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Abstract: African para grass (Urochloa mutica) is an invasive weed that has become prevalent across
many important freshwater wetlands of the world. In northern Australia, including the World
Heritage landscape of Kakadu National Park (KNP), its dense cover can displace ecologically,
genetically and culturally significant species, such as the Australian native rice (Oryza spp.). In regions
under management for biodiversity conservation para grass is often beyond eradication. However,
its targeted control is also necessary to manage and preserve site-specific wetland values. This requires
an understanding of para grass spread-patterns and its potential impacts on valuable native vegetation.
We apply a multi-scale approach to examine the spatial dynamics and impact of para grass cover across
a 181 km2 floodplain of KNP. First, we measure the overall displacement of different native vegetation
communities across the floodplain from 1986 to 2006. Using high spatial resolution satellite imagery
in conjunction with historical aerial-photo mapping, we then measure finer-scale, inter-annual,
changes between successive dry seasons from 1990 to 2010 (for a 48 km2 focus area); Para grass
presence-absence maps from satellite imagery (2002 to 2010) were produced with an object-based
machine-learning approach (stochastic gradient boosting). Changes, over time, in mapped para
grass areas were then related to maps of depth-habitat and inter-annual fire histories. Para grass
invasion and establishment patterns varied greatly in time and space. Wild rice communities were
the most frequently invaded, but the establishment and persistence of para grass fluctuated greatly
between years, even within previously invaded communities. However, these different patterns were
also shown to vary with different depth-habitat and recent fire history. These dynamics have not
been previously documented and this understanding presents opportunities for intensive para grass
management in areas of high conservation value, such as those occupied by wild rice.

Keywords: Vegetation mapping; landscape ecology; Invasive weeds; freshwater wetlands; adaptive
land management; biodiversity conservation; fire; remote sensing

1. Introduction

Wetlands are one of the world’s most threatened ecosystems. Over 50% of wetlands in the north
America, Europe, Australia and New Zealand were destroyed during the twentieth century and others
elsewhere degraded [1]. Some authors estimate the greatest global loss of wetlands has been in Asia [2].
Exotic weed invasions are assessed to be one of the main drivers of ongoing degradation of wetlands,
globally [1,3,4]. The current causes of wetland degradation and loss (human land uses, invasive species,
water extraction and pollution) are expected to be exacerbated by concomitant impacts of climate
change (i.e., changed temperature and rainfall regimes; risk of inundation from sea-level rise) [5].
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Tropical grasses such as African para grass (Urochloa mutica) have become globally prevalent
since introductions for pasture to various continents [6]. Such grasses tend to become invasive
and can disrupt ecological dynamics by altering hydrological flows, nutrient cycles and seedbed
conditions [7–9]. These high-biomass grasses are also likely to increase the frequency and severity of
wildfires [10–14] and threaten valued endemic flora and fauna [3,15,16].

Para grass has already established in tropical wetlands across northern Australia [16,17].
Within Kakadu National Park (KNP), which includes internationally significant World Heritage
and RAMSAR-listed freshwater wetlands [18], para grass is beyond eradication and continues to
increase in extent [19–21]. It can form large, dense, patches that displace native vegetation of
high conservation value, such as areas previously dominated by native rice (Oryza meridionalis and
O. rufipogon), and the annual native water chestnut (Eleocharis dulcis) [8,14,16,19,22,23]. These rice
populations of northern Australia comprise a globally significant genetic resource for cultivated rice
breeding [24,25]. Native rice and water chestnut also underpin the floodplain vertebrate food web,
which includes the iconic and range-restricted magpie goose [26,27] and dusky plains rat [28,29]
both of which feed directly on native rice. If unmanaged, para grass could also adversely affect
regionally important economic opportunities such as tourism and wild harvest of plant products that
are culturally significant to Indigenous people [30,31].

Wetland conservation managers are called upon to make efficacious, spatially explicit, decisions
to prioritize and deploy the limited available resources to control weeds. This requires a monitoring
program that provides knowledge of: (A) The historical context and dynamics of weed establishment
across landscapes [32,33]; (B) the spatial dynamics and impact of invasions, over time and in relation to
the distributions of differently valued endemic life under conservation [34] and (C) the environmental
factors influencing these dynamics [35–37]. Since the dynamic processes that induce vegetation change
operate over multiple scales, it is also imperative that vegetation be monitored over an appropriate
range of spatial and temporal scales and in different landscape contexts [38].

Without such a vegetation monitoring framework it is very difficult to assess the success
(or otherwise) of specific weed control programs [37,39]. Lack of timely information on the
dynamics and spatial distribution of weeds hampers control operations by creating uncertainty
in decision-making [40–42]. However, gathering information on vegetation distribution in wetland
environments has tended to be opportunistic, fragmented and inconsistent in time and space [40,43].
In northern Australia, monitoring efforts have also been limited by high costs and the many logistic
challenges associated with accurately surveying these expansive, remote and relatively inaccessible
monsoonal floodplains [40,44].

On floodplains of KNP, the seasonal dynamics of vegetation cover are largely controlled by the
highly variable rains of the tropical monsoon. Their magnitude and duration directly influence the
conditions that affect plant growth, such as nutrient cycling, water depths and the frequency and
duration of wet or dry periods (i.e., when floodplain soils are either inundated by water or exposed to
air) [12,45–49]. They also influence regimes of disturbance such as the incidence, extent and intensity
of dry-season fire, which have a profound effect on vegetation dynamics [50]. These variables interact
together with the low-relief topography of these plains to form vegetation patterns.

Prioritization of weed control and research activities requires an understanding of which floodplain
habitats and endemic vegetation are most prone to invasion or more severe impact, over time. In this
context, distribution patterns of different native vegetation and para grass are known to correlate
strongly with floodplain inundation frequency and depth [12,51,52]. Further knowledge on the spatial
dynamics of vegetation patterns in relation to these variables, may assist in more effective prioritization
of para grass control activities and in the identification of timely, site-specific, opportunities for
implementing para grass control. For example, an understanding of weed invasion rates across
different water-depth habitats could guide where and when control activities are directed.

