tree model. Reche-Martinez et al. [6] described a volumetric approach to reconstruct trees
from multiple views. By combining plant images with sparse point clouds obtained from Structure
From Motion (SFM), Quan et al. [8] reconstructed realistic plants with generic leaves incorporating
user interaction. While the above studies can produce impressive modelling results, they do not aim
to reconstruct explicit branch or leaf geometry. Reconstructing trees from photographs remains a
challenging problem due to the complexity of the modelling process [9].

Recently, Light Detection and Ranging (LiDAR) technology have been widely used in
forestry-related analysis and studies. As measurements from LiDAR can achieve millimeter-level of
details from objects, it has become possible to directly capture 3D information and rapidly estimate tree
attributes [10]. For example, LiDAR measurements are widely applied in researches such as tree height
estimation [11], tree canopy analysis [12] and tree species classification [13]. Moreover, by applying
LiDAR technology we are capable of acquiring highly dense point clouds, which lays the foundation
for accurate tree reconstruction and modelling.

To achieve accurate tree modelling from laser scans, both the branch geometry and the tree
topological structure are required. Among most literature studies, the common approach to obtain the
tree branch geometry is cylinder-fitting [14]. When it comes to the reconstruction of tree topological
structure, existing methods can be classified into two main categories: segmentation-based and
skeleton-based. Segmentation-based approaches first segment the tree point cloud into small subsets
and then connect them procedurally to reconstruct the topological structure of the tree. For example,
Hackenberg et al. [15] developed a hierarchical-cylinder structure that enables parent-child neighbor
relations among branches, which can efficiently extract different tree components such as the tree
stem or a single branch. Raumonen et al. [16] proposed another tree modelling method based on a
step-by-step collection of small connected surface patches. Bucksch et al. [17] organized the input
points into an octree structure and generated skeletal curves from the octree cells. Yan et al. [18] applied
a K-means clustering-based approach to extract the tree topological structure. However, these works
highly rely on the quality of the input data and therefore may not be robust enough to data with
quality issues such as outliers or missing data due to occlusions.

Unlike segmentation-based approaches that reconstruct the tree topological structure from small
segments and subsets, skeleton-based methods directly extract skeleton curves from raw input point
clouds. Some works employ a rule-based procedural modelling approach to synthesize branches [9,19],
which generate the tree skeleton with high quality but require prior knowledge as well as manual
parameter adjustment. Some other works proposed purely data-driven methods to automatically
extract the skeleton without requiring additional user interactions. The work of [20] constructed the
shortest-path map over the input point clouds to extract consecutive skeletal curves. Following this
work, Delagrange et al. [21] developed a tool PypeTree to reconstruct tree branch tissues from point
clouds. As an alternative for the shortest-path approach, Dey and Sun [22] utilized the medial axis to
represent the skeletal structure of 3D tree-like objects. Livny et al. [23] computed a minimum spanning
graph over the point cloud to obtain an initial tree skeleton and applied several global optimization
techniques to refine the tree branch structure. Following this work, we further improve the fidelity of
the reconstructed tree models.

In this paper, we propose a skeleton-based approach to accurately reconstruct tree branches from
individual tree point clouds. Our method employs a Minimum Spanning Tree (MST) algorithm to
effectively extract the initial tree skeleton over input points. By iterative skeleton simplification and
cylinder fitting, we obtain a tree model with reconstructed branches. Leaves and textures are added



Remote Sens. 2019, 11, 2074 3 of 19

to enhance the realism of the tree model. One novelty of our work is that we construct the initial
tree skeleton based on the intrinsic spatial distribution of input points. Furthermore, we develop a
specific simplification strategy to maintain the natural topological structure of tree branches while
collapsing redundant vertices and edges. Our experiments and various comparisons demonstrate both
the geometrical correctness and the topological fidelity of the generated tree models.

2. Overview

This work focuses on 3D modeling of real-world trees from point clouds. Thus, the expected
solution to this problem needs to fulfill the following requirements:

• Robust to tree species. The method should be able to reconstruct common tree species with clear
branch structures. The reconstructed models should convey the main topological branch structure
of the real world trees represented by the point clouds. Vegetation that do not demonstrate
skeleton structures (e.g., bushes) are not considered the target objects.

• High fidelity. The reconstructed tree models should be topologically faithful to the input
and have acceptable geometrical accuracy. This is vital for applications where important tree
attributes (i.e., stem location, stem thickness, tree height) are expected to be derived from the
reconstructed models.

• High efficiency. The reconstruction process should not require user intervention, i.e., it is fully
automatic and can produce 3D models of individual trees promptly regardless of the size of
the input point clouds. This enables large scale tree modeling when, for instance, an instance
segmentation of the trees is available [24].

