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Abstract: We present a novel low-cost visual odometry method of estimating the ego-motion (self-motion)
for ground vehicles by detecting the changes that motion induces on the images. Different from traditional
localization methods that use differential global positioning system (GPS), precise inertial measurement
unit (IMU) or 3D Lidar, the proposed method only leverage data from inexpensive visual sensors of
forward and backward onboard cameras. Starting with the spatial-temporal synchronization, the scale
factor of backward monocular visual odometry was estimated based on the MSE optimization method in
a sliding window. Then, in trajectory estimation, an improved two-layers Kalman filter was proposed
including orientation fusion and position fusion. Where, in the orientation fusion step, we utilized the
trajectory error space represented by unit quaternion as the state of the filter. The resulting system enables
high-accuracy, low-cost ego-pose estimation, along with providing robustness capability of handing
camera module degradation by automatic reduce the confidence of failed sensor in the fusion pipeline.
Therefore, it can operate in the presence of complex and highly dynamic motion such as enter-in-and-out
tunnel entrance, texture-less, illumination change environments, bumpy road and even one of the cameras
fails. The experiments carried out in this paper have proved that our algorithm can achieve the best
performance on evaluation indexes of average in distance (AED), average in X direction (AEX), average
in Y direction (AEY), and root mean square error (RMSE) compared to other state-of-the-art algorithms,
which indicates that the output results of our approach is superior to other methods.

Keywords: motion estimation; trajectory fusion; mobile mapping; sensor fusion

1. Introduction

1.1. Motivations and Technical Challenges

This paper aims at developing a visual fusion approach for online ego-motion estimation with the
data from onboard forward and backward cameras. Ego-motion represents and describes the self-motion
of a moving object and the ego-motion problem can be stated as the recovery of observer rotation and
direction of translation by at a given instant of time, as the observer moves through the environment,
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which is also called ego-motion estimation. The most ego-motion estimation methods comprise two steps,
motion-field computation and motion field analysis [1]. In many real-world applications, the estimation of
egomotion and localization is a pivot of major vision-based navigation system especially for autonomous
ground vehicle and robotics [2–4], since it forms the basis of subsequent scene understanding and vehicle
control [5]. In addition, ego-motion estimation in vehicles and robots is fundamental as it is usually
the pre-requisite for higher-layer tasks, such as robot-based surveillance, autonomous navigation, path
planning, for example, References [6,7]. A vision-based odometry system, compared to a traditional
wheel-based or satellites-based localization system, has the advantages of an impervious character to
inherent sensor inefficacies [8,9] (e.g., wheel encoder error because of uneven, slippery terrain or other
adverse conditions) and can be used in a GPS-denied area [10,11] (e.g., underwater and tunnels in urban
environments.) The proposed approach utilizes only visual perception cameras with lightweight, high
robustness and low-cost characters.

Visual ego-motion estimation has been successfully proven to be able to estimate the movement
of a road vehicle over a long distance under certain conditions [12], with a relative error ranging from
0.1 to 2% [13]. It incrementally estimates camera poses, yet small errors are inevitably accumulated and
over time the estimated ego-motion slowly drifts away from their ground true [14]. With the purpose
of improving the performance, appreciable progress has been made to enhance the system robustness,
accuracy and efficiency. Many efforts, such as the direct method, semi-direct method and feature-based
method, have been made for different visual ego-motion formulations [15]. Global map optimization
techniques like loop closure, bundle adjustment (BA) and pose graph optimization were also proposed to
make better the overall performance, which adjust the estimation results by taking into account the entire
observation equations and eventual constraints [16].

However, until now, it was still hard to integrate into the motion estimation application of mobile
robots and even less in that of an autonomous vehicle [17]. It suffers from many limitations [18–20]. First,
most visual odometry methods encounter the inherent imperfection of motion drift and the inner fragility
of sensor degradation. The data association model of visual ego-motion estimation is not completely stable
and can fail under ubiquitous noise, texture-less scenery and the different level of sensor degradation.
Second, the commonly used global drift optimization method of loop closure is often out of action,
especially for large-scale outdoor use. Most of the time, there is no loop in many scenarios for a moving
robot or vehicle in urban areas and the computation of large loops is time consuming, which make the
robustness of system even more critical. Third, as a kind of passive measurement method, the motion
estimation scheme usually requires enough keypoints [12], which are difficult to detect and track in
some complicated circumstance, such as enter-in-and-out tunnel entrance scenery of sudden illumination
changes, resulting in an enlargement of the outliers. Very often, other types of sensors, including differential
GPS, precise IMU or 3D Lidar, are integrated to improve the system capability, along with a great increase
of system cost.

