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Abstract: Remote sensing is a useful technique to determine spatial variations in crop growth while
crop modelling can reproduce temporal changes in crop growth. In this study, we formulated a hybrid
system of remote sensing and crop modelling based on a random-effect model and the empirical
Bayesian approach for parameter estimation. Moreover, the relationship between the reflectance and
the leaf area index was incorporated into the statistical model. Plant growth and ground-based canopy
reflectance data of paddy rice were measured at three study sites in South Korea. Spatiotemporal
vegetation indices were processed using remotely-sensed data from the RapidEye satellite and the
Communication Ocean and Meteorological Satellite (COMS). Solar insulation data were obtained
from the Meteorological Imager (MI) sensor of the COMS. Reanalysis of air temperature data was
collected from the Korea Local Analysis and Prediction System (KLAPS). We report on a statistical
hybrid approach of crop modelling and remote sensing and a method to project spatiotemporal
crop growth information. Our study results show that the crop growth values predicted using the
hybrid scheme were in statistically acceptable agreement with the corresponding measurements.
Simulated yields were not significantly different from the measured yields at p = 0.883 in calibration
and p = 0.839 in validation, according to two-sample ¢ tests. In a geospatial simulation of yield,
no significant difference was found between the simulated and observed mean value at p = 0.392
based on a two-sample t test as well. The fabricated approach allows us to monitor crop growth
information and estimate crop-modelling processes using remote sensing data from various platforms
and optical sensors with different ground resolutions.

Keywords: assimilation; crop growth; modelling; remote sensing; simulation

1. Introduction

Satellite-based remote sensing is a useful technique to acquire spatiotemporal data consisting of a
large number of pixels, but a relatively small number of temporal data points, from an agricultural
field. Remote sensing can provide an inexpensive and non-destructive method from various platforms
to collect a vast amount of information from an agricultural field [1]. However, there are two main
difficulties related to the practical use of remote sensing data from satellite-aboard sensors in monitoring
crop growth. Acquisition of remotely sensed data with a high spatial resolution that is feasible for use
is limited, due to dependence on revisiting times, operational schedules, and clear sky conditions in
the case of the optical satellite-based remote sensing that is more frequently applied in agriculture.
Leaf area index (LAI) is commonly used to describe the canopy growth of a crop, but it cannot be
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measured directly from remote-sensing data. These contain the reflectances of light spectra across
all waveband regions to measure the index of “greenness” of the plant canopy [1]. Meanwhile,
appropriate crop growth models can provide temporal descriptions of crop conditions during the
growing season, although the accuracy of this information is based on the quality of the input data, and
on model design [2]. By effectively combining the advantages of remote sensing and crop modelling,
the strengths of each approach may make up for inherent weaknesses in individual strategies [3].

There have been earlier efforts to combine the techniques of crop modelling and remote sensing.
Arkin, et al. [4] proposed the concept of a hybrid model able to use Landsat data. This concept was
included in grain sorghum growth simulation models, the sorghum growth model with feedback
capacity (SORGF) [5] and the grain sorghum crop growth model (SORKAM) [6]. These models allow a
parameter affecting leaf expansion rate to be adjusted to improve the agreement between simulated
and measured LAI Barnes, et al. [7] modified a cereal crop simulation model, CERES-Wheat [8] to
allow the model to accept observed LAI values and to adjust related parameters in the model as a
function of LAI Similar approaches have been made using the WOrld FOod STudies (WOFORST)
model [9] and the Simple and Universal CROp growth Simulator (SUCROS) model [10] to improve the
overall model performance [11-13]. WOFORST is a simulation model for the quantitative analysis of
the growth and production of annual field crops. The SUCROSE model simulates both potential and
water-limited growth of a crop. Huang et al. [11] and Zhao, Chen and Shen [12] empirically assimilated
satellite-based remote sensing information into the WOFORST crop model to estimate regional wheat
yield. The former used images combined from Moderate Resolution Imaging Spectroradiometer
(MODIS) data and three Landsat TM images while the latter used MODIS images only. Launay and
Guerif [13] also reported an integration scheme of SPOT satellite images into the SUCROS model to
advance its performance for spatial application in prediction of sugar beet production. Although these
approaches quantitatively calibrate the crop model to the actual field conditions for each application,
it needs achieving the same inputs required for the crop models. The minimum input requirements
for simulation include climate data, soil property data, cultivar-specific genetic coefficients, and field
management data [8]. These requirements can be too much to allow the model to be run for an
appropriate time in some cases.