The input to our method is a point cloud of a single tree, which is typically contaminated by
noise and outliers but is expected to convey the major branch structure of the tree. We assume that
individual trees have already been segmented from the point cloud and the segmentation of multiple
trees is out of the scope of this work. In practice, the segmentation can be achieved using an interactive
technique or various machine learning approaches such as [24]. The output of our method is a 3D
model of the same tree in a mesh representation, which can be exported in a standard file format
(e.g., OBJ file format). Figure 1 shows an overview of the module design of the proposed methodology,
which consists of the following major steps:

• Skeleton initialization. We triangulate the input points and apply the MST algorithm to
extract the initial tree skeleton. Note that the main-branch points are identified and centralized
beforehand to improve the quality of the skeleton;

• Skeleton simplification. The initial skeleton is iteratively simplified, resulting in a light-weight
tree skeleton. We simplify the skeleton by retrieving and merging adjacent vertices if their distance
is sufficiently small;

• Branch fitting. Based on the reconstructed tree skeleton, we fit a sequence of cylinders over the
input points to approximate the geometry of the branches. We first apply non-linear least squares
to obtain the accurate radius of the tree trunk. Then, we derive the radius of the subsequent
branches from the main trunk geometry;

• Adding realism. We synthesize leaves at the end of tree branches and add texture to
enhance realism.



Remote Sens. 2019, 11, 2074 4 of 19

Figure 1. An overview of the proposed methodology.

In Section 3, we describe each step of the modelling module in details.

3. Materials and Methods

3.1. Skeleton Initialization

Based on the fact that points close to each other are likely to belong to the same branch,
we construct an MST graph over the input point cloud to represent the initial tree skeleton. To extract
an MST over input points, we first apply Delaunay triangulation to construct an initial graph. Delaunay
triangulation lays the foundation for MST computation as most efficient approaches find a minimum
spanning tree among edges in the Delaunay triangulation of the points [25]. Additionally, it helps to
complete the missing region or incomplete branches, which ensures the robustness of our method for
input point clouds of poor data quality. Having obtained the triangulation graph, we weight all the
edges using their lengths defined in the Euclidean space. Then the Dijkstra shortest path algorithm
is utilized to compute the MST from the triangulation, which serves as a representation of the initial
skeleton of the individual tree.

Figure 2 shows the initial skeleton extracted over the input points by shortest-path computation.
In most cases, the constructed MST indicates the skeletal structure of the original tree (Figure 2a).
Nevertheless, special cases exist when pure MST cannot represent the tree skeleton correctly (Figure 2b).
Trees with a short and wide shape typically have scattered points and branches, which leads to the
computed MST growing in a horizontal manner rather than a compact vertical manner.

We address this problem by intentionally centralizing points that belong to the main branches of
the tree. The aim is to generate condensed branches for better skeleton extraction. Point density near
bifurcations or branch tips often changes sharply, while points within a single branch have more stable
point density (Figure 3a), we can find main-branch points as they have relatively stable point density
in their neighbors. Identified main-branch points are centralized through the mean-shift algorithm [26].
As illustrated in Figure 3b, the extracted skeleton after main-branch point centralization has a compact
vertical growing manner.



Remote Sens. 2019, 11, 2074 5 of 19

(1) (2)
(a)

(1) (2)
(b)

Figure 2. Skeleton initialization for two trees. (a) A valid tree skeleton structure (in red). (b) An invalid
tree skeleton structure (in red). The left column shows the input point clouds.

(a) (b)
Figure 3. Skeleton extraction from the centralized points. (a) Density map of the raw point cloud.
Red indicates high density and blue indicates low density. (b) Skeleton extracted after the main-branch
point centralization.

3.2. Skeleton Simplification

The initial tree skeleton extracted from the input point cloud has a large number of redundant
vertices and edges. Most redundant vertices and small edges do not contribute to the tree skeleton
shape and thus are of little importance and should be removed to further simplify the tree skeleton.



Remote Sens. 2019, 11, 2074 6 of 19

The simplification is conducted in two major steps. We first assign importance values to vertices
and edges, based on which small noisy components can be removed. Then, we iteratively check the
proximity between adjacent vertices and merge nearby vertices. Figure 4 illustrates the simplification
process.

(a) (b)

(c) (d)
Figure 4. Skeleton simplification. (a) Initial skeleton. (b) Importance value assigned to branches.
Red indicates high importance and blue indicates low importance. (c) Simplification by eliminating
noisy small branches. (d) Simplification by merging similar vertices and edges.