1.2. Literature Review

Visual odometry is a particular case of structure-from-motion (SFM) [21], which aims to incrementally
estimate the egomotion of an agent (e.g., vehicle, human and robot) using only vision stream and its
origins can be dated back to works such as References [22,23]. The first visual odometry systems were
successfully used by NASA in their Mars exploration program, endeavoring to provide all-terrain rovers
with the capability of estimating its motion in the presence of wheel slippage terrains [24]. From then on,
several methods, techniques and sensor models have been developed and employed to accomplish both
vehicle and robotics’ egomotion [25,26].
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Some of the works were accomplished utilizing monocular vision technology with a single camera
that they must measure the relative motion with 2-D bearing data [27]. Since the absolute scale is not clear,
the monocular visual odometry has to calculate the relative scale and camera pose using either trifocal
tensor method or the knowledge of 3-D structure [28]. Related works can generally be divided into three
categories—appearance-based methods, feature-based methods and hybrid methods. Undeniably, some
of them can deliver good results [29–31], but still they require high quality features to robustly perform
and are more prone to errors [19]. Since our work is emphasizing the robust ego-motion of road vehicles
in complex urban environments, the use of only a monocular vision system is not enough to meet the
requirement and to alleviate the disturbances from a complex environment, including low textured scenes,
non-stationary objects and others.

The idea of estimating egomotion from consecutive 3-D frames with a stereo vision method was
successfully utilized in Reference [32]. A collaborative factor of these works is the utilization of
feature-based methods because of the efficiency and robustness. As the works showing, both sparse
features and dense features are used to establish corresponds between consecutive frames from input
image sequence. Some of the most common choices are point [33], lines [34], contour [35], and hybrid [36],
which can be tracked in both spatial and temporal domains. Point feature is the most commonly used
of all, because of its simplicity. However, because of the complexity of dynamic road scenes, errors
are unavoidable, appearing in every stage of detection, matching and tracking, especially in urban
environments with texture-less, illumination change environments or bumpy road. It makes the robustness
problem extremely critical.

Considering the problem of robustness, many researchers have established hypothesis-and-test and
coarse-to-fine motion estimation mechanism based on the Random Sample Consensus (RANSAC) scheme,
the bundle adjustment optimization approach (BA) and loop closure methods (LC). The 5-points based
RANSAC algorithm for monocular visual odometry [37] and 3-points scheme for stereo method [38]
has been proposed in the beginning. Yet, with the increase of complexity of environment the RANSAC
iterations would grow exponentially, along with the increasing conflict of internal keypoints and the
decreasing confidence of vision-based estimation results. Some other works use BA and LC methods to
compensate for the drift of visual odometry once the loop is detected successful, but the absolute scale is
very difficult to determine using mono based ego-motion estimation. Moreover, the paths of a moving
agent do not always have loops in urban environment.

In this case, a combination of other sensors such as wheeled odometry [2], inertial sensing [18],
and global position system [39] have been used. However, they have intrinsic limitations—wheeled
odometry would be seriously affected in uneven, slippery terrain or other adverse conditions and prone to
drift due to error accumulation. While the commonly used civil GPS can only update with a frequency of
1 Hz and the low-cost IMU is not accurate enough to fit the ego-motion estimation use. Some researchers
integrated high defined maps (HDM) into the ego-motion estimation system, which can yield good results
but have problems with the large-scale HDM collecting, high cost and local security laws [40]. In this
work, we describe a novel visual odometry method only leveraging data from inexpensive visual sensors
of forward and backward cameras, which enables high-accuracy, low-cost ego-pose estimation, along with
providing robustness capability of handing camera module degradation. Moreover, different from the
existing works, using only cameras instead of other sensors for computing egomotion allows a simple
integration of egomotion data into other vision based algorithms, such as obstacle, pedestrian, and lane
detection, without the need for calibration between sensors.
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1.3. Main Contributions

We are interested in solving the ego-motion estimation with high robustness and low cost, along
with solve the problem in real time and reliability. The issue is closely relevant to deal with the sensor
degradation due to complex environment [41], such as illumination change, texture-less, and structure-less
circumstance. To this end, in order to keep proposed approach cost competitiveness, we only leverage
data from inexpensive visual sensors with different orientations. Our main contributions are summarized
as follows:

(1) Utilizing the outstanding features of symmetry-adaption configuration of forward and backward
cameras, we provided a new fusion mechanism of two-layers data processing to comprehensive utilize the
nearby environment information. Therefore, it achieves high accuracy and low drift.

(2) The data processing pipeline was carefully designed to handle sensor degradation. Starting with
the spatial-temporal synchronization, the scale factor of backward monocular visual odometry was
estimated based on the MSE optimization method in sliding-window. With this help, both the forward
and the backward camera own the capability of localization independently.

(3) Further, utilizing the fusion of two-layers Kalman Filter, the proposed pipeline can fully or partially
bypass failure modules and make use of the rest of the pipeline to handle sensor degradation.

To the best of our knowledge, the proposed method is by far the cheapest method to enable such high
robustness ego-motion estimation capable of handling sensor degradation under various lighting and
structural conditions.