In addition, the persistence of dense para grass cover may vary between these different habitats.
Quantifying these differences could provide important information on the potential impacts of para
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grass, in terms of the permanency of displacement of native vegetation in any one location. In this
regard, fire can have various effects on vegetation dynamics, because fire regimes (e.g., frequency and
intensity) and environmental conditions immediately before and after fire will vary across different
habitats on the floodplain. The periodic removal of dense perennial grass cover (e.g., para grass)
by fire can favor conditions for the re-establishment of more favored plant species, such as native
rice [30,53,54]. Alternatively and under different conditions, fire may favor the continued invasion
of para grass into new areas [55]. Quantifying these effects is important for modeling invasion risk,
as well as identifying site- and time-specific opportunities for the remediation of native vegetation.

Optical remote sensing (RS) can provide the quantitative, multi-scale information necessary to
assess vegetation condition and the risk and impact of weed invasions across landscapes [20,43,51,56–60].
It can provide accurate, cost-effective, continuous and contiguous spatial information on the distribution
of vegetation and habitats over extensive and often inaccessible wetland landscapes [40,61–70]. Indeed,
RS is often the only source of information readily available to characterise habitats, and monitor and
detect weeds or environmental change in such areas [71,72]. Measurements can also be repeated with
relative consistency over time, obtained at range of scales and spatially integrated within geographic
information systems [73–76]. However, inherent and sometimes avoidable measurement errors
contribute to uncertainty in RS interpretation, which therefore must be validated by finer-scale ground
surveys, nested within the landscape. It is also important to develop RS image classification methods
that deliver consistent and accurate spatial and temporal of information. This is also important because
errors accumulate or are even propagated in vegetation change analyses [77–79].

In this study, we apply RS to monitor and understand the spatial dynamics of the environmental
weed, para grass (Urochloa mutica) on a freshwater floodplain of KNP, Northern Territory, Australia.
Our aim was to quantify the spatial dynamics of para grass invasion and establishment in relation to
native vegetation, water depth and fire history on this floodplain. These analyses are conducted in a
GIS environment using a range of monitoring products derived by remote sensing in combination with
a field survey. In so doing, we assess the impacts and risk of para grass invasion on native vegetation
communities and floodplain habitats, typical of freshwater wetlands in the region. This research
provides valuable information for planning and prioritisation of site-specific management programs
for this weed on this floodplain and other monsoonal wetlands under conservation management.

2. Materials and Methods

2.1. Site and Data Descriptions

The Magela Creek floodplain is located in the monsoonal tropics of KNP and the Alligator Rivers
Region of northern Australia (Figure 1). The first confirmed reports of para grass on this floodplain
are from the 1950s [80,81]. A few planting trials for para grass as pasture occurred in small areas up
until 1969 [21,80]. No active control of para grass has occurred on the floodplain since its incorporation
into the KNP conservation zone in 1981. In fact, perennial grasses (including para grass) began to
proliferate on KNP floodplains in the late 1980s after intense grazing pressure was relaxed by the
controlled removal of feral water buffalo from the Park [82]. This situation makes this site suitable for
studying the dynamics of para grass under inherent conditions, without weed control intervention [51].
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Figure 1. Para grass monitoring sites on the Magela Creek floodplain within Kakadu National Park,
NT, Australia, showing: Site I.; the greater floodplain area (181 km2) for measuring native vegetation
types displaced by para grass between 1986 to 2006; and Site II (48 km2) which encloses the largest
para grass infestation, where finer-scale dynamics of change were measured from 2001–2010. Site II
contained para grass areas which were mapped historically for this infestation [19], and now combined
in some Site II analyses.

The datasets used in this study are summarized in Table 1. First, the displacement of different
native vegetation communities by dense para grass cover is estimated for the whole floodplain area
from maps representing vegetation cover in 1986 and 2006 (Site I.; Figure 1). Then, inter-annual changes
in para grass cover were measured for the 48 km2 focus area (Site II, Figure 1). In these analyses,
we mapped para grass cover from high spatial resolution satellite images captured biennially from
2001 to 2010 (Table 3). Details on the production and accuracy assessment of these maps are provided
in Section 2.3.1. The mapped changes in para grass cover were then interrelated to published maps of
floodplain depth habitat and fire history [51]. Historical maps of para grass cover were also available
within the Site II area for years 1991 and 1996 [19]. These maps were included in analyses to assess
rates of change over time (Section 2.3).
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Table 1. Map datasets used to characterize the spatial distribution of para grass and native vegetation in context to environmental variables, water depth and
fire history.

Site Analyses Map Variable Mapping Year(s) Description Estimated Scale/Accuracy

Broad scale, generalized,
analyses
(Site I)

Para grass cover 2006
Published vegetation map produced by object-based image

analysis from 2006 Landsat multi-temporal (dry season)
composite using the Nearest Neighbour classifier [20].

Horizontal accuracy ± 30 m.
Overall accuracy for para grass cover class = 96%

Native vegetation
cover 1986

Published vegetation map produced by aerial photo
interpretation from 1:25000 images, in conjunction with

georeferenced field knowledge. [83].

Quantitative accuracy of the original map is
unmeasured. Map digitized and spatially

co-registered to 2006 map (Section 2.2).

Finer-scale, inter-annual,
analyses
(Site II)

Para grass cover 2001, 2004,2006,
2008, 2010

This map series was produce from high spatial resolution
satellite imagery (Table 3) using a supervised, object-based,
classification (Section 2.3). Map accuracies were estimated

using separate image samples reserved for validation.

Imagery/maps spatially co-registered to an
accurately georectified (2006 QuickBird imagery)
with horizontal accuracy approximately ± 2.5 m.

Overall classification accuracies were ≥96%
(Table 2, results).

Para grass Cover 1991, 1996
Map produced by aerial photo interpretation of 1:25000

images, with georeferenced ground surveys of vegetation
used to validate interpretations. Published methods [19].

Quantitative accuracy of the original
imagery/maps is unmeasured.