3.2.1. Assigning Vertex and Edge Importances

We assign importance values to vertices and edges in the initial tree skeleton to further guide the
simplification process. Our goal is to keep important vertices and main branch edges while ignoring
short branches and noisy points. Previous work [9] suggests utilizing the point density, together with
the point normal extracted from Principal Component Analysis (PCA), to indicate the importance of
vertices. However, the weights evaluated in such a way significantly depend on the quality of the
scanned points and thus become unreliable in case of point clouds of poor quality.

Instead of weighting points based on the local point density, we weight each vertex according
to the length of the subtree. The subtree of a given vertex v is defined as v itself together with its
descendant vertices and edges [27]. Accordingly, the weight of the vertex v is computed as the sum
of the length of all edges within its subtree. In such a way, high-connective vertices close to the tree



Remote Sens. 2019, 11, 2074 7 of 19

base area get heavier weights while low-connective vertices near the tree crown get smaller weights.
One advantage is that the weighting process is not sensitive to input point density, which makes it
robust to data with different scanning qualities. Accordingly, each branch edge is weighted as the
average of the subtree length of its two ending vertices. Typically, vertices and edges on the tree
crown have consistent low weights [23], while near the tree base small branches have drastically small
weights compared to the main trunk branches. Such a characteristic helps us to clear away noisy
branches at the trunk, and at the same time, keeps small leave branches at the crown.

3.2.2. Simplifying Adjacent Vertices and Edges

Having eliminated small noisy branches with relatively low importance, we notice that many
redundant vertices and edges still exist as they have similar positions and orientations as vertices
and edges within their neighborhood. To simplify those similar components, we iteratively check
the proximity between adjacent vertices. A similarity indicator α is defined to describe the closeness
between targeted vertices.

For a vertex which has only one single child, the skeleton simplification becomes a line
simplification problem. We apply Douglas-Peucker method to simplify line segments as it is regarded
as the most effective line simplification algorithm [28]. Since the closer the current vertex is to the line
segment formed by its parent and its child, the less important this vertex is. Hence, the indicator α is
computed as follow

α =
d
r

, (1)

where d is the distance between the current point and the line segment formed by its parent and
its child; r is the distance threshold of an edge in the tree skeleton which controls the simplification
process. As illustrated in Figure 5, if the indicator value α is smaller than a given threshold σ

α ≤ σ. (2)

We consider the current point unimportant and therefore it can be removed from the skeleton.

Figure 5. Single child simplification.

For a vertex having multiple children vertices, the similarity indicator α indicates how close the
children vertices are, and therefore is defined as follow

α = min(
l1 sin θ

r2
,

l2 sin θ

r1
), (3)

where l represents the length of the edge between one specific child vertex and its parent; θ is the
angle between two edges and r is the distance threshold of a specific edge (see Figure 6). Note that
the indicator computed from different directions (i.e., from v1 to v2 or from v2 to v1) will have



Remote Sens. 2019, 11, 2074 8 of 19

different values and therefore we select the minimum one to evaluate the proximity between adjacent
child vertices.

(a) (b)
Figure 6. Bidirectional similarity indicators. (a) Indicator computed from v1 to v2. (b) Indicator
computed from v2 to v1.

The smaller the indicator value, the more similar the two vertices. If α is smaller than a given
threshold σ, we merge the pair of vertices into a new vertex. The merged new vertex position is
computed as the weighted average of the original two vertices

pnew =
p1w1 + p2w2

w1 + w2
, (4)

where pnew is the position of the new vertex, p1 and p2 are the positions of two old vertices and w
represents the weight of a specific vertex, which is computed as the subtree length of the vertex,
as denoted in Section 3.2.1. Figure 7 illustrates how a new vertex is created from an old pair of children
vertices. After v1 and v2 being merged, we reassign the neighborhood relationships among the vertices
which were connected to either v1 or v2 before. Reconstructing the structure of the tree is not necessary
since the merging is a local operation within a small neighborhood and the adjacency information can
be automatically updated, which maintains the tree structure.

Figure 7. Multi-children simplification. Grey edges on the right indicate newly generated branches.



Remote Sens. 2019, 11, 2074 9 of 19

3.3. Branch Fitting

Based on the simplified tree skeleton, we further reconstruct the tree geometry. To precisely
model the geometry of tree branches, we apply a cylinder-fitting approach. According to [29],
the cylinder primitive is the most robust primitive in terms of representing the geometry of tree
branches, even with holes and noises in the dataset. Moreover, compared with the complex curve
fitting method, cylinder fitting is relatively easy and fast in computation [30,31]. Figure 8 shows in
general how cylinder fitting is employed to obtain a tree model with branches.