The remainder of this paper is organized as follows: Section 2 describes the detailed methodology
including scale estimation and trajectory fusion. In Section 3, the experimental dataset, the performance
evaluation results of the proposed method are presented. Sections 4 and 5 summarize this paper and
discuss future research directions.

2. Materials and Methods

2.1. Assumptions and Coordinate Systems

Considering a sensor system including forward stereo camera and backward monocular camera, we
assume that ego-motion estimation model is a rigid body motion model and the above cameras can be
modeled by the pinhole camera model. Then, using the Zhang method [42], the intrinsic and extrinsic
parameters can be easily calibrated in advance. With the calibration matrix, the relative pose transformation
matrix between two camera systems can be obtained. Hence, we can use a single coordinate system for
both the forward stereo camera and the backward monocular camera. For simplicity, in the 6DoF pose
calculated by the proposed method is transformed to original global coordinate. The coordinate systems
are defined in the following (see Figure 1 for illustration).
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Figure 1. Coordinate system of rigid body motion model with forward stereo camera and backward
monocular camera. Using the relative pose transformation matrix, we can transform the trajectories of
backward monocular camera into the forward stereo camera Coordinate system. [Color figure can be
viewed at www.mdpi.com].

There are three coordinates used in our system, the original global coordinate {G}, Forward camera
coordinate system {CF} and Backward camera coordinate system {CR}, which are defined as follows:

• We parallel X-O-Y plane of {G} to the horizontal plane. The Z0-axis points opposite to gravity.
The X0-axis points forward of the mobile platform, and the Y0-axis is determined by the
right-hand rule.

• Forward camera coordinate system {CF} is set originated at the left camera optical center of stereo
camera system {OF1}. The x-axis points to the left, the y-axis points upward, and the z-axis points
forward coinciding with the camera principal axis.

• Backward camera coordinate system {CR} is originated at the camera optical center of monocular
camera system {OR}. The x-axis points to the left, the y-axis points upward, and the z-axis points
forward coinciding with the camera principal axis.

2.2. Data Association of Forward-Facing and Backward-Facing Cameras

With the purpose of fitting and fusing the data of a backward-facing monocular camera and
forward-facing stereo camera, the key point of data synchronization both in spatial and temporal space
must be solved beforehand, which is shown Figure 2.

Stereo Camrea
timestamps

Monocular Camera
timestamps

1sT 2sT

mT

21sv
T

Camrea Frame Cycle

Rigid Body Motion Model

Trajectory 
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Figure 2. Rigid body motion model based trajectory data synchronization both in spatial and temporal
space. [Color figure can be viewed at www.mdpi.com].
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Within the stereo camera, left frame and right frame are triggered at the same time by the hardware
flip-flop circuit. Then, we can assume that they were hardware synchronized and have the same
timestamps. Hence, we only need to synchronize the data between monocular camera and stereo camera
both in spatial and temporal space.

Using the camera intrinsic and extrinsic parameters, the data association in spatial space can be
easily calculated and it will not change over time because of the rigid body motion assumption. Second,
in temporal synchronization, we assume that the ego-motion has the same velocity between two consequent
frames of stereo camera. So, after transforming the data from {CR} space into the {CF} space, there are
two temporal synchronization steps that need to be dealt with—translation synchronization step and
rotation synchronization.

In the translation synchronization step, linear interpolation method was given under the constant
velocity assumption. In our method, we transform the data from monocular camera into stereo camera
coordinate, as follows.

tms = ∆T ∗ vs21 + ts1 = (Tm − Ts1)
ts2 − ts1

Ts2 − Ts1
+ ts1 (1)

Here, Ts1 and Ts2 is the consecutive timestamps of stereo camera frames, Tm is the timestamp
of monocular camera frame pending to be associated. ∆T is the time difference calculated by
∆T = min (|Tm − Ts1| , |Tm − Ts2|) (in Equation (1), we take Tm − Ts1 for example). vs21 is the velocity
value in this time gap. ts1 and ts2 are the motion states in the time Ts1 and Ts2 of stereo camera.

When it comes to the rotation synchronization step, however, the rotation matrix has a universal
locking problem and cannot be directly used for interpolation. In our method, we use the spherical linear
interpolation method with the rotation angles transformed to the unit quaternion representation space.
Assuming qs1 = (x1, y1, z1, w1) and qs2 = (x2, y2, z2, w2) are the unit quaternion for the timestamps Ts1

and Ts2, the rotation synchronization value qms can be calculated by the following equation.

qms =
sin[(1− e)θ]qs1 + sin(eθ)qs2

sin θ
(2)

In this equation, e is the interpolation coefficient and it can be calculated by e = Tm−Ts1
Ts2−Ts1

. θ can be
obtained from the inverse trigonometric function θ = arccos( qs2·qs1

|qs2||qs1|
). It has the advantage of convenient

calculation and good performance.