GRAMI [3,14,15] is a crop model that uses remotely sensed data and is designed to simulate
gramineous crops, such as wheat, corn, and sorghum, using simple inputs (i.e., weather and remote
sensing data). GRAMI includes a within-season calibration method, which allows the model to
fit measured LAI values using an iterative numerical procedure. Thus, model parameters and
initial conditions can be adjusted based on comparisons between measured and simulated values.
The resulting simulated crop growth minimizes the error between simulated leaf areas and values
of leaf areas obtained from remote sensing. An advantage of this procedure is the capability to use
infrequent observations to calibrate the model. The GRAMI model was further developed and was
applied to simulate cotton growth and lint yield under limited irrigation conditions [16,17], as well as
geospatial projections of rice productivity [18]. The crop modelling technique formulated in GRAMI
was applied to assess and monitor crop conditions and yields at regional scales, using imagery from
operational satellites [19-23]. This within-season calibration methodology was also used to estimate
evaporation and biomass production [24,25].

The remote sensing data either from airborne or satellite platforms is spatiotemporal data
consisting of many pixels but a relatively small number of time points. For example, the reflectance can
be obtained from the RapidEye satellite with a ground resolution of 5 m at 800 x 800 pixels five times
during a crop-growing season in a monsoonal climate region. A hybrid approach utilizing both remote
sensing and crop modelling can fill the temporal gap. Parameters that characterize a crop model are not
necessarily constant. However, pixel-by-pixel estimation is not a good choice for studying the spatial
variation in the parameters for the following two reasons. First, the model can be unidentifiable when
the sample size is smaller than the number of unknown parameters. Second, as illustrated in James and
Stein [26] and Efron and Morris [27,28], the pixel-by-pixel estimate is not optimal with respect to the



Remote Sens. 2019, 11,2131 30f17

mean-squared loss. An empirical Bayesian method is introduced to overcome the above-mentioned
difficulties. Bayesian methods are characterized by the following concepts and procedures. Random
variables are used to model all sources of uncertainty in statistical models, e.g., uncertainty due to lack
of information. Determination of the prior probability distribution is required to take into account
the prior information. Use of Bayes’ formula is sequentially performed, calculating the posterior
distribution when more data become available. In Bayesian statistics, the probability can range from
0 to 1. In this paper, a random-effect model is used to describe the location-dependent unknown
parameters, and the empirical Bayesian approach is adopted. A random effect is a factor whose levels
are considered a random sample from some population, technically considered to have a normal
distribution. Moreover, the relationship between reflectance and LAl is incorporated into the statistical
model. These models allow us to monitor the crop growth and estimate the crop model using the
remote sensing data from various platforms and optical sensors with different ground resolutions.
We report a statistical hybrid approach of crop modelling and remote sensing as well as a method to
project spatiotemporal crop growth information using paddy rice (Oryza sativa). It is one of the main
food crops for more than half of the world’s population, including about 557 million people in Asia.

2. Materials and Methods

2.1. Study Sites

Ground-measured growth and yield and remote sensing data of crop growth were obtained for
three separate rice paddy sites: one (field area of ~0.4 km?) site was located at the experimental fields
of Chonnam National University (CNU), Gwangju and the other two sites were commercial farm fields
(each field area of ~1 km? at Buan and Gimje), Chonbuk Province, South Korea (Figure 1). The mean
annual air temperature and the annual precipitation averaged over the past three decades (1981-2010)
are 13.8 °C and 1391 mm year! in Gwangju, 13.3 °C and 1313 mm year! in Gimje, and 12.6 °C and
1250 mm year~! in Buan, respectively (Korea Meteorological Administration) [29]. The East Asian
monsoon climate is dominant from June to October in these regions, with more than half of the annual
precipitation falling during this period.
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Figure 1. A shape map of South Korea and three study sites at Buan (top left circle) and Gimje
(top right circle), Chonbuk and at Chonnam National University (CNU) in Gwangju (bottom circle),
respectively (a) and a pseudo-coloured RapidEye satellite image (b) and a subset imagery (c) taken
on 13 September 2014. The map (a) was produced using ArcGIS (ESRI, Inc., Redlands, CA, USA) and
the RapidEye images were reproduced using ENVI (Harris Geospatial Solutions, Inc., Broomfield,
CO, USA).
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2.2. Crop Growth Data

Paddy rice growth simulation at the field scale was performed using ground-based remote sensing
input data obtained at the CNU site in 2011, 2012, and 2013 and the Buan and Gimje sites in 2014.
At the CNU site, 30-day-old rice seedlings (cv. Hopum in 2011, cv. Hwasunchal in 2012, and cv.
Unkwang in 2013) were mechanically transplanted in paddy fields on 6 June 2011 (day of year (DOY)
157), 28 May 2012 (DOY 148), and 20 May 2013 (DOY 140). At the Buan and Gimje sites, 30-day-old
rice seedlings (cv. IImi at Buan and cv. Saenuri and Sindongin at Gimje) were transplanted on 28 May
2014 (DOY 148). Nitrogen (N), phosphate (P), and potassium (K) fertilizers were applied in amounts
corresponding to 90 N, 50 P, and 60 K kg-ha™!, respectively.