(a) (b)

(c) (d)
Figure 8. Branch fitting. (a) Tree skeleton. (b) Points segmented into different parts. (c) Cylinder fitted
to the main trunk. (d) Geometry derived for the subsequent branches.

The main trunk close to the tree base area typically has the highest density of supportive
points. We exploit an optimization-based approach to obtain accurate branch geometry.
First, the neighboring points lying within the trunk part are segmented and identified (Figure 8b).
We can either use a brute-force searching method or apply a kd-tree query to speed up the segmentation.
Next, we fit a cylinder to approximate the branch geometry based on the corresponding trunk points.
This is a typical non-linear least squares problem. We hereby define our input data, parameters to be
solved, and the objective function as follows (Figure 9):



Remote Sens. 2019, 11, 2074 10 of 19

Figure 9. Parameters and objective in the cylinder fitting problem.

• Input data: position p of the input points;
• Parameters to be solved: the axis direction vector a of the cylinder, position pa of the endpoint on

the axis, and the radius r of the cylinder;
• Objective function: sum of squared distance d from the points to the branch cylinder, i.e.,

n

∑
i=1

dist(pi), (5)

where dist(pi) represents the distance from pi to the branch cylinder surface. We use the Levenberg
Marquardt algorithm to solve the non-linear least-squares problem [32]. Normal least-squares is
sensitive to data noise and outliers. Therefore, to further improve the solution quality, we repeat
the non-linear least square process and introduce weights for each point during the second iteration.
We want to give heavy influence to points closer to the cylinder and relatively low influence to points
that are far from the cylinder. Hence, weights are assigned according to the point’s distance to the
cylinder. The weight for one specific point is defined as follow

wi = 1 − dist(pi)

distmax
, (6)

where dist(pi) represents the distance between the current ith point and the cylinder obtained from the
initial computation, and distmax is the maximum distance among all the points to the cylinder. In such a
way, we normalize all point weights to the range of [0, 1]. The objective function is denoted accordingly

n

∑
i=1

wi · dist(pi). (7)

Figure 8c shows the accurate geometry of the tree trunk obtained by cylinder fitting. For the
small tree branches, where points become noisier when getting close to the tree crown and branch
tips, fitting an accurate cylinder is infeasible. Instead, we apply an allometric rule to obtain plausible
estimates for the rest of the tree branches [9]. The radius of a branch edge is proportional to its weight,
which is defined as the average of the subtree length of its two ending vertices. We compute the radius
of the remaining branch edges using the following equation

rei = rt(
wi
wt

), (8)



Remote Sens. 2019, 11, 2074 11 of 19

where rei is the radius of the ith branch edge; rt is the radius of the trunk obtained by cylinder fitting
and wi is the weight of the specific ith branch edge. Figure 8d shows the derived tree branch model
from the constructed tree skeleton.

3.4. Adding Realism

To further add realism, we add leaves and texture to the reconstructed tree models. Since it
is almost impossible for us to capture the geometry and texture characteristics of leaves from laser
scans, it becomes impossible to reconstruct accurate leaves purely from the point clouds. In this work,
we generate oriented leaves at the end of each branch following the method in [23]. Figure 10 shows
the final reconstruction.

(a) Tree branches (b) Final tree model
Figure 10. Adding leaves and texture.

3.5. Implementation Details

We implemented our tree reconstruction algorithm in C++. We select C++ because it enables high
computation efficiency, also because many necessary libraries on graph algorithms and 3D model
rendering are available in C++. Boost Graph Library [33] is used for minimum spanning tree extraction
and Easy3D [34] is used for visualization. Besides, tools like Mapple, which is a tool for visualizing
and editing 3D point clouds [35], are used for pre-processing and segmentation of individual tree
point clouds.

3.6. Test Datasets

To develop and test the proposed tree reconstruction method, 5 point cloud datasets have been
collected. These test datasets contain point clouds from publicly available point cloud repositories,
the Floriade Project of Almere, and the AHN dataset [36]. These point clouds include various tree
shapes and types. Following the work of [37], we classify the trees into three complexity categories
which include easy, medium, and difficult, based on the tree stem density and understory structure.
Also, different sensors are covered, i.e., static laser scans, mobile laser scans, and airborne laser scans.

4. Results and Discussion

In this section, we provide the result analysis, aiming to test if our modelling results have fulfilled
the functional and user requirements proposed in Section 3. First, a set of visual results are presented
to evaluate the topological fidelity of the reconstructed tree models. Then, we compute the distance
between input points and the output tree branch model to verify the geometrical accuracy of the
modelling results. In Section 4.3, we illustrate the robustness and applicability of our algorithm over



Remote Sens. 2019, 11, 2074 12 of 19

various tree types and data sources, which enables our tree modelling process to be fully automatic.
Some discussions considering comparisons with the state-of-the-art methods, limitations, and future
applications are made at the end of this section.