2.3. Loosely Coupled Framework for Trajectory Fusion

The detail fusion processing of forward stereo camera and backward monocular camera is shown
in Figure 3. It shows that our approach runs separate the stereo visual odometry and monocular
visual odometry and fusion in the decision level. Therefore, it should be classified to loosely coupled
fusion method.
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Figure 3. Framework of Loosely Coupled Forward and Backward Fusion Visual Odometry. [Color figure
can be viewed at www.mdpi.com].

This framework choice would bring several good features. At first, loosely coupled fusion method
support the stereo visual odometry and monocular visual odometry working as independent modules,
which bring the fusion system with the capability of handing camera module degradation. Second, with the
opposite orientation of forward and backward, the fusion pipeline can comprehensively utilize the nearby
environment information and take advantage of the time difference from front forward stereo camera to
rear backward monocular camera. Third, the system cost is much lower than other construction scheme,
such as two sets of stereo vision system, lidar based odometry, or other kinds of precise localization sensor
based systems.

2.4. Basic Visual Odometry Method

In our proposed loosely coupled fusion method, featured-based visual odometry was used as the
fundamental motion estimation method to compute the translation and rotation of both forward facing
stereo camera and backward facing monocular camera and it has a deep influence on the correctness and
effectiveness of our method. It has three modules including feature extraction and matching, pose tracking,
and local bundle adjustment.

Feature Extraction and Matching: In order to extract and match feature points rapidly, ORB points
(Oriented Fast and Rotated BRIEF) were selected as image features, which have good multi-scale and
oriented invariance to viewpoints. In the implementation, feature points in each layer of image pyramid
space were extracted respectively and the maximum feature points in the unit grid were set to less than
five points, making them uniform-distributed. Specifically, for the stereo camera, feature points in the left
and right images were extracted simultaneously using two parallel threads and the matching process was
employed to delete the isolate points under the epipolar geometry constraints. In the feature matching
stage, the Hamming distance was applied to measure the distance of feature points and the best matching
should not exceed 30%. Meanwhile, the Fast Library for Approximate Nearest Neighbors (FLANN)
method was also used to speed up the feature matching process.

Pose Tracking: The motion model and keyframe based pose tracking method were used to estimate
the successive pose of ego vehicle. Firstly, the uniform motion model was used to track feature points
and get matching pairs in successive frames with the help of observed 3D map points. With the matching

www.mdpi.com
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pairs, we can estimate the camera motion using PnP optimization method of minimizing the reprojection
errors of all matching point pairs. However, if the matching point pairs are less than certain threshold,
the keyframe based pose tracking method woude be activated. Using bag of words(BOW) mode, it can
track and match the feature points between the current frame and the closest keyframe.

Local Bundle Adjustment: In this step, the 3D map points observed by closest keyframes were
mapped to the current feature points and the poses and 3D map points were adjusted and optimized
simultaneously to minimize the reprojection errors. In the application, in order to keep a real-time
performance for the system, the maximum number of iterations should be set to a certain value.

2.5. Scale of Monocular Visual Odometry

To avoid the scale ambiguity in the monocular visual odometry and make it work independently, we
use the sliding window based scale estimation method. In the sliding window, mean square error (MSE)
was used to dynamically correct and update the scale coefficient under the rigid body motion assumption,
as shown in Figure 4.
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 longitudinal

Figure 4. Sliding window based scale estimation of monocular visual odometry. [Color figure can be
viewed at www.mdpi.com].

In the sliding window, we assume that there are n monocular visual odometry states of
tm,i, tm,i+1, tm,i+2 · · · tm,i+n−1 and n stereo visual odometry states tsm,i, tsm,i+1, tsm,i+2 · · · tsm,i+n−1. Here,
it is noteworthy that, the states of stereo visual odometry has been synchronized to monocular visual
odometry states both in spatial and temporal space. Unbiased estimation of the mathematical expectations
of those states can be calculated as follows:

tm =
1
n

i+n−1

∑
i

tm,i and tsm =
1
n

i+n−1

∑
i

tsm,i (3)

The above states can be data centralized to t′m,i and t′sm,i by:

t′m,i = tm,i − tm and t′sm,i = tsm,i − tsm (4)

Theoretically, under the rigid body assumption, the relative move distance of the forward stereo
camera and backward monocular camera should be equal to each other within the sliding window.
So, the problem can be transformed to align the n monocular visual odometry states to the corresponding
n points in stereo visual odometry states space.

www.mdpi.com
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In practice, there must be some alignment bias and the objective of optimization function should be the
minimization of alignment bias. Here, MSE was employed to solve the issue, as in the following equation.

min
i+n−1

∑
i
‖ei‖2 = min

i+n−1

∑
i

∥∥t′sm,i − (sRt′m,i + r′0)
∥∥2

= min
i+n−1

∑
i

∥∥t′sm,i − sRt′m,i
∥∥2 − 2r′0

i+n−1

∑
i

[(t′sm,i − sRt′m,i)] + n
∥∥r′0
∥∥2

(5)