Water Depth 2006

A depth model of site I, extracted for Site II analyses.
Modeled by regression between a Landsat dry-season
composite and georefereced floodplain depth records.

Published methods [51].

Horizontal accuracy ± 30 m.
Depth prediction strength R2 = 0.67, p < 0.0001, n

= 254. Mapped at a spatial resolution of 30 m.
Predicted depths ranged from 0 to 1.85 m in

increments of 0.1 m.

Fire Scar maps 2000, 2003, 2005,
2007, 2009

Maps produced by object-based image analysis of Landsat
(available dry-season imagery) using the Nearest Neighbour

classifier. Published methods [51].

Horizontal accuracy ± 30 m pixels.
Overall classification accuracies for map series:

98%, 99.6%, 93%, 99% and 99% respectively.
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Table 2. Wetland vegetation types sampled from the satellite imagery (years 2001 to 2010). Vegetation cover descriptions are summarized from Boyden et al. 2013 [20].

Model Training Class Sampled Vegetation Cover Types
Para grass Urochloa mutica: dense cover, near mono-culture—wet and dry phases

Non-para grass

Native perennial grasses and floating vegetation mats: Dense vegetative cover dominated by Hymenachne acutigluma or Leersi hexandra
Annual grasses and sparse native perennial grasses, and ephemeral sedges: Oryza meriondalis, Pseudoraphis spinecens and E. dulcis (native rice,

mud-grass and water chestnut)
Non-floodplain grasses and bare ground

Sedges: Dense vegetative cover of perennial and ephemeral sedges (e.g., Eleocharis sphacelata and E. dulcis)
Open water Lilies dominated by Nymphaea or Nymphoides spp.

Nelumbo nucifera (red lily)
Melaleuca (paperbark trees)

Deeper open water with no emergent vegetation cover
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Table 3. Characteristics of the high-resolution image datasets used in production of the vegetation map time-series produced for between 2001 and 2010.

Sensor Spatial Resolution Analysis
Resolution Spectral Characteristics Acquisition Date(s) Additional Notes

IKONOS

Pixel size:
0.8 m (pan)
4 m (MS)

All bands were
provided at 1 m

0.6 m

Band 1: 445–516 nm (Blue)
Band 2: 506–595 nm (Green)
Band 3: 632–698 nm (Red)
Band 4: 757–853 nm (Near-IR)
Pan: 450–900 nm

Dynamic range: 11 bit

03-06-2001 Data geo-rectified and
resampled to 1 m [84]

25-06-2004 panchromatic + 4-band
multispectral product

QuickBird

Pixel size:
0.6 m (pan and

pan-sharped bands),
2.4 m (MS)

0.6 m

Band 1: 450–520 nm (Blue)
Band 2: 520–600 nm (Green)
Band 3: 630–690 nm (Red)
Band 4: 760–900 nm (Near-IR)
Pan: 445–900 nm

Dynamic range: 11 bit

23-06-2006
24-07-2006

4-band, UNB-pan-sharpened
mosaic geo-rectified to ground

control and used as the base
image for spatial co-registration

15-06-2008 UNB-pansharpened

WorldView-2
Pixel size:

0.49 m (pan)
2.4 m (MS)

0.6 m

Band 1 *: 400–450 nm (Coastal)
Band 2: 450–510 nm (Blue)
Band 3: 510–580 nm (Green)
Band 4 *: 585–625 nm (Yellow)
Band 5: 630–690 nm (Red)
Band 6 *: 705–745 nm (Red-edge)
Band 7: 770–895 nm (Near-IR-1)
Band 8 *: 860–900 nm (Near-IR-2)
Pan: 450–800 nm

15-05-2010

panchromatic + 8-band
multispectral product. Two
separate scenes (Region 1

and 2),

Notes: MS/pan = multispectral and panchromatic image sensors with an 11-bit dynamic range; UNB = patented (University of New Brunswick) pan-sharpening algorithm applied to
multispectral data. * Indicates bands excluded from image analyses (WorldView-2 only).
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2.2. Native Vegetation Displaced by Para Grass from 1986 to 2006 (Site I)

An original A3-size hardcopy of the 1986 map [83] was scanned at 1000 DPI then co-registered to
the 2006 map [20] using image-to-image warping applied in ENVI® ver. 4.8 [85]. This step used 613
control points manually selected from identifiable features of the July 2006 Landsat 5 TM image (i.e.,
the same base-image used to create the 2006 map). This color map was then segmented in eCognition®

ver. 8.64 and labeled according to Finlayson (1989) using the manual editing tool [86]. Contiguous
segments with identical class-labels were merged. A shapefile of the map was imported to ArcMap®

ver. 9.3.1 [87]. A number of the vegetation classes of the 1989 map were also merged to simplify
the vegetation change calculations (i.e., a single ‘Paperbark’ class was created from the two related
sub-classes; and three classes, representing <6% of total displaced area in total, were merged and
named ‘other’).

Using the layer-intersect tool of ESRI ArcMap® ver. 10.1, the area of native vegetation displaced by
para grass was determined by subtracting the para grass areas, mapped in 2006, from each intersecting
1986 map classes. Change-area estimates for each native-vegetation class are reported in hectares and
as a proportion of their total areas. We omitted small boundary errors from analyses, evident between
the outer boundary of both maps (i.e., between terrestrial and wetland areas).

2.3. Production and Accuracy Assessment of Para Grass Map Series from 2001 to 2010 (Site II)

As summarized in Figure 2, this section describes the steps involved in production and accuracy
assessment of para grass maps produced for Site II.; years 2001 to 2010, by object-based image analysis
(OBIA).
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Using Trimble eCognition®, a multi-level ‘reference’ segmentation was first produced from the
2006 image using a ‘bottom up’ segmentation [86,88]. In this step, segmentation scale parameters were
chosen using a systematic ‘trial and error’ approach, with the objective of producing image objects
of suitable scale and accuracy for subsequent classification. For each other image in the time series,
scale parameters were adjusted to match the ‘reference’, based on the total number of image objects
produced for the total scene area at each segmentation level [88].