4.1. Visual Evaluation

We reconstructed a variety of trees of different species, sizes, and branch structure. Figure 11a
shows a vertical and slim tree with relatively simple branch structure, while Figure 11b gives an
example of another tree with a tilted stem and complex branch structure. The reconstruction results of
these two trees demonstrate that our method is capable of processing trees with different shapes and
structures, which benefits from the skeleton-based approach that we adopt.

(a)

(b)

(c)

Figure 11. Cont.



Remote Sens. 2019, 11, 2074 13 of 19

(d)

(e)
Figure 11. Five different trees (from (a) to (e)) reconstructed using our method. From left to right:
point cloud, skeleton, tree branches, and final model.

Besides, we also tested our method on scanned trees from various data sources, including mobile
scanning, static scanning as well as airborne scanning. It is observed that point clouds collected
by mobile scanning (Figure 11c) or static scanning (Figure 11d) have a high quality and thus were
all accurately reconstructed. On the other hand, Figure 11e gives an example of an input point
cloud obtained by airborne scanning, which is poorly sampled and is quite sparse. Even for such a
low-quality input, our approach is still able to produce a visually plausible 3D reconstruction.

4.2. Reconstruction Accuracy

We quantified the geometrical accuracy of the modelling results by computing the mean distance
between the input points and the generated tree branch model [9]. The reconstruction accuracy and
standard deviation in Table 1 suggested that overall our approach can generate tree models that fit
closely to the input point cloud data and thus ensures high geometrical accuracy. When it comes to
the individual tree level, typically a short tree with highly dense points will have a more accurate
modelling result. Also, compared to trees with irregular shapes (i.e., Figure 11b), trees with a compact
and standard shape usually enable higher reconstruction accuracy.

Table 1. Statistics on the tree examples shown in Figure 11. This table summarizes the height,
complexity, number of points, data source of the trees and the accuracy (mean distance from the
points to the surface of the reconstructed models) and the standard deviation.

Figure Height
(m) Complexity Point Number Sensor Type Accuracy

(cm)
Stardard

Deviation

Figure 11a 5.52 Medium 11,855 Mobile scanning 2.76 2
Figure 11b 9.87 Medium 6992 Mobile scanning 10.04 8
Figure 11c 15.99 Difficult 28,993 Mobile scanning 6.59 6
Figure 11d 21.73 Difficult 137,407 Static scanning 6.50 6
Figure 11e 13.13 Easy 2488 Airborne scanning 11.88 7

Figure 12 visualizes the per-point error distribution of the reconstructed 3D model shown in
Figure 11a. In the visualization, the blue colour indicates a low error value and the red colour indicates



Remote Sens. 2019, 11, 2074 14 of 19

a high error value. From such a visualization, we can conclude that points lying within the main
branches typically fit closer to the model, while points near the branch tips usually have high error
values. This indicates that our method can generate highly precise main branch structure of the
input tree (thanks to the non-least squares based branch fitting). However, points are getting sparser
near the branch tips and thus not sufficient to reliably reconstruct these small features from the
under-sampled data.

Figure 12. Visualization of the per-point error distribution.

4.3. Robustness

As described in Section 3, the simplification threshold σ is introduced during the tree skeleton
simplification process, where we utilize an indicator to measure the proximity between adjacent
vertices. This section discusses how different parameter values influence the modelling results,
based on which, we choose the threshold values that best fit our methodology.

The simplification threshold σ controls the similarity indicator α, which determines the relative
proximity between adjacent vertices. We tested the value of σ from 0.5 to 3 and the results are shown
in Figure 13. According to our experiments, a very small threshold value for σ for the indicator makes
it difficult to merge close-by vertices, while a very big σ causes oversimplification. Therefore, we chose
1.5 as the threshold value. It is denoted that the parameter value is pre-fixed in our algorithm, which
means that we used the same parameter setting for generating all the 3D models in this paper. As σ is
a relative value indicating the closeness among vertices, it is generally applicable for most trees. Users
do not have to adjust the specific threshold value for specific input data, which makes our approach
robust to various trees.



Remote Sens. 2019, 11, 2074 15 of 19

(a) σ = 0.5 (b) σ = 1.5 (c) σ = 3

Figure 13. Simplification results using different σ values.