In the equation, ei is the alignment bias, s is the real scale coefficient of monocular visual odometry, R
is the rotation matrix obtained from camera calibration, r′0 is the data centralized result of translation value.
In order to minimize the alignment bias ei, we can set r′0 equal to 0. Then, we get the following equation.

min
i+n−1

∑
i
‖ei‖2 = min

i+n−1

∑
i

∥∥t′sm,i − sRt′m,i
∥∥2

= min(
i+n−1

∑
i

∥∥t′sm,i
∥∥2 − 2s

i+n−1

∑
i

(t′sm,i · sRt′m,i) + s2
i+n−1

∑
i

∥∥Rt′m,i
∥∥2
)

= min(
i+n−1

∑
i

∥∥t′sm,i
∥∥2 − 2s

i+n−1

∑
i

(t′sm,i · sRt′m,i) + s2
i+n−1

∑
i

∥∥t′m,i
∥∥2
)

(6)

Our goal is to solve the scale coefficient of s and we found that the above equation is a bivariate linear
equation, with the following form.

i+n−1

∑
i
‖ei‖2 = Asm − 2sB + s2 Am = (s

√
Am − B/

√
Am)

2 + (Asm Am − B2)/Am (7)

with

Asm =
∥∥t′sm,i

∥∥2 and B =
i+n−1

∑
i

(t′sm,i · sRt′m,i)

Then, through solving the bivariate linear problem, we can get the result of the scale coefficient of s as:

s = (
i+n−1

∑
i

t′sm · Rt′m)/
i+n−1

∑
i

∥∥t′m,i
∥∥2 (8)

However, in Equation (8), the scale coefficient of s is not symmetric. It means that, there is no
reciprocal relation between s (projecting data from monocular visual odometry to stereo visual odometry)
and s′ (projecting data from stereo visual odometry to monocular visual odometry). So, we rewrite the
alignment bias ei into the following form.

ei =
1√

s
t′sm,i −

√
sRt′m,i (9)

Then, the Equation (7) turns to:

1
s

Asm − 2B + sAm = (
√

sAm −
1√

s
Asm)

2 + 2(Am Asm − B) (10)
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Then, we can get the new result of scale coefficient of s′ and take it as the scale of current monocular
visual odometry sliding window end state tm,i+n−1:

s′ = Asm/Am = (
i+n−1

∑
i

∥∥t′sm,i
∥∥2/

i+n−1

∑
i

∥∥t′m,i
∥∥2
)1/2 (11)

By comparing Formulas (8) and (11), we can know that the new Equation (11) can calculate the scale
coefficient s′ without solving the rotation matrix R. In practice, the scale estimation method is influenced
seriously by vehicle motion state, especially stationary state or the changes of motion state. Therefore, we
adjust the strategy of scale estimation and correct monocular scale step by step by considering the effect of
vehicle motion state.

s∗m,i+n−1 = (s′m,i+n−1 − s∗m,i+n−2) ∗ λ ∗ vem,i+n−1 + s∗m,i+n−2 (12)

In this equation, λ is the scale updating factor, and s∗ is the updating scale coefficient of monocular
visual odometry. The velocity vem,i+n−1 is computed in the following steps. At first, computing the
initial velocity ve′m,i+n−1 according to aligning stereo visual odometry position based on the uniform
velocity model,

ve′m,i+n−1 =

√
(xsm,i+n−1 − xsm,i+n−2)2 + (ysm,i+n−1 − ysm,i+n−2)2 + (zsm,i+n−1 − zsm,i+n−2)2

Tm,i+n−1 − Tm,i+n−2
(13)

Then, we compare the initial velocity ve′m,i+n−1 with the velocity threshold ve∗ (0.04–0.06 m/s in our
evaluation) and get the final velocity ve,

vem,i+n−1 =

{
ve′m,i+n−1, ve′m,i+n−1 >= ve∗

0, ve′m,i+n−1 < ve∗
(14)

Finally, the real value trajectory of monocular visual odometry can be calculated using the updated
scale coefficient s∗, as shown in the following equation.

tam,i+n−1 = Re ∗ s∗m,i+n−1 ∗ Rsm ∗ Rc ∗ (tm,i+n−1 − tm,i) + tam,i (15)

In this equation, Re is the transformation matrix from forward stereo camere to the backward
monocular camera. Rsm is the transformation matrix for the different initialization time points. Rc is the
transformation matrix from the monocualr coordinate {CR} to the coordinate zBxByB which is opposite to
the global coordinate {G} on X-O-Y plane.