A classification model was then built for each single-date image using the machine-learning
algorithm, stochastic gradient boosting (SGB). The SGB method has been applied in several remote
sensing studies and produced high image classification accuracies [89–92]. The algorithm recursively
builds an ensemble or ‘grove’ of many independent classification and regression trees (CART) then
combines them in a single classification model [93,94]. The process uses statistical bagging and boosting
methods to optimize classification tree rules [93,95]. Bagging, also known as bootstrap aggregation,
refers to the process of repeated, random selection of a separate subset of data to train each separate
CART model [96]. Boosting refers to an additional process for the weighted selection of each new
training data subset taken after each CART iteration. This adaptive weighting process uses an updated
probability distribution of samples calculated from the residual error determined in the last model
iteration. It places more weight on samples that were classified poorly in previous iterations [96].
By also applying the bagging procedure, the SGB method is resistant to model over-fitting [90,97]. It is
a non-parametric method and does not rely on the assumption of normal distribution in data. In this
context, the method is resilient to error arising from inaccurate training data, outliers and unbalanced
sample data [98,99].

Image training samples for the SGB models were chosen from known para grass and non-para
grass areas as defined in field surveys undertaken by airboat and helicopter (Figure 3 and Table 2).
Image sample selection and subsequent classifications were conducted at the spatial scale of Level II
image segmentations [88,100]. In this context, the mean size of sample objects used to train para grass
was 16.3 m2

± 14.3 SD. Selection of image samples was aided using the pan-sharpened, true-color and
false-color image composites of each image. In this regard, visually selected sample objects were then
validated with georeferenced photos vegetation and descriptions gathered by trained field observers.

2.3.1. Estimating Trends and Variability in Para Grass Cover (Site II)

Linear regression was applied to assess trends and variability in total para grass cover (ha),
over time (yr.) and in relation to water-depth habitat of the floodplain. These analyses were undertaken
on data from the nine year study period (2001–2010, n = 5). We then repeated the regression on data
spanning nineteen years (1991–2010), with historic para grass data included (years 1991 and 1996).
In this analysis an outlier was removed (the 2004 datum), to be discussed further in the results.

The para grass cover maps (including several different derived indices); water depth and fire
history maps were analyzed using the Zone-statistics function of Spatial Analyst Tools of ArcMap® ver.
9.3.1 (Figure 4). To do this ‘zones’ were assigned using a regularly spaced hexagonal sample lattice
with sample-cell areas of 0.21 ha with a cell-height of 50 m. This sample size was chosen because we
considered it to be the minimum size that: (a) could be used to re-sample finer scale measurements
without causing significant edge-effect errors; and (b) it was of a practical scale for future monitoring
and applied research directed towards optimization of weed control operations or trials. Hexagonal
resampling has also been shown to have better spatial sample efficiency due to symmetry with nearest
neighbors and is visually less biased for displaying density-maps than square grids [101,102].
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The several spatial and temporal indices derived for para grass (Table 4), enabled change in
para grass cover to be characterized across multiple scales. These indices represent either local- or
patch-scale traits. Local-scale traits included: (a) The presence/absence of para grass, measured at the
standardized spatial scale of the map productions; and (b) the percentage cover-density, measured
within larger-scale, hexagonal, sample cells (0.21 ha) of a sample lattice. Patch-scale indices included
the area of discrete patches; inter-patch distance; the ‘cumulative persistence score’, over time (i.e.,
the sum of all para grass from all high-spatial resolution map layers); and the distances to most
‘persistent’ patches.

Indices relating to changes in density and inter-patch distance of para grass were also calculated
for a series of four ‘image-difference’ pairs 2001-04, 2004-06, 2006-08 and 2008-10 (refer to Equations (1),
(2) and (3)).

Firstly, para grass sample-cell density was calculated for each map of the time-series (Equation (1)):

PCti =
( Sti

Cti

)
∗ 100 (1)

where PCti is percentage cover in cell i for para grass classification layer t; Sti is the sum of all para grass
pixels falling within cell i and C is the total count of all pixels (para grass and non-para grass classes) from
layer t falling in cell i. Cell-density was also color-coded for the purpose of cartographic illustration.

Then, from each of image-difference pair representing the near-biennial time intervals of the series
(2001–04, 2004–06, 2006–08 and 2008–10), two indices relating to changes in cover-density and the
distance between para grass patches were calculated (Equations (2) and (3)):

Change in Densityi = PCit1 − PCit0 (2)

where Change in Density in cell i is the difference in PC (percentage cover, Equation (1)) measured in
that cell between at t1 and t0 (i.e., representing each image-difference pairs, above).

Change in Interpatch Distancei = PDit1 − PDit0 , (3)

where Change in Interpatch Distance is the difference in the mean distance between patches boundaries
(PD) in cell i measured between at t0 and t1 (representing each image-difference pair, above).

The local Moran’s statistic was applied in ESRI ArcMap (ver. 9.3.1) to the mean the ‘change
in density’ map [87]. This statistic identifies spatial clusters that differ significantly from a random
distribution of the same values array [103]. We used a fixed search distance of 50 m in this analysis.
Areas of either significant positive or negative change are referred to as ‘hot-spots’ and ‘cold-spots’
respectively. Hot- and cold-spots were then compared to depth habitat area using a one-way ANOVA.

The spatial and temporal patterns in para grass were correlated with the maps of water depth and
fire history. Indices for para grass density and change in density were plotted across the depth gradient
as the mean for the total sample period, each sample year and each image-difference pair. The number
and total area of sample cells within each water depth interval bin and each ANOVA depth category
(Shallow, Moderate and Deep) are shown in Figure 5. In this regard, sample cells containing zero para
grass over the entire sampling period (from 2001 to 2010) were omitted from all analyses.
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Table 4. The vegetation and habitat indices used in the analysis of para grass change over Site II from 2001 to 2010.

Group Variable Description Derivation

Para Grass

Cumulative Persistence Score (CPS) The persistence of para grass at any one location, over time (2001 to 2010).
The sum of binary map layers for para grass presence using
maps 2001, 2004, 2006, 2008 and 2010 (i.e., present = 1, or
not present = 0).