4.4. Comparisons

We compared our method to a few state-of-the-art approaches [15,16,21,23].
In Figure 14, we show a visual comparison of our results against the method described

in [23] as it is most related to our work. It can be seen that our reconstructed models have more
faithful branch structure and also fit better to the input points. Given the same point cloud, our
algorithm is capable of reconstructing a tree model with higher topological and geometrical accuracy.
The performance gain benefits from two improvements. Firstly, we identify and centralize main-branch
points, which in return generates topologically correct tree skeletons. Secondly, our cylinder
fitting exploits a distance-weighted non-linear least squares fitting, which significantly improves
the geometrical accuracy.

We also compare our modelling results to other tree modelling approaches publically accessible
to us, such as PypeTree [21], TreeQSM [16], and SimpleTree [15]. A visual comparison is demonstrated
in Figure 15. Among these approaches, PypeTree aims to only give a rough description of the tree
topological structure, which is not intended to recover the branch geometry. In contrast, TreeQSM,
SimpleTree, and our method can recover the geometry of tree branches. However, TreeQSM cannot
ensure consistent recovery of the tree branches. The reconstruction using SimpleTree is quite tedious
as it requires user input of the key parameters such as the radii of the branches. In our comparison,
we also observed that SimpleTree requires nearly perfect input, i.e., complete point clouds, which is
rarely satisfied in practice. In the test data, the tree was scanned from a single viewpoint by a terrestrial
laser scanner and thus the surfaces of the branches were partially sampled. SimpleTree failed to detect
the branch cylinders and to recover the branch geometry. In contrast, our method successfully and
faithfully recovered both the topology and the geometry of the tree branches.



Remote Sens. 2019, 11, 2074 16 of 19

(1) The result of [23] (2) Ours
(a) Tree 1

(1) The result of [23] (2) Ours
(b) Tree 2

Figure 14. Comparison between Livny’s method [23] and our method demonstrated on two trees.

(a) PypeTree (b) TreeQSM (c) Ours

Figure 15. Comparison between PypeTree [21], TreeQSM [16], and our method.



Remote Sens. 2019, 11, 2074 17 of 19

4.5. Limitations

Our algorithm can successfully obtain accurate and detailed 3D tree models from point clouds.
However, it still has some limitations. First of all, our approach depends on the quality of the input data.
For poorly scanned data with sparse points, our method can reconstruct a plausible topological structure
of the tree branches but is unable to achieve sufficient geometrical accuracy. Moreover, our work does
not consider natural growing rules of tree branches (e.g., branch split angle, branch growing length).
The incorporation of domain knowledge will further constrain the reconstructed models to be topologically
correct and improve the fidelity of the models, improving both geometrical and topological accuracy.

4.6. Potential Applications

Our proposed approach enables accurate reconstruction of 3D trees from point clouds.
The generated tree models can be employed in many applications. The accurate tree models with
synthesized leaves and textures can be directly applied in applications such as urban landscape design
and entertainment, to convey the realism of the scenes. Our method also opens up the opportunity
for automatically obtaining precise tree attributes (e.g., the height of a tree, the thickness of the
trunks, and the diameter at a specified height). It enables to save a significant amount of time and
laboring efforts compared to the traditional manual measuring method. With accurate 3D tree models,
implicit tree attributes, such as wood volume, biomass, the amount of carbon dioxide to be absorbed
and oxygen to be emitted, can also be automatically derived or estimated.

5. Conclusions and Future Work

In this paper, we proposed an automatic approach to accurately reconstruct 3D tree branches
from point clouds. During the reconstruction, both the geometrical accuracy and topological fidelity of
the tree are taken into consideration. One novelty of our work is that we aid the skeleton construction
process by the main-branch point centralization, which contributes to improving the quality of the
generated tree branch structure. Moreover, an optimization-based approach is employed to accurately
reconstruct the geometry of the tree branches. Experimental results revealed that our method is robust
in dealing with various types and sizes of trees. As long as the input point clouds demonstrate clear
branch structure, our method is capable of generating tree models of high quality.

In future work, we would like to perform automatic segmentation of trees. As our method only
works for individual tree point clouds, involving existing automatic segmentation approaches will
expand our algorithm to a broader range of applications. Besides, as there are many irregular shapes
of tree branches in nature, we will further consider fitting free-form surfaces instead of cylinders to
model the branch geometry more precisely.

Author Contributions: S.D. performed the study and implemented the algorithms. R.L., H.L., and J.S. provided
constructive comments and suggestions. L.N. proposed this topic and provided daily supervision.

Funding: This research received no external funding.

Acknowledgments: We thank Yufu Zang, Kaixuan Zhang, and Agung Indrajit for valuable comments. We also
thank the Floriade Project for providing test datasets.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LiDAR Light Detection and Ranging
MST Minimum Spanning Tree
PCA Principal Component Analysis
QSM Quantitative Structure Modelling
SFM Structure From Motion



Remote Sens. 2019, 11, 2074 18 of 19

References

1. Deussen, O.; Hanrahan, P.; Lintermann, B.; Měch, R.; Pharr, M.; Prusinkiewicz, P. Realistic modeling and
rendering of plant ecosystems. In Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques, Orlando, FL, USA, 19–24 July 1998; pp. 275–286.