2.6. Kalman Filter Based Trajectory Fusion

After giving a dynamically updated scale coefficient to the backward monocular visual odometry,
the absolute ego-motion estimation can be correctly obtained. Then, in the sliding window, loosely coupled
trajectory fusion was operated to get precise ego-motion estimation, using two-layers Kalman filter method.
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2.6.1. Prediction Equation and Observation Equation

In the sliding window [Ti, Ti+n−1], we first take the ego-motion state from forward stereo camera
∆x(i,i+n−1)s as the state variable and establish state prediction equation as Formula (14). Then, we take
the ego-motion state from backward monocular camera ∆x(i,i+n−1)m as the observation and establish
observation equation as Formula (15).

X(i,i+n−1) = I∆x(i,i+n−1)s + wi,i+n−1) (16)

Z(i,i+n−1) = I∆x(i,i+n−1)m + v(i,i+n−1) (17)

Here, w(i,i+n−1) is white Gaussian noise of state prediction equation, with covariance matrix of
Q(i,i+n−1); v(i,i+n−1) is white Gaussian noise of observation equation, with covariance matrix of R(i,i+n−1).
I is an identity matrix.

2.6.2. Calculation of Covariance Matrix

Accurately determining the covariance matrix Q and R would affect the accuracy of the trajectory
fusion results. In the proposed method, the matching error of all image frames in the sliding window is
considered during the calculation of visual odometry. We use minimum optimization error of each frame
to measure the accuracy of the matching confidence and determine the covariance matrix.

Feature points based visual odometry is applied for both forward stereo camera and backward
monocular camera and sparse 3-D map points are also reconstructed by different approaches. Here, we use
back projection method for stereo camera and use triangulating method for monocular camera. By tracking
the feature pairs between sequential images, the ego-motion estimation can be described as a 3D-to-2D
problem. In the problem, the RANSAC method is employed to remove outliers. The 3D-to-2D feature pairs
from both cameras are all considered in the same optimization function, shown in Equation (16), which
tries to minimize the reprojection error of the images and will concern the rigid constraint of the system.

{R, t} = arg min
R,t

(esum) = arg min
R,t

Σ
i∈χ
‖pi − π(RPi + t)‖2

Σ (18)

where, esum is total reprojection error, R and t are the rotation matrix and translation matrix between
successive frames, χ is the number of inliners of the visual odometry, i ∈ χ represent the indexes of feature
points in the frame that matching the 3D map points. pi represent the matched feature points in the frame,
Pi are the corresponding 3D points in the 3D sparse map space. π is the projection function from 3D to 2D.
Σ is the total projection error.

From the optimization function Equation (16), we found that the more accuracy of the matching
between 3D sparse map points and the corresponding 2D frame point, the better output of the pose
obtained by solving the optimization equation. In practice, for the principle of comparability, we take into
account of the number of frames in the sliding window and then we can get the mean reprojection error
es as:

ek∈{s,m} =
η

n ∗ χ ∑
k∈n

Σ
i∈χ
‖pi − π(RPi + t)‖2

Σ (19)

where η is the correction coefficient, n is the number of frames in the sliding window, k = s when it
represents stereo visual odometry and k = m for monocular visual odometry. Then, we can use es as
diagonal elements to construct the covariance matrix Q for process noise w and can use em as diagonal
elements to construct the covariance matrix R for measurement noise v.
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2.6.3. Two-Layers Kalman Filter Based Trajectory Fusion

After obtaining the parameters of prediction equation and observation equation, along with the
covariance matrix Q and R, we can benefit from the data fusion pipeline. Here, we employed two fusion
space for the motion propagation process of both the position estimation and orientation estimation.

In the first level of the fusion stage, the relative position ∆t = (∆tx, ∆ty, ∆tz) was estimated in the
Euclidean linear space. In the sliding window, the Kalman filter was used to construct the prediction
equation and observation equation. The detail was shown in Table 1. Where, ∆t(i,i+n−1) is the estimation
of changes of relative position within the sliding window, t f ,i and t f ,i+n−1 are the estimation of ego-motion
states. For the Kalman gain Ki,i+n−1, it is a diagonal matrix and all diagonal elements are same. Hence, we
use k ∗ I to represent diagonal matrix K and the k is the coefficient of Kalman gain matrix.

Table 1. Trajectory obtained by our method in the second experiment.

Steps Discription Formula

1 calculate the current
predicted value according to
the prediction equation

X̃(i,i+n−1) = I∆x(i,i+n−1)s

2 update the covariance matrix
of prediction equation

P̃(i,i+n−1) = P(i−1,i+n−2) + Q(i,i+n−1)

3 calculating kalman gain K(i,i+n−1) = P(i,i+n−1)(P(i,i+n−1) + R(i,i+n−1))
−1

4 update the predicted value X(i,i+n−1) = X̃i,i+n−1 + K(i,i+n−1)(Z(i,i+n−1) − X̃(i,i+n−1))

5 update the covariance of the
prediction equation

P(i,i+n−1) = (I − K(i,i+n−1))P̃(i,i+n−1)