Data collected were canopy reflectance of plants, using an MSR16R multispectral radiometer
(CROPSCAN Inc., Rochester, Minnesota, USA), and LAI using an LI-2200 Plant Canopy Analyser
(LI-COR Inc., Lincoln, Nebraska, USA). These data were measured with four replications on DOY 188,
194, 201, 207, 215, 223, 229, 236, 243, 250, 257, and 265 in 2011; on DOY 173, 184, 193, 201, 207, 213, 226,
237,243, 249, 262, and 276 in 2012; and on DOY 167, 172, 182, 190, 200, 206, 220, 231, and 241 in 2013 at
the CNU site. Data at both the Buan and Gimje sites were measured on DOY 165, 177, 195, 203, 223,
238, 258, and 276 in 2014. The yield was estimated by multiplying four yield components, which were
measured three times in the sample plots, based on random sampling at maturity. The yield components
were panicle number per m?, spikelet number per panicle, percentage of filled grain, and the weight
of 1000 grains. Weather data at the CNU site were measured using an automated weather station
(WS-GP1, Delta-T Devices, Cambridge, UK). Climate data for simulation for the Buan and Gimje sites
were obtained from the Korea meteorological weather stations (https://data.kma.go.kr/cmmn/main.do,
accessed on 6 October 2018).

Four vegetation indices (VIs) (Table 1) were calculated using the reflectance data as input
for evaluation of the crop model formulated in this study. The four VIs were empirically chosen
from structural indices available and effective for the growth determination of plant canopies using
wavebands (i.e., 560, 660, and 800 nm) of multispectral optical sensors in most satellites. In these
datasets, both VIs and LAI are observable. However, data of only one point is available.

Table 1. Vegetation indices used for rice growth phenological stage monitoring and leaf area
index estimation.

Vegetation Index’ Equation?
NDVI [30] (Rgoo — Res0) / (Rsoo + Reso)
RDVI [31] (Rgoo — Res0)/ VRs00 + Reso
OSAVI [32] (Rgoo — Ree0)/ (Rsgo + Rsep + 0.16)
MTVI1 [33] 1.2(1.2[Rs00 — Rs60]~2.5[Re60 — Rse0])

{ NDVI = Normalized Difference Vegetation Index, RDVI = Re-normalized Difference Vegetation Index,
OSAVI = Optimized Soil-Adjusted Vegetation Index, and MTVI = Modified Triangular Vegetation Index. ¢ Rggp,
Rg60, and Rsgp represent the reflectance values of each waveband (800 nm, 660 nm, and 560 nm).

2.3. Remote Sensing Data

We used remote sensing images from two satellites, i.e., the COMS with the medium ground
resolution of 500 m and the RapidEye with the high ground resolution of 6.5 m. The COMS developed
by the Korea Aerospace Research Institute (KARI) and launched on 27 June 2010, is a geostationary
satellite stationed at an altitude of 3600 km above the Earth’s equator and at a longitude of 128.2°E. The
COMS loads two typical sensors of the GOCI and the MI (Table 2). The GOCI can observe the Korean
landscape eight times a day, with eight spectral wavebands mounted on the system. The primary
objectives of the GOCI sensor are: (1) to detect, monitor and forecast short-term biophysical phenomena;
(2) to analyse the bio-geochemical variables and the cycles; and (3) to identify information on the
yellow dust and land classification. The GOCI was predominantly considered to monitor the ocean
phenomena, with a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) spectral band [34]. However, its
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high temporal resolution of the observations and vegetation-sensitive spectral wavebands are mostly
suitable for land surface-based applications and, more specifically, for monitoring various types of
crop information and conditions [23]. In this study, the GOCI is used to determine the cumulative
vegetation indices (VIs) in South Korea, since the setup is responsive to vegetation bands (i.e., red and
near infrared, NIR).

RapidEye [35] collects 4 million square kilometres of data per day (Table 2). RapidEye satellite
images comprise five spectral wavebands (red, green, blue, red edge, and near-infrared) and are
provided commercially using three processing levels: “Level 1B” geometrically uncorrected images,
“Level 3A” ortho-rectified tile images with radiometric, geometric, and terrain corrections, and
“Level 3B” ortho-rectified, bundle-adjusted images that are larger than the Level 3A products [35].
The Gimje and Buan sites were selected, along with the availability of the RapidEye satellite images
(Plant Labs, Inc., CA, USA) for 2014, to perform simulations at the regional scale. For the present
study, we obtained radiometrically and geometrically corrected Level 3A images, including the
Buan and Gimje sites that were acquired on DOY 149 (29 May), 198 (17 July), 221 (9 August), and
256 (13 September) in 2014. These images contained reflectance values with four different wavebands
at 11,700 x 7900 pixels with a size of 5 m. The image data were further processed to classify rice paddy
field areas using a digitized paddy coverage map from the Korea Ministry of Environment.

Likewise in the model evaluation procedure, four different VIs (Table 1) were determined and
used to project spatiotemporal productivity of paddy rice using the developed crop modelling design
discussed in the following section.

Table 2. Detailed characteristics of the Geostationary Ocean Colour Imager (GOCI) and the Meteorological
Imager (MI) sensors of the Communication Ocean and Meteorological Satellite (COMS) as well as the
Multispectral Push-broom Imager (MPI) of the RapidEye satellite.