2. Maltamo, M.; Næsset, E.; Vauhkonen, J. Forestry applications of airborne laser scanning. Concept Case Stud.
Manag. For Ecosys 2014, 27, 460.

3. Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation
from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [CrossRef]

4. Hyyppa, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume
estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens.
2001, 39, 969–975. [CrossRef]

5. Kamal, M.; Phinn, S.; Johansen, K. Object-based approach for multi-scale mangrove composition mapping
using multi-resolution image datasets. Remote Sens. 2015, 7, 4753–4783. [CrossRef]

6. Reche-Martinez, A.; Martin, I.; Drettakis, G. Volumetric reconstruction and interactive rendering of trees
from photographs. ACM Trans. Gr. (ToG) 2004, 23, 720–727. [CrossRef]

7. Shlyakhter, I.; Rozenoer, M.; Dorsey, J.; Teller, S. Reconstructing 3D tree models from instrumented
photographs. IEEE Comput. Gr. Appl. 2001, 21, 53–61. [CrossRef]

8. Quan, L.; Tan, P.; Zeng, G.; Yuan, L.; Wang, J.; Kang, S.B. Image-based plant modeling. ACM Trans. Gr.
(TOG) 2006, 25, 599–604. [CrossRef]

9. Guo, J.; Xu, S.; Yan, D.M.; Cheng, Z.; Jaeger, M.; Zhang, X. Realistic Procedural Plant Modeling from Multiple
View Images. IEEE Trans. Vis. Comput. Gr. 2018. [CrossRef]

10. Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.;
Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens.
2016, 115, 63–77. [CrossRef]

11. Olofsson, K.; Holmgren, J.; Olsson, H. Tree stem and height measurements using terrestrial laser scanning
and the RANSAC algorithm. Remote Sens. 2014, 6, 4323–4344. [CrossRef]

12. Brandtberg, T.; Warner, T.A.; Landenberger, R.E.; McGraw, J.B. Detection and analysis of individual leaf-off
tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North
America. Remote Sens. Environ. 2003, 85, 290–303. [CrossRef]

13. Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanner.
Remote Sens. Environ. 2004, 90, 415–423. [CrossRef]

14. Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N. Automatic and self-adaptive stem reconstruction in
landslide-affected forests. Remote Sens. 2016, 8, 974. [CrossRef]

15. Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree—An efficient open source
tool to build tree models from TLS clouds. Forests 2015, 6, 4245–4294. [CrossRef]

16. Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.;
Disney, M.; Lewis, P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens.
2013, 5, 491–520. [CrossRef]

17. Bucksch, A.; Lindenbergh, R.; Menenti, M. SkelTre. Vis. Comput. 2010, 26, 1283–1300. [CrossRef]
18. Yan, D.M.; Wintz, J.; Mourrain, B.; Wang, W.; Boudon, F.; Godin, C. Efficient and robust reconstruction of

botanical branching structure from laser scanned points. In Proceedings of the 2009 11th IEEE International
Conference on Computer-Aided Design and Computer Graphics, Huangshan, China, 19–21 August 2009;
pp. 572–575.

19. Xu, H.; Gossett, N.; Chen, B. Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans.
Gr. (TOG) 2007, 26, 19. [CrossRef]

20. Verroust, A.; Lazarus, F. Extracting skeletal curves from 3D scattered data. In Proceedings of the Shape
Modeling International’99, International Conference on Shape Modeling and Applications, Aizu-Wakamatsu,
Japan, 1–4 March 1999; pp. 194–201.

21. Delagrange, S.; Jauvin, C.; Rochon, P. PypeTree: A tool for reconstructing tree perennial tissues from point
clouds. Sensors 2014, 14, 4271–4289. [CrossRef] [PubMed]

22. Dey, T.K.; Sun, J. Defining and computing curve-skeletons with medial geodesic function.
Symp. Geom. Process. 2006, 6, 143–152.