(a) Cell-density, and (b) change in
cell-densities

(a) The percentage of para grass cover measured within each 0.24 ha,
hexagonal, sample cell of each map layer (2001, 2004, 2006, 2008, and 2010);
and (b) the negative or positive change in cell-densities, calculated for each
image-difference pair in series: 2001-04, 2004-06, 2006-08 and 2008-10.

Percentage cover calculated based on the number of para
grass pixels as a proportion of the total number of pixels
within a hexagonal cell. Change in cover then calculated by
subtraction for image-difference pair (please refer to
Equations (1) and (2), below).

Distance to patch and change in
patch distance

The Euclidean distances (m) to nearest discrete para grass ‘patch’ over
time, 2001 to 2010. Changes in patch distances were also measured for
each image-pair in series: 2001-04, 2004-06, 2006-08 and 2008-10 and
denoted as either an increase (+) or decrease (–) in distance.

The Euclidean distance function applied at 1 m resolution
to each map. Zone statistics were then derived for each
layer from the hexagonal sample matrix. Refer to Equation
(3), below for the ‘change in distance’ calculation.

Distance to ‘Permanent’ Patch The Euclidean distances (m) to the nearest ‘Permanent’ patch, defined as
patches with a possible maximum cumulative persistence score (CPS) of 5

Euclidean distance function applied at 1 m resolution. The
spatial analyst ‘Reclass’ function was used to generate the
CPS map layer.

Patch Size Contiguous areas classified as para grass. Patch sizes (ha) were calculated
for each classification layer: 2001, 2004, 2006, 2008 and 2010.

Patch areas (ha) calculated from polygon layers generated
for all classifications. Georeferenced zone statistics (mean
and maximum) were calculated for each respective layer
using the hexagonal sample lattice.

Other

Depth habitat

Used in the analysis of variance (ANOVA) of para grass change in relation
to three depth categories: ‘Shallow’, ‘Moderate’ and ‘Deep’. Selection of
the depth ranges of each depth category were based on the distribution of
para grass in relation mapped depth [51}.

Previous dry-season fire
The burnt (or unburnt) areas mapped in the first dry-season period
between each image- difference pair (i.e., 2001-04, 2004-06, 2006-08 and
2008-10.)

The fire-scar maps derived from Landsat representing years
2003, 2005, 2007 and 2009 [51].
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as mapped in 2006, Site I [51]. In this regard, the total cover of para grass was known to be greatest 
within the depth-range of the moderate depth category. Two estimates of the linear rate of change in 
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The potential influences of water depth and fire habitat on para grass dynamics were tested 
using a two-way factorial analysis of variance (ANOVA) applied in Statistica® [100]. Change in para 
grass density and inter-patch distance (Equation (3)) were the variables used to evaluate the effects 
of the habitat parameters of water depth and fire on para grass dynamics. The dependent variables 
were calculated for each time interval of the four image-difference pairs. These data were pooled 
such that each cell of the sample lattice was replicated four times. Hence, the ANOVA design was 
assumed to be balanced in relation to effects of time on para grass variables. For consistency, the 
interval unit of change was ‘biennial’ with the one exception being a 3-year change interval for 2001–
2004. Likewise, the time-interval between fire and post-fire para grass mapping was one wet season 
(i.e., about 1 year). In this analysis, we assumed that impacts of fire on para grass cover would be 

Figure 5. The mapped depth categories (shallow, moderate and deep) tested in the ANOVA and the
number of hexagonal sample-cells within each depth-interval bin across Site II. Data used for the
ANOVA were only taken from sample-cells where para grass was ‘present’ (black bars). Sample cells
with a complete absence of para grass over the sample period were omitted from the analysis (i.e.,
stacked grey bars).

Linear regression was also applied to compare the rate of annual change in para grass cover in
shallow (≤1.15 m), moderate (>1.15 to <1.45 m) and deep (≥1.45 m) water depth habitats. These depth
ranges were selected to reflect major differences in total cover of para grass across the depth gradient as
mapped in 2006, Site I [51]. In this regard, the total cover of para grass was known to be greatest within
the depth-range of the moderate depth category. Two estimates of the linear rate of change in para
grass cover were then calculated. First, changes in total extant para grass cover were measured across
the 5-image series. Second, the cumulative spatial footprint of para grass was measured. This measure
included attrition in para grass between years.

The potential influences of water depth and fire habitat on para grass dynamics were tested using
a two-way factorial analysis of variance (ANOVA) applied in Statistica® [100]. Change in para grass
density and inter-patch distance (Equation (3)) were the variables used to evaluate the effects of the
habitat parameters of water depth and fire on para grass dynamics. The dependent variables were
calculated for each time interval of the four image-difference pairs. These data were pooled such that
each cell of the sample lattice was replicated four times. Hence, the ANOVA design was assumed to
be balanced in relation to effects of time on para grass variables. For consistency, the interval unit of
change was ‘biennial’ with the one exception being a 3-year change interval for 2001–2004. Likewise,
the time-interval between fire and post-fire para grass mapping was one wet season (i.e., about 1 year).
In this analysis, we assumed that impacts of fire on para grass cover would be most apparent in relation
to the most recent fire. Therefore, fire categories were chosen from each fire-year (2003, 2005, 2007 and
2009) to correspond with each respective image-difference pair (2001–2004, 2004–2006, 2006–2008 and
2008–2010). These categories were defined by the majority (of either burnt or unburnt classes by area)
within each sample-cell on each fire-year map.
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3. Results and Discussion

3.1. Native Vegetation Displaced by Para Grass from 1986 to 2006 (Site I)

Para grass covered 1308 ha or 7% of the total floodplain area in 2006 (Figure 6). Oryza was the most
impacted of the native grassland communities mapped by Finlayson et al. (1989), with ≈471 ha or 24%
of its area displaced by para grass by 2006. This was followed by native Hymenachne grassland ≈262 ha
(20%), Pseudoraphis grassland ≈132 ha (5%) and Hymenachne–Eleocharis swamp ≈49 ha (5%). The largest
para grass patches were associated with the Oryza and Hymenachne communities. Smaller patches were
commonly associated with floodplain margins, displacing large areas of Pseudoraphis grassland. In this
regard, similar native vegetation affiliations for para grass have been independently reported for the
Magela Creek and the Mary River floodplains of Northern Territory, Australia [11,19,51,104–106].
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Figure 6. The estimated displacement of native vegetation communities by para grass between 1986
and 2006 shown as: (a) The distribution of dense para grass and the native communities displaced at
2006; and (b) the total area of the key vegetation communities displaced.