Sensor and

Satellite Orbit Type  Channel Wa‘(’elrfl‘)‘gth GSD (km)  IFOV (urad)
(Altitude) H
Bl 0.40-0.42 0.5 28
B2 0.43-0.45 0.5 28
B3 0.48-0.50 0.5 28
GOCI,

Geo-synchronous gg 822_8z; 8? ;S

(36,000 km) 09074 :
B6 0.68-0.69 0.5 28
COMS B7 0.74-0.76 0.5 28
B8 0.85-0.89 0.5 28
VIS 0.55-0.80 1 28
M, SWIR 3.50-4.00 4 112
Geo-synchronous \WAY% 6.50-7.00 4 112
(36,000 km) IR1 10.30-11.30 4 112
IR2 11.50-12.50 4 112
Blue 0.44-0.51 6.5x 1073 20
MPI, Green 0.52-0.59 6.5x 1073 20
RapidEye sun-synchronous Red 0.63-0.685 6.5x 1073 20
(630 km) Red edge 0.69-0.73 6.5x 1073 20
NIR 0.76-0.85 6.5 %1073 20

B1 to B6 = visible, B7 and B8 = near infrared, VIS = visible, SWIR = shortwave infrared, WV = water vapor,
IR1 = infrared 1, IR2 = infrared 2, and NIR = near-infrared. GSD = ground sampling distance. IFOV =
instantaneous field of view.

2.4. Climate Data

The incident solar radiance on the surface (insolation) estimated using the COMS MI and the air
temperatures from the Korea local analysis and prediction system (KLAPS) were used to evaluate
the updated GRAMI model to simulate crop growth. The insolation data reflected the energy source
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of photosynthesis in crop canopies. The missions of the MI sensor (Table 2) comprises continuous
monitoring of imagery and extracting of meteorological products to allow early detection of severe
weather phenomena and to monitor climate change and the atmospheric environment. The MI has been
used to estimate the insolation as the infrared channels can be useful for interpreting the complicated
cloud effects. In this study, a pixel-based physical model, using instantaneous satellite observations
and atmospheric information, was adjusted out of various satellite-based insolation models [36-38].

The satellite-based solar insolation from COMS MI was calculated using the Kawamura physical
model [39]. This model contains an improved cloud factor, as it considers the visible satellite reflectance
and the solar zenith angle instead of the illumination temperature because the passing depth of the
cloud is more sensitive to the amount of irradiance attenuation [40]. The physical model used to
estimate the insolation is as follows [39-42]:

ST =S514+5Sr+ 54 (1)

where St, Sy, Sg, and Sy are the total insolation, direct irradiance, diffuse irradiance due to Rayleigh
scattering, and the diffuse irradiance due to scattering by aerosols, respectively. These parameters
are used for the physical model of the satellite-based solar insolation [43]. The St, Si, Sr, and Sp
formulations are as follows:

S1=5(t0 TR — Qw)Ta 2)

Sr = 5-10(0.5(1 = 1r))7TA ®)

Sa = S(10 TR - aw)Fc - wo(1 = Ta) @)
S = I(dy-d™") cos @ G)

where the symbols used are represented as follows: incident solar constant, S; transmittance due to
absorption by ozone, 7, [44]; transmittance due to Rayleigh scattering, T [45]; transmittance due to
attenuation by aerosols, 74 [46]; absorption of water vapor, ay, [44]; ratio of forward to total scattering
by aerosols, F. [47]; single scattering albedo, w,; solar constant, I [48]; the annual mean Sun-Earth
distance, dy; Sun-Earth distance, d; and solar zenith angle, 6, respectively.

In this study, the topographical corrections were not considered because the selected crop
type was mostly cultivated on the flat land surface, and it was difficult to topographically validate
corrected insolation, without using applicable ground measurements on an inclined plane. Most of
the pyranometers in South Korea were deployed on a horizontal plane, according to the World
Meteorological Organization (WMO) criteria (Guide to Meteorological Instruments and Methods of
Observation WMO-No. 8).

The KLAPS used to get the air temperatures was designed to forecast weather conditions of the
Korean peninsula with a pixel resolution of 5 km for 12 hours, up to 24 times a day [49]. The KLAPS
produces reanalysed data, with a comparatively high-resolution of 1.5 km based on its analytical scheme,
using all the possible measured weather data from the region of interest. The KLAPS also adapts the
data assimilation part of the local analysis and prediction system (LAPS) developed by the US National
Oceanic and Atmospheric Administration/Forecast Systems Laboratory (NOAA/FSL). It is classified
into both data collection and analysis modules. The analytical process is composed of the surface
analysis procedures and three-dimensional wind, temperature, humidity, cloud, precipitation, and soil
analysis procedures. The further detailed procedure of the KLAPS can be found in Albers et al. [50].