In the orientation estimation stage, we proposed an improved Kalman filter, which uses the orientation
error space represented by unit quaternion as the state of the filter. In order to construct the motion
propagation equation, the state vector of this filter need to be unified with four elements ∆q(i,i+n−1) =

(qx, qy, qz, qw), which can be described as follows:

∆q(i,i+n−1) = qi+n−1 ⊗ q−1
i (20)

where, ⊗ represents the multiplication of quaternion.Then, the estimation of orientation propagation states
can be acquired by the following equation:

q f ,i+n−1 = ∆q(i,i+n−1) ⊗ q f ,i (21)

Here, ∆q(i,i+n−1) is the estimation of relative orientation changes within the sliding window,
t f ,i, t f ,i+n−1 are the estimation of ego-motion states represented by the unit quaternion. In this form,
the state propagation model and measurement model would be much simpler. Moreover, the processing
of the data fusion occurred in the error space was represented by the error quaternion, which could be
closer to linear space and, thus, more suitable to the Kalman filter.

With the proposed trajectory fusion method, the ego-motion states can be computed accurately. When
one of the forward-facing stereo camera or backward-facing monocular camera fails, the Kalman filter
can automatically update the Kalman gain and reduce the credibility of the impaired camera naturally. It
means that the proposed pipeline can fully or partially bypass failure modules and make use of the rest of
the pipeline handle sensor degradation.



Remote Sens. 2019, 11, 2139 13 of 24

3. Results

We evaluated the proposed method on the Oxford RobotCar Dataset and compared its
performance to some state-of-the-art visual odometry systems. Some key performances, including
monocular scale property, robustness capability, and accuracy performance were carried out and
comprehensively evaluated.

3.1. Oxford RobotCar Dataset

Oxford RobotCar Dataset [43] was collected by the Mobile Robotics Group, University of Oxford,
UK, and it focused on the long-term and large-scale real driving data for autonomous road vehicles,
which contains over 1000 km driving data sequences. It was recorded from the car named Nissan LEAF
equipping with a Point Grey Bumblebe XB3 trinocular stereo camera, three monocular cameras, three 2D
Lidars, GPS and INS.

The reason we chose Oxford RobotCar Dateset as our testing dataset is that it was collected in all
weather conditions, including heavy rain, night, direct sunlight and snow, which made it the ideal choice
for our evaluation, especially for the robustness and accuracy test. The data in the Oxford RobotCar
Dataset are shown in Figure 5.

(b)(a)

Grasshopper2
1024*1024,12Hz

Bumblebee XB3
1280*960,16HZ

Novatel OEMV
5Hz Raw GPS

SICK LMS151
270deg,50Hz

SICK LD-MRS
90deg,4plane,12.5Hz

SPAN-CPT-ALIGN
50Hz GPS+INS

Figure 5. (a) shows the Oxford RobotCar platform with the equipped sensors, and (b) indicates the
recording data sequences number in different conditions [43].

In our experiment setup, the BumbleeXb3 and the rear Grasshopper2 are selected as the forward
and backward cameras in the proposed method. For the trinocular BumbleeXB3, the timestamp of three
cameras are synchronized by inherent hardware and the left and right cameras are composed for wider
baseline (24 cm) as the forward stereo camera. The relative positioning setup is shown in Figure 6 and the
more accuracy calibration extrinsics and camera models are provided in the software development kit
(SDK) on their website. In addition, the SDK also supplies us with the Matlab and Python functions for
demosaicing and undistorting raw Bayer images.
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Figure 6. The RobotCar platform and sensor positioning setup.The global coordinates and sensor body
coordinates are defined.All sensor extrinsics are provided as se(3) format in their software development kit
(SDK) tools [43].

3.2. Evaluation of Scale Estimation Method

Monocular visual odometry always suffers from the scale ambiguity problem due to the unknown
ego-motion translation length between frames. Hence, in this paper, real time scale estimation strategy
for backward-facing monocular visual odometry was proposed. In the experiment, we show that the
traditional scale estimation method always suffers from the vehicle motion state. For example, Figure 7a
depicts that the scale coefficient may vary significantly when the ego-vehicle was waiting for a traffic light
and kept still. After considering the effect of vehicle motion state in this paper, the scale coefficient can
keep steady and smooth, as shown in Figure 7b.

The scale coefficient  varied significantly 
when the vehicle was waiting for a traffic light 

(a)
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Time[s]
(b)

Time[s]

Figure 7. (a) shows the result of scale estimation method without considering the effect of vehicle motion
state; (b) indicates the better result of our proposed method. [Color figure can be viewed at www.mdpi.com].

www.mdpi.com
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In order to test the validity of the proposed method, we compared our work with the traditional
method proposed by Nist [28], which tends to set the scale of monocular visual odometry to a constant
value. As a result, Figure 7 shows that the error caused by the ambiguous scale would continuously
accumulated for Nist’s method, which makes the system more prone to deviate from the ground truth.
In this paper, the sliding window based scale estimation method was proposed to keep system work stable.
In the sliding window, the MSE was used to dynamically correct and update the scale coefficient under
the rigid body motion assumption. With this help, In Figure 8, we show that our method can significantly
improve the performance of monocular visual odometry.