To some extent, the different scale and accuracies of maps used for this analysis limit the conclusions
that can be drawn. For example, due to semantic limitations, the displacement of the paperbark
woodland class (309 ha) by para grass, does not necessarily indicate a reduction in paperbark tree
numbers. Nevertheless, this warrants further investigation as other authors’ contest that grassy weeds
can suppress woody recruitment in savannas. This may occur when such high-biomass weeds alter
microsite conditions or lead to more frequent and severe fires [11,107,108].

In addition, a spatial mismatch error of ±120 m was detected between the two intersecting maps;
as calculated by the root-mean-square statistic of the map co-registration process. Such an error
may distort generalized estimates of native vegetation displacement, particularly when discreet map
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features are small or have narrow linear shapes [109]. However, in this case we do not think this error
will have a major impact on the result for the following reasons. Firstly, most of the contributing area of
para grass (mapped at high accuracy) is confined to just several larger discreet patches on the 2006 map.
That is, while smaller patches of para grass mapped by Landsat (and within 120 m of the boundaries
of 1986 map features) will be most prone to this mismatch error, they contributed little to the total
area of para grass mapped. Secondly, the total area over which para grass was measured was large
(182 km2) and measured from a map produced with high classification accuracy for para grass (96%),
and with an estimated spatial accuracy of 30 m. Thirdly, most discreet features on the 1986 map had
large rounded shapes meaning the impact of spatial mismatch error of 120 m will be less significant.

3.2. Production and Accuracy Assessment of Para Grass Map Series from 2001 to 2010 (Site II)

The series of maps produced by SGB-OBIA classifications, including ‘present–absent’, and of
conditional probability maps for para grass are shown in Figure 7. In general, this method produced
high classification accuracies for para grass (Table 5). However, there were notable inconsistencies
between the classifications as highlighted by the 2004 image. In this case, conditional probabilities
for para grass (based on the best fit produced from training variable inputs) appeared to be lower in
comparison with other maps (Figure 7b). Potential inconsistencies between years in ‘on-ground’ data,
used to train and validate each classification, or in the environmental conditions at the time of image
capture, may have contributed to this anomaly. In the future, such uncertainties might be avoided by
implementing where possible a more systematically stratified approach for the collection of adequate
‘on-ground’ samples across these large, relatively inaccessible, areas. In this context, integrated
deployment of UAV (Unmanned Aerial Vehicles) with very high resolution, sensor technologies
for ‘on-ground’ sampling can likely improve consistency and accuracy of satellite image mapping,
over time [76].Remote Sens. 2019, 11, 2090 18 of 35 
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Table 5. Accuracy statistics for the vegetation maps of the time-series (2001 to 2010) produced from the single-date SGB classification models and using the chosen set
of 139 OBIA predictor variables.

Class Number of Pixels Accuracy Kappa Statistic Error Rate (%)

Image Reference Classified Correct Producers Users Overall Producers Users Overall Omission Commission

IKONOS (2001) 410897 413727 377619 92 91 96 0.90 0.89 0.89 8 9

QuickBird (2004) 707180 756735 664166 94 88 96 0.92 0.84 0.88 6 12

QuickBird (2006) 617425 643414 590333 96 92 96 0.94 0.88 0.91 4 8

QuickBird (2008) 625118 700247 618718 99 88 97 0.99 0.88 0.91 1 12

WorldView (2010, R1*) 86461 89831 74124 86 83 99 0.85 0.82 0.83 14 17

WorldView (2010, R2*) 273762 279851 264567 96.6 95 97.6 0.95 0.93 0.94 3.4 5
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3.3. Measuring Distribution Trends and Inter-Annual Dynamics of Para Grass (Site II).

From 2001 to 2010, para grass cover increased by 540 ha from 747 to 1287 ha, a total change of 72%
(Figure 8a–c). A distinct trend of increasing para grass was evident over the timeframe, underpinned
by net increases of 145, 102 and 293 ha for the periods 2001–2006, 2006–2008 and 2008–2010, respectively.
This trend was also consistent over the extended 18-year period, 1992–2010, with historical map
records included [19]. The relationship between increasing para grass (ha) and time (years) was
not significant (R2 = 0.58, p = 0.08, n = 5) when all the 2001–2010 maps were included in analysis.
However, the relationship was stronger if either the 2001 or the 2004 map was removed from the
analysis (i.e., respectively R2 = 0.95, p = 0.02, n = 4 and R2 = 0.81, p = 0.07, n = 4). The relationship was
strongest when results (less the 2004 outlier) were combined with the historical maps of para grass
cover maps—Figure 8c, dashed line (i.e., R2 = 0.96, p = 0.0003).
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Figure 8. Para grass cover measurements (Site II) shown as: (a) The para grass cell density for each
image from 2001 to 2010; (b) the mean cell density from these measurements (n = 5 image samples)
and (c) as the total area (ha) of para grass over time (year) and including historic measurements (1991
and 1996) [19]. Note: Omission and commission error estimates only available for the recent maps,
from 2001 to 2010.

However, a net decline of 194 ha was also measured from 2001 to 2004 (Figure 8c). Changed
hydrological conditions or fire disturbance might have contributed to these observed declines.
Alternatively, the 2001 and 2004 image classifications might be less accurate than other classifications
of the series due to a heavier reliance on reference samples selected by retrospective image
interpretation [88].