2.5. Formulation of the GRAMI Model

The four processes (Figure 2) involved in simulating daily rice growth are: (1) interception and
absorption of the incident solar radiation by the leaves; (2) calculation of growing degree-days (GDD);
(3) production of the new dry mass by the leaf canopy; and (4) determination of the LAI partitioning of
the new dry mass. The details of these procedures and related equations are described in Appendix A.
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In this study, we applied the same initial conditions and parameter values determined in the earlier

studies (Table A1) [18,21,23].
Initialize state variables
- ‘Average daily
Accumulate Growing air temp.

Degree-Days (GDD)

‘ Determine PAR absorption
Compute daily increase in Above-Ground
Dry-Mass (AGDM)

}

Calculate daily change in LAI appearance
and/or senescence

AGDM, LAI,
and yield

Figure 2. Schematic diagram of a daily simulation process of crop growth. LAI = leaf area index;

PAR = photosynthetic active radiation.

LAI is a three-dimensional concept, while the reflectance of plants to solar radiation is a
two-dimensional concept because it is electronically recorded as a two-dimensional data for the
canopies of crops or mostly the top surface of the plants. We presumed that a log-log regression model,
with a slope approximately 2/3, could describe the relationship between reflectance and LAIL Based
on this theory, the correlations between five VIs (MTVI, NDVI, RDVI, and OSAVI) and LAI were
formulated using log-log linear regression models. For each VI, labelled1=1, 2, 3, 4, and 5, respectively,
an empirical model was framed as follows:

IOg(VIt) = ayr + Bvi log(LAIt) + €t 6)

where ayy, By, and € (~ N(O, G%/I) represent intercept, slope, and error of the linear regression
model, respectively.

The evolution of the LAI for each pixel was explained by the GRAMI-rice model, using four
parameters 6 = (Ly, 4, b, and c). These parameters were assumed to be generated from the prior
distribution Y ~ N(p, D), where the transformations:

P = (Y1, P, h3,0y) = (log 14/ log %,log 1= log 15_%0)

_ 9(1])) N e¥2 V3 V4 (7)
B T\ 11 14e¥2” 14e¥3 7 1464

were used to guarantee that all four parameters (Ly, 4, b, and c) range between 0 and 1.

We obtained both the regression coefficients (ag, Be, a%), ¢ =1, 2, 3, 4, and 5 and the
hyper-parameters (p, D) from the data collected in previous studies [18,21]. These included both the
VIs and the measured LAI values. The parameter p was specified using the ‘before-calibration’ values
(Lop=02,a=325x10"1,b=1.25x 1073, and ¢ = 1.25 x 10~3). Parameter Dis a diagonal matrix with all
diagonal elements equivalent to 0.5.

The following numerical procedure was adopted to obtain 8 for each pixel.

Step 1: For each pixel, set it served as the initial guess of 1.
Step 2: Define LAI; = G(t; Y) = G(;0(y)) and consider the objective function:

)

(=1

{é Y (10g VI - ar - prlog G(; w))z} + (W -p) DY -p) ®)

t=1
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Step 3: Generate the simulated curve for each pixel from the estimated 1 in Step 2.
Step 4: Update p, D as the sample means and sample variances of the estimates in Step 2.

In this procedure, the parameter \» was estimated by minimizing the above function, and the
optimization was performed using the POWELL optimization routine [51] for one-point simulation
cases and the Quasi-Newton minimizer [52] for two-dimentional simulation cases.

2.6. Modelling Spatiotemporal Crop Productivity

The GRAMI-rice model was formulated to integrate remotely sensed data, allowing agricultural
system modellers to reproduce and monitor potential crop production information [18]. The GRAMI
model can receive remote sensing data as an input to execute the ‘within-season’ calibration
procedure [14]. In this process, simulated crop canopy growth (LAI or VIs) is compared with
corresponding measured values to allow agreement with the measurement with a minimal error based
on parameterization of specified parameters. Four different coefficients (Ly, a, b, and c) are employed
in the current model to describe growth processes of rice. Parameter values were obtained through a
parameterization process using the Bayesian method with a prior distribution chosen according to the
estimates from the previous reports. The relationships between five VIs and LAI were framed using
the log-log linear regression models as previously described.

A Crop Information Delivery System (CIDS) was designed earlier as an extended version of
the GRAMI-rice model [18] to project pixel-based geospatial crop growth and yield, based on the
integration with remote sensing images (Figure 3a). The CIDS employs pixel-based remote sensing
data and climate data as the system inputs. The CIDS takes climate data, either from a single weather
station or multiple weather stations (pixels) depending on the situation. The GRAMI-rice model is
then implemented to simulate crop growth in each pixel using both types of input data.

(a)
®

CE“E RS data 4
" —— Simulated LAT .
* ¢ 3 O; 1
m Observed LAI A
Climate data VI data o |
for each pixel for each pixel E 2 |
t
<
514
r
Model
Parameters 0 T T T T T
[a.b, c. Lg] 0 200 400 600 800 1000 1200
GDD (¢°C)

Re-parameterization
if simulation and
measurement disagree

Figure 3. Diagram of the integrated crop modelling system to project spatiotemporal crop productions
using the GRAMI model (a) and observed (O) and simulated leaf area index (LAI) being matched with a
minimal error using the within-season calibration (b). GDD = growing degree day; VI = vegetation index.