http://dx.doi.org/10.1080/01431161.2010.494184
http://dx.doi.org/10.1109/36.921414
http://dx.doi.org/10.3390/rs70404753
http://dx.doi.org/10.1145/1015706.1015785
http://dx.doi.org/10.1109/38.920627
http://dx.doi.org/10.1145/1141911.1141929
http://dx.doi.org/10.1109/TVCG.2018.2869784
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.006
http://dx.doi.org/10.3390/rs6054323
http://dx.doi.org/10.1016/S0034-4257(03)00008-7
http://dx.doi.org/10.1016/S0034-4257(03)00140-8
http://dx.doi.org/10.3390/rs8120974
http://dx.doi.org/10.3390/f6114245
http://dx.doi.org/10.3390/rs5020491
http://dx.doi.org/10.1007/s00371-010-0520-4
http://dx.doi.org/10.1145/1289603.1289610
http://dx.doi.org/10.3390/s140304271
http://www.ncbi.nlm.nih.gov/pubmed/24599190


Remote Sens. 2019, 11, 2074 19 of 19

23. Livny, Y.; Yan, F.; Olson, M.; Chen, B.; Zhang, H.; El-Sana, J. Automatic reconstruction of tree skeletal
structures from point clouds. ACM Trans. Gr. (TOG) 2010, 29, 151.

24. Xu, Y.; Sun, Z.; Hoegner, L.; Stilla, U.; Yao, W. Instance Segmentation of Trees in Urban Areas from
MLS Point Clouds Using Supervoxel Contexts and Graph-Based Optimization. In Proceedings of the
2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, Beijing, China, 19–20 August 2018;
pp. 1–5.

25. Zhou, H.; Shenoy, N.; Nicholls, W. Efficient minimum spanning tree construction without Delaunay
triangulation. In Proceedings of the 2001 Asia and South Pacific Design Automation Conference, Yokohama,
Japan, 2 February 2001; pp. 192–197.

26. Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799.
[CrossRef]

27. Chi, Y.; Muntz, R.R.; Nijssen, S.; Kok, J.N. Frequent subtree mining—An overview. Fundam. Inf.
2005, 66, 161–198.

28. Wu, S.T.; Marquez, M.R.G. A non-self-intersection Douglas-Peucker algorithm. In Proceedings of the 16th
Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003), Sao Carlos, Brazil,
12–15 October 2003; pp. 60–66.

29. Markku, Å.; Raumonen, P.; Kaasalainen, M.; Casella, E. Analysis of geometric primitives in quantitative
structure models of tree stems. Remote Sens. 2015, 7, 4581–4603. [CrossRef]

30. Panyam, M.; Kurfess, T.R.; Tucker, T.M. Least squares fitting of analytic primitives on a GPU. J. Manuf. Syst.
2008, 27, 130–135. [CrossRef]

31. Nurunnabi, A.; Sadahiro, Y.; Lindenbergh, R.; Belton, D. Robust cylinder fitting in laser scanning point cloud
data. Measurement 2019, 138, 632–651. [CrossRef]

32. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl.
Math. 1963, 11, 431–441. [CrossRef]

33. Boost. Available online: https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html (accessed
on 1 September 2018).

34. Easy3D. Available online: https://github.com/LiangliangNan/Easy3D (accessed on 1 March 2019).
35. Mapple. Available online: https://3d.bk.tudelft.nl/liangliang/software.html (accessed on 1 September 2018).
36. AHN Dataset. Available online: https://www.pdok.nl/attenderingsservice-rss/-/asset_publisher/

mvZkjafth739/content/actueel-hoogtebestand-nederland-ahn3- (accessed on 1 January 2019).
37. Zhang, W.; Wan, P.; Wang, T.; Cai, S.; Chen, Y.; Jin, X.; Yan, G. A Novel Approach for the Detection of

Standing Tree Stems from Plot-Level Terrestrial Laser Scanning Data. Remote Sens. 2019, 11, 211. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/34.400568
http://dx.doi.org/10.3390/rs70404581
http://dx.doi.org/10.1016/j.jmsy.2008.07.004
http://dx.doi.org/10.1016/j.measurement.2019.01.095
http://dx.doi.org/10.1137/0111030
https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html
https://github.com/LiangliangNan/Easy3D
https://3d.bk.tudelft.nl/liangliang/software.html
https://www.pdok.nl/attenderingsservice-rss/-/asset_publisher/mvZkjafth739/content/actueel-hoogtebestand-nederland-ahn3-
https://www.pdok.nl/attenderingsservice-rss/-/asset_publisher/mvZkjafth739/content/actueel-hoogtebestand-nederland-ahn3-
http://dx.doi.org/10.3390/rs11020211
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview
	Materials and Methods
	Skeleton Initialization
	Skeleton Simplification
	Assigning Vertex and Edge Importances
	Simplifying Adjacent Vertices and Edges

	Branch Fitting
	Adding Realism
	Implementation Details
	Test Datasets

	Results and Discussion
	Visual Evaluation
	Reconstruction Accuracy
	Robustness
	Comparisons
	Limitations
	Potential Applications

	Conclusions and Future Work
	References