The mean overall change in para grass density within sample cells was +3.3% and net inter-annual
change in density ranged from –4.3% to +8.9%, as measured across the series of four image-difference
pairs (Figure 9c). However, these statistics did not reflect the finer scale site-specific fluctuations in para
grass cover occurring within areas where it had already established. The spatio-temporal variability of
para grass in these areas was substantial, yet site-specific trends in cover increase or decrease were also
apparent (Figure 9a,b).
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Figure 9. Change in para grass cell-density at Site II as: (a) Mapped in series for each image-difference
pair; (b) a map of the mean change in density from all Image-Difference Pairs (IDPs) and as (c) the
graphed mean net change for each IDP.

Mean ‘hot-spots’ and ‘cold-spots’ of change, measured by the local Moran’s statistic, were also
spatially clustered (Figure 10). Hot-spots (areas of increasing cover) occurred in shallower areas
compared to cold-spots (areas of decreasing cover), although the mean difference in depth between
these extremes was less than 0.1 m (t = 6.8, d.f. = 5487, p < 0.0001). On average, hot-spot areas were
much larger than cold-spot areas (138 ha ± 2 SE compared to 23 ha ± 1 SE.; respectively), contributing
to the net increase in para grass cover. Hotspots were sometimes located along channel lines and
associated levee banks on the floodplain. Raised levee banks are likely to enhance para grass growth
because they may be more fertile, have a connection with permanent water and may support longer
periods of aerobic root-metabolism of para grass [110,111].

The high inter-annual variability in annual wet season rainfall across the study period almost
certainly influenced change and variability in para grass cover. In this regard, annual wet season
rainfall ranged between 1111 and 2128 mm from 2001 to 2010 [112]. For the same period, the area
of floodplain burnt annually ranged from near zero to 150,000 ha [51]. Between-year variation in
hydroperiod and the spatial extent of this variation is also likely to influence the rates at which
para grass distribution changes. For example, because the metabolism of para grass root systems
are energetically most efficient under aerobic conditions, periods of soil inundation or, conversely,
air-exposure, will influence attrition or production of para grass [111].

Extensive floodplain fires in the 2003 dry-season [51], followed by a late commencement of
rain the following 2003/2004 wet-season [112] could have resulted in a reduction in para grass cover
that favored the re-establishment of native vegetation cover in these areas. It has also been shown,
for example, that Oryza re-establishment is facilitated by removal of para grass cover by fire [53] or
mechanical means [8].

Large increases in the size of para grass patches occurred between 2001 and 2010, despite the
localized fluctuations in para grass density, within patches (Figure 11a). From 2001 to 2004, the mean
patch size was less than 2.5 ha, but grew from 40 to 50 ha between 2006 and 2008, and to almost 200 ha
in 2010 (Figure 11b). These results imply that small patches eventually expand and coalesce with
surrounding patches, completely replacing pre-existing vegetation.
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As summarized in Figure 13 and Table 6, para grass spread most quickly through the moderate 
depth habitat (>1.15 to 1.4 m) compared to the shallow and deep depth habitats (≤1.15 and >1.4 m, 

Figure 11. Changes in para grass patch-size (ha) at Site II from 2001 to 2010: (a) Mapped as the
maximum patch-area by year; and (b) graphed as the mean patch area by year. Patch-size divisions
were chosen manually, with a point of separating larger patch increases and areas that may represent
zero para grass and higher likelihood of commission error (>0 to 0.1 ha).
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In other areas, the size of para grass patches fluctuated in time between zero to less than 0.1 ha
in size (Figure 11a). In these areas sample cells including ‘small patches’, with an overall density of
<5%, are likely to represent classification noise (i.e., para grass commission error). This level of error is
consistent with accuracy statistics generated for the individual maps (Table 5, above). In this regard,
future research might investigate the screening out of classification error based on smaller patch size to
yield a more robust measurement of change.

Rates of increase in para grass cover correlated strongly with the depth-habitat profile for Site II
(Figure 12). While cover density varied substantially between years, mean density peaked within the
0.5–1.5 m depth range (Figure 12b). Density fluctuations were greatest within the 1.5 to 2.5 m range,
while the scale of change in cover density was greatest in the 1.0 to 1.3 m depth-zone (Figure 12d).
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As summarized in Figure 13 and Table 6, para grass spread most quickly through the moderate
depth habitat (>1.15 to 1.4 m) compared to the shallow and deep depth habitats (≤1.15 and >1.4 m,
respectively;). The average increase in total ‘extant’ para grass cover within the moderate depth habitat
area was estimated to be 37 ha per year (Figure 13a). The cumulative spatial footprint of para grass
(i.e., ‘extant’ + ‘extinct’ cover) within the moderate habitat was 95 ha per year, almost three times the
year-total rate of increase in the extant cover (Figure 13b). suggest that para grass percolated most
quickly through the moderate depth habitat, but that attrition in para grass cover also occurred in this
habitat, at an average rate of 58 ha per year.

The spread of para grass was slower in the shallow habitat, while its cover-density was nevertheless
greatest (Figures 12a and 13). This suggests that its capacity to establish stable, spatially persistent,
patches is greater within this habitat. By contrast, within the moderate depth habitat, growth rates were
higher but the difference between historical and extant para grass cover was also greater. Therefore,
while rates of para grass growth were, on average, greater in this habitat, colonies also appeared to be
more frequently disrupted. A regime of more frequent disturbance within this habitat area might be
causing these fluctuations. For example, these areas might be subject more severe seasonal fires or
hydrological conditions (e.g., a prolonged flood inundation period) that may cause para grass to be
reduced in density.
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Table 6. Regression statistics for the estimated rates of rates para grass cover increase within ‘shallow’,
‘moderate’ and ‘deep’ depth water habitats at Site II as calculated from Figure 13.

Cover Measurement Depth Range (m) Linear Regression Results

Slope (b) R Adjusted R2 p Sig.