In the CIDS, the GRAMI model simulates a crop in each pixel using both remote sensing data and
climate data as inputs [18]. The new model design was evaluated using paddy field datasets obtained
in 2012 at Chonnam National University, Gwangju and in 2014 at Gimje and Gyewha, Chonbuk
Province, ROK. The CIDS was then applied using RapidEye satellite images obtained from paddy
fields of interest in Chonbuk province, ROK in 2014.
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2.7. Statistical Evaluation

Several statistical analytical methods were used to evaluate the reliability of the results. For model
evaluation, the mean values of simulated crop yield and LAI were compared with the measured values.
A two-sample t-test and two statistical indices of root mean square error, RMSE and model efficiency,
ME [53] were applied for the analyses using R software version 3.4.1 [54]. The physical meaning of the
ME is that it is a normalized statistic that determines the relative magnitude of the residual variance
compared to the observed data variance. ME indicates how well the plot of observed versus simulated
data fits the 1:1 line. ME values range from —oco to 1; the model is more accurate when the value is
closer to 1. When values are close to zero, the model predictions are less than or as precise as the
observed mean.

3. Results

3.1. Evaluation of Model Performance

The updated GRAMI-rice model performed well in terms of reproducing field conditions of
paddy growth in LAI and above-ground dry mass (AGDM). Rice yield could also be determined with
reasonable accuracy. For the sake of verification, we used data from CNU, Gwangju from 2011 to
2013 (Figure 4 and Table 3). Simulated seasonal curves for LAI were fit to the corresponding observed
values with a model efficiency (ME) of 0.80 and a root mean square error (RMSE) of 0.71 m? m~2 for
cv. Hopum in 2011, an ME of 0.86 and an RMSE of 0.56 m?> m™2 for cv. Hwasunchal in 2012, and
an ME of 0.95 and an RMSE of 0.33 m? m~ for cv. Unkwang in 2013. Simulated yields agreed well
with the observed yields, with an RMSE of 434.9 kg ha™!. According to a two-sample t-test (« = 0.05),
the simulated yield (i = 7,365.7 kg ha™') was not significantly different (p = 0.883) from the observed
yield (p = 7,190.0 kg ha™!). Validation, using data from Gimje, Chonbuk in 2014 (Figure 5 and Table 3),
showed that simulated LAI values agreed with the observed LAI values with an ME of 0.75 and an
RMSE of 1.05 m? m™ for cv. Sindongjin, an ME of 0.83 and an RMSE of 0.99 m?2 m™2 for cv. Saenuri,
and an ME of 0.86 and an RMSE of 0.88 m? m™ for cv. Ilmi. Simulated yields also agreed with the
observed yields, with an RMSE of 426.5 kg ha™!. According to a two-sample t-test (« = 0.05), there was
no significant difference (p = 0.839) between the simulated yield (n = 6937.7 kg ha™') and the observed
yield (1 = 6801.0 kg ha™).
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Figure 4. Simulated (S) and observed (O) leaf area index (LAI) and simulated above ground dry mass
(SAGDM) of Hopum in 2001 (a), Hwasunchal in 2012 (b), and Unkwang in 2013 (c), and a comparison
between simulated (Sim) and observed (Obs) yields (d) at Chonnam National University, Gwangju,
S. Korea for model verification.
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Table 3. Comparisons between simulated and observed mean leaf area index (LAI) of paddy for model
calibration at Chonnam National University (CNU), Gwangju and for model validation at Buan and
Gimje, Chonbuk in South Korea. Comparison statistics applied were root mean square error (RMSE)

and model efficiency (ME).

Division Year Cultivar Simulation = Observation$ RMSE ME
m?2 m2
Gwangju 2011 Hopum 3.93 3.84 0.71 0.80
2012 Hwasunchal 2.98 2.84 0.56 0.86
2013 Unkwang 2.73 2.69 0.33 0.95
- Chonbuk 2014  Sindongjin 452 457 1.05 075
2014 Saenuri 4.70 4.62 0.99 0.84
2014 IImi 5.04 5.10 0.88 0.86

§ Observation was based on the GRAMI model projections using four vegetation indices (VIs), i.e., normalized
difference vegetation index (NDVI), re-normalized difference vegetation index (RDVI), modified triangular vegetation
index (MTVI), and optimized soil adjusted vegetation index (OSAVI).
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Figure 5. Simulated (S) and observed (O) leaf area index (LAI) and simulated above ground dry mass
(SAGDM)) of Sindongin (a), Saenuri (b), and Ilmi (c), and comparison between simulated (Sim) and
observed (Obs) yields (d) at Buan and Gimje, Chonbuk, S. Korea in 2014 for model validation.

3.2. Geospatial Projections of Crop Yield and Growth

The CIDS well projected geospatial variations in rice yield and growth using satellite images from
both the COMS with a medium ground resolution of 500 m (Figure 6) and the RapidEye with a high
ground resolution of 5 m (Figure 7). When comparing simulated and observed rice yields (Figure 6b),
the simulated mean value (i = 6.77 t ha™!) was not significantly different (p = 0.392) from the observed
mean value (i = 6.86 t ha™!), according to a two-sample t-test (« = 0.05). These agreed with an RMSE
of 0.44 t ha™! and an ME of 0.24. The CIDS was also designed to project crop productivity information
with seasonal patterns, as well as two-dimensional variations on any given day of interest during the
crop season. The CIDS produced two-dimensional predictive maps of rice grain yield and growth
variables well, with a 5 X 5 m pixel resolution (Figure 8). Predicted grain yields ranged between 4150.6
and 8483.2 kg ha~!, with a mean of 6029.1 kg ha=!. The predicted average value agreed with the field



Remote Sens. 2019, 11, 2131 11 0f 17

measurement of 6381.9 kg ha™!. Spatiotemporal projections of LAI and AGDM reproduced spatial
variations of each growth variable well in the scene during the crop season.

(b)

10
_ RMSE = 0.4t ha'!
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Figure 6. Simulated regional variation in rice yield in South Korea (a) and simulated mean rice yields in
comparison with the observed mean rice yields in 62 administrative districts of the country, representing
more than 5,000 ha of the paddy areas (b) in 2014. The yield data were simulated using Communication
Ocean and Meteorological Satellite (COMS) imageries with a 500-m ground resolution.
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Figure 7. Simulated regional variations in above ground dry mass, AGDM (a) and leaf area index, LAI
(b) at 100 days after transplanting and yield (c) of rice in Gimje in 2014. The data were simulated using
RapidEye satellite imageries with a 5-m ground resolution.
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Figure 8. Simulated geospatial variation in paddy yield (a), simulated (S) and observed (O), temporal
variations in leaf area index (LAI) and above ground dry mass (AGDM) (b), and spatiotemporal
variations in LAI (c) and AGDM (d) at 20, 40, 60, 80, and 100 days after transplanting (DAT). The data
were simulated using RapidEye satellite imageries with a 5-m ground resolution. .

4. Discussion

Our study results presented that the GRAMI-rice model was well integrated with either
ground-based remote sensing information or satellite-based remote sensing images with different
ground resolutions. The modelling regime reproduced crop growth conditions and yields in significant
agreement with the corresponding observations. The current study was dedicated to the statistical
hybrid approach of crop modelling and remote sensing, as well as the method to project spatiotemporal
crop growth information using remote sensing data from various platforms and optical sensors with
different geospatial resolutions. On the other hand, the previous studies using GRAMI-rice were
focused on applying for different aspects of crop monitoring, most likely as case studies using images
from a specific platform, e.g., an unmanned aerial system, UAS [55] or an optical satellite with either a
high ground resolution [21] or a coarse ground resolution [23,56,57].

These simulation results demonstrate that the within-season calibration procedure worked well
with the observed LAI inputs incorporated into the model. The updated GRAMI-rice model is
theoretically incorporated with a Bayesian method for parameter estimation to facilitate an agreement
between simulations and observations based on the POWELL [50] or Quasi-Newton [51] optimisation
procedures. The POWELL optimisation routine is carried out for one-point simulation cases while the
Quasi-Newton minimiser is performed for two-dimensional simulation cases. We assume that the
current parameter estimation method is not only technically unique but also advantageous to assimilate
various remote sensing data into crop models that have a strong dependence on input LAI from remotely
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sensed information. The strong integration of the present GRAMI model with remote sensing data can
be a discrete advantage in several ways. First, the present approach requires a simple input requirement,
which employs only the existing observations that characterize the environmental circumstances.
Earlier versions of the current model also showed the corresponding information [14,16,18]. Second,
the optimization method allows the model to advance the simulation performance. Third, the GRAMI
model can be assimilated with remotely sensed information from various platforms, e.g., a UAS [55]
and operational optical satellites on-board different ground resolution sensors [21,56,57]. Finally, once
the model is applied to the satellite-based remote sensing, it is applicable for any region of interest on
the Earth’s surface. However, limitations include the inadequate representation of remotely-sensed
information as well as partial observations available during the crop-growing season. These can
ultimately bring about some level of disagreement between simulations and observations.

While some limitations in the GRAMI model exist including a firm reliance on remotely-sensed
data needed to achieve the modelling mentioned above, the requirement of input parameters and
variables has significant implications, particularly for inaccessible and data-sparse regions. In such
regions, this kind of crop models is practically relevant, since it is almost impossible to monitor or
reproduce the crop productivity without using operational satellite-based remote sensing information.