Year by year totals

Shallow
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In addition to these sites of dynamic para grass cover, more ‘permanent’ para grass patches 
were also apparent as illustrated by the mapped para grass ‘persistence’ score (Figure 14a). Patches 
that were more persistent tended to be in closer proximity to one another (Figure 14c) and 

> 1.4
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Measurement errors are compounded when calculating change from multiple classifications
estimates [113]. Therefore, estimates of cumulative cover may be exaggerated. However, there are
several reasons to suspect that the majority of the differences observed between the year totals and the
cumulative footprint (Figure 13, Table 6) are real. Firstly, reduction in para grass cover does occur after
fire, although the impact on para grass survival is variable and likely to be dependent on the severity
of fire and the hydrological conditions before and after fire [114]. Secondly, periodic reductions in para
grass cover might occur within the ‘optimal’ moderate depth habitat zone, in years when hydrological
fluctuations occur that are outside the norm. In these cases, changes in local habitat conditions
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can amplify competition from coexisting native vegetation [115,116]. Thirdly, localized depletion of
nutrients after invasion might cause periodic reductions in para grass cover-density. Individual para
grass patches were sometimes ring-shaped, or were observed to move with an advancing growth front
while also contracting behind this front. In other words, vigorous production by para grass may occur
at an invasion front, in new areas not fully exploited of nutrients, while senescence and less vigorous
growth occurs progressively in longer established areas where nutrient levels may have been depleted,
locally. In support of this hypothesis, para grass productivity increases dramatically in response to
increased nutrients [117].

In addition to these sites of dynamic para grass cover, more ‘permanent’ para grass patches were
also apparent as illustrated by the mapped para grass ‘persistence’ score (Figure 14a). Patches that
were more persistent tended to be in closer proximity to one another (Figure 14c) and persistence was
highest in shallower depth-habitats, while the spread of para grass was fastest in the moderate water
depth habitats (Figure 13, above). The degree to which cover density within established patches is
fluctuating, while persistent patch abundance is increasing, can only be determined by longer-term
sampling. The rate at which these patches form and whether these patches should be targeted in active
control programs is an important management question. This could be answered experimentally by
targeted field research and weed control.
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Figure 14. (a) The mapped para grass ‘persistence’ score calculated by the sum of the present-absent
map layers (n = 5, from 2001 to 2010); (b) the distribution of the persistence score across the depth
gradient intervals, measured by the cell-sample means; and (c) the mean distance between ‘permanent’
patches, less persistent patches and where zero para grass was scored over the entire map time-series.

In the absence of fire, the density of para grass cover increased across all depth categories, with the
most pronounced increase occurring in the moderate and shallow depth zones (Figure 15a). The related
African floodplain grass, Urochloa mosambicensis, was found to behave similarly in the absence of
fire, with cover density and extent increasing and plant biodiversity decreasing continuously for
8 years [108].
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The distance between para grass patches also increased in the two deeper depth habitats in the
absence of fire (Figure 15b). This suggests that the spread of para grass in deeper habitats may be
restricted by competitive interactions with other aquatic plants, such as perennial Hymenachne grass,
that favor this habitat [51].

Conversely, fire appeared to facilitate the spread of para grass in the deep habitat (>1.4 m). Fire has
been demonstrated to substantially reduce the abundance of native Hymenachne grassland [30,118].
Occurrences of dry season fire in the ‘deep’ habitat indicate that water levels were lower at the time
but soil moisture remained high, providing conditions for para grass growth.

Previous findings suggest that, in general, para grass has a faster growth rate than native
H. acutigluma [117,119,120]. However, these results also suggest that, in an absence of fire and
in deeper water habitats, native Hymenachne may competitively exclude para grass, under these
conditions. Further trials, monitoring growth under different inundation regimes of the floodplain,
may be necessary in order to quantify the differences between these two grass species in different
wetland habitats.

From a management perspective, the positive or negative influences of fire (and timing of fire
for most effective control of para grass or establishment of native species) are likely to be context
specific and be related to local hydrological regimes [54,114,121]. Our initial results suggest that,
within different depth habitats, different approaches in application (or suppression) of fire may be
required to assist in control of para grass. Further research into these dynamics is therefore necessary if
fire, in combination with other control methods, is to be skillfully applied to manage para grass on
Kakadu wetlands.
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4. Conclusions

Aquatic weeds remain a significant threat to the degradation of wetland systems that support
economic and cultural livelihoods, ecosystem services and biodiversity conservation values, globally.
This study demonstrated that satellite RS can provide a valuable spatial information framework from
which to monitor vegetation condition across wetlands and over multiple scales. It also points to
site-specific opportunities for targeted management actions, such as controlled burning. However,
in order to manage uncertainty in RS vegetation monitoring, it is also important to develop and
maintain a consistent and statistically rigorous foundation to train and validate satellite imagery.

Ideally, land management decision makers require timely and accurate information on weed
distribution change. However, the delivery of consistent, high quality, information for detection and
prediction of vegetation change will also require a long-term, ongoing, commitment and resourcing
from bodies governing the conservation management of wetlands. As shown in Figure 16, a basic
framework for coordinated effort to monitor, research and manage vegetation change, using our case
study as an example (revised from [121,122]).
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management. Revised from (US EPA [122]] and [Boyden, et al. [123]).

As this case study and others indicate, para grass continues to expand its distribution and density
on freshwater floodplains of northern Australia and elsewhere. On the Magela floodplain, some 20%
of the area previously mapped as native Oryza and Hymenachne in 1986, appear to have been displaced
by dense para grass in 2006. Phases of both spread and contraction in para grass were also mapped.
Despite periodic contraction of many para grass colonies, discreet patches continued to increase in size
and coalesce to form larger patches. The concern is that the ongoing formation of larger, persistent,
patches of para grass could lead to greater depletion of native plant seedbanks and habitat areas
valuable for conservation.
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Methods to remediate depleted native grasslands could involve the selective control of weed
cover. As results of this study suggest, effective strategies for para grass control are likely to benefit
from better understanding of the judicious use (or exclusion) of fire within different floodplain habitats.
In this context, we provide the initial spatial information required to design and coordinate future
applied research on site-specific control strategies for para grass and other aquatic weeds.
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