The CIDS is designed to project geospatial information of crop growth and yield using the GRAMI
model integrated with remote sensing images from various platforms of remote sensing from an
UAS [18,55] to various operational optical satellites with different ground resolutions [21,56,57]. There
have been similar practical efforts to assimilate a crop model with satellite images to improve the
predictive performance of crop yields [11-13]. Meanwhile, the CIDS is unique, in that (1) it is formulated
as a whole integrated program to project spatiotemporal variations in crop productivity, as well as
(2) the CIDS requires simple input parameters and environmental variables utilizing remote sensing
images. One of the critical issues to achieve advanced monitoring of crop productivity information
using the system would be to determine a consistent representation of the information on crop canopy
reflectance. In this regard, one should acquire stable predefined relationships between LAI and canopy
reflectance values or VIs of interest for each crop, based on field experiments. It is essential to determine
a reliable classification of crops of interest and to establish spatial variations in different planting
dates for each crop well to project practical productivity, especially using coarse resolution satellite
images. Dealing with these issues is beyond the scope of this study. It is also essential to extract the
endmembers of the mixed pixels in the case of using the coarse resolution satellite images. In the case
of the fine resolution satellite images, sparse changes of obtained images can be an issue for simulation,
using the previous version of the GRAMI model [18]. The earlier GRAMI model required receipt of
an even distribution of several input images during the crop-growing season to achieve dependable
simulation outputs. This approach has been optimized in the current version of GRAMI based on the
advanced empirical approach, using a predefined relationship between LAI and canopy reflectance
values of wavebands or VIs of interest.

5. Conclusion

We present functional coupling of crop modelling and remote sensing using an updated
GRAMI-rice model that uses remote sensing data, and a CIDS formulated to simulate geospatial rice
growth and yield by adapting the GRAMI-rice model for use in this study. The simulated values of
rice growth obtained with the parameterized GRAMI-rice model showed good agreement with the
corresponding field measurements. We also presented that GRAMI-rice was successfully incorporated
with optical satellite data with different geospatial resolutions. Simulated geographical variations in
yield were in reasonable agreement with the corresponding observed variations in yield. Therefore,
the current study demonstrates that the GRAMI-rice model can be applied to reproducing rice growth
and development conditions and productivity based on the integration with remote sensing data from
various platforms such as a UAS and different optical satellites with different ground resolutions.
The CIDS was applied to monitoring and mapping of rice growth and yield. The GRAMI-rice model
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has relatively simple environmental input requirements that can be provided by remote sensing.
We assume that the CIDS can be potentially applied to crop growth monitoring and yield mapping
efforts for croplands of various geospatial scales, ranging from farm fields to regions of interest because
remote sensing data can be obtained from observations of small-size unmanned airborne platforms
(drones) and existing satellite sensors.
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Appendix A

AD = Max[T - T, 0] (A1)

where AD is a daily change in growing degree days, T is the average daily air temperature (°C), and T},
is the crop-specific base temperature. Daily increase in the aboveground dry mass (AM) was calculated
using the equation AM = ¢ - Q, where ¢ is the crop-specific radiation use efficiency (RUE), and Q is the
daily total photosynthetically active radiation (PAR, MJ m~2) absorbed by the crop canopy.

Q=p-R-(1-¢FAD (A2)

where Q is the absorption of photosynthetically active radiation, R is the incident daily total solar
irradiance (MJ m~2), B is the fraction of total solar irradiance that is PAR, and k is the crop-specific light
extinction coefficient. Daily LAl increase with new leaf growth (AL) was obtained using the equation
AL = AM - Pq - Ls, where AM is the daily increase in AGDW, P is the fraction of AM allocated to new
leaves, and L; is the specific leaf area.

Py = Max[1 - p, -/, 0] (A3)

where P; is a dimensionless leaf-allocation parameter, p, and p; are parameters that control the
magnitude and shape of the function, and D is the cumulative GDD. The leaf senescence used in the
model was formulated by assuming that the leaves would start to senesce after attaining the maximum
LAI and that the senescence rate varies depending on plant genetic traits and environmental conditions.
Daily increase in grain (AP) was calculated using the equation AG = P; - AM, where P, is the fraction
of AM partitioned to the grains and AM is the daily increase in AGDW.

Py = Max[1 — p, - ePf6P, 0] (A4)

where P, is a dimensionless grain-partitioning parameter, p, and p;, are parameters that control
the magnitude and shape of the function, and fGp is the grain partitioning factor based on the
cumulative GDD.
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Appendix B

Table Al. Constant and parameter values used for the GRAMI-rice model [18].

Symbol Description Unit’ Value

€ Radiation use efficiency g MJ! 3.49
k Light extinction coefficient na 0.6
Ls Specific leaf area m? g1 0.016
Ty Base temperature °C 12.0
Ly Leaf area index at transplant m?2 m™2 0.2
Pa The parameter in the leaf allocation function na 0.325
Po The parameter in the leaf allocation function na 0.00125
Pe The parameter in the leaf senescence function na 0.00125

1 umol mol ™ is equivalent to 1 ppm.
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