Sequence 05 Sequence 03 Sequence 01

alignmono trajectory
stereo trajectory

alignmono trajectory
stereo trajectory

alignmono trajectory
stereo trajectory

alignmono trajectory
stereo trajectory

alignmono trajectory
stereo trajectory

alignmono trajectory
stereo trajectory

Figure 8. The top pictures show the results of Nist’s method with constant scale. By contrast, the bottom
pictures shows our method with a better validity and accuracy.

3.3. Robustness Evaluation

Utilizing the proposed fusion method, the system can fully or partially bypass failure modules and
make use of the rest pipeline to handle sensor degradation. Figure 9 demonstrates the fusion procedure
and Figure 9 depicts the corresponding fusion confidence. As it shows, with our proposed method,
the coefficient of fusion confidence would be updated in real-time according to the matching error of all
image frames in the sliding window. Even in the sensor performance degradation point, such as in point
A in the following Figures, the system can automatically increase the confidence of the rest undamaged
camera naturally to guarantee the safety of the system. In addition, the failed single stereoVO reinitializes
successfully at point B.
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(a) (b)

Reinitializating
Single StereoVO 

        Single MonoVO
 Our Method

        Single StereoVO
GPS+INS

StereoVO
 failed  

Single StereoVO failed 
For fast turning 

Point B

StereoVO
 failed  

es


Figure 9. (a) shows that four trajectories, including single MonoVO, single StereoVO, GPS+INS and our
method. Single StereoVO fails at point A because of the fast change of scenes and reinitializes at the point B.
(b) shows the mean reprojection error (ek∈{s,m}) of two visual odometry systems and the coefficient of
Kalman gain matrix. The failing of Single StereoVO leads to the abrupt change of blue trajectory at the
289 s. For the coefficient k, it is equal to 1, which means that the system only utilizes the information only
from single monocular visual odometry.

Further, In order to test the performance of robustness, we compared the proposed fusion method
with Single Stereo-VO (single stereo visual odometry) and Single Mono-VO (monocular visual odometry)
methods separately. Figure 10 shows that both the Single Stereo-VO and Single Mono-VO may fail
under some complicated driving conditions. In sequence 02 of the Oxford RobotCar data set, the Single
Stereo-VO failed due to the strong sunlight, which bring insufficient point features for the matching steps.
The situation also happened in the sequence 16 for the Single Mono-VO system. In sequence 09 and
sequence 12, the Single Stereo-VO lost effectiveness because of the big and fast corner turning. Where,
during the quick turning, large motion between corresponding feature points of images would lead to the
matching errors and made the system become invalid.

In our proposed system, the data processing pipeline was carefully designed to handle sensor
degradation. Some comparative experiments in Figure 10 show that the proposed system has higher
robustness than the single stereo and monocular visual odometry. It can still work even under the harsh
conditions in which one of the cameras fails.

In order to test the robustness of the system in harsh environments, we also compared the proposed
method with some state-of-the-art works including ORB-SLAM2 [33], DSO-Mono (direct sparse monocular
odometry) and DSO-Stereo (direct sparse stereo odometry) [44] algorithms using our collected dataset.
Our dataset contains 14 sequences of harsh driving environment, such as rain, dusk, night, snow, direct
sunlight, texture-less, intense illumination, bumpy road, and fast turns. The performance of the above
mentioned works in the dataset is shown in Table 2. During the experiment, some methods failed due
to strong lighting and some failed in turning corners. In total, the DSO monocular method and DSO
stereo method failed 3 times and 9 times respectively, and the ORB-SLAM2 failed 7 times. However, our
proposed method always kept a good performance for all the testing sequences.
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Single Stereo-VO failed  
because of the big and fast 

corner turning

Single Stereo-VO failed  
because of the big and 

fast corner turning

sequence02

sequence12sequence09

Single Stereo-VO failed due to 
the strong sunlight

sequence16

Single Mono-VO failed due to 
the strong sunlight

Figure 10. The top two pictures demonstrate that single stereo visual odometry and single monocular visual
odometry sometimes might fail in strong sunlight. The bottom two pictures show they might fail at the
corner of fast turning. However, our method always kept a good performance for all the testing sequences.

Table 2. Robustness Peformance Comparison of Different Methods in the Oxford Robotcar Dataset.

Sequence Duaring Frame DSO DSO ORBSLAM2 OurMethod
Description Time (s) Numeber Mono Stereo Stereo Fusion

Seq01 sun, traffic light 224 2485 T F F T
Seq02 strong sunlight 206 2267 F F F T
Seq03 ovrecast, sun 190 2096 T T T T
Seq04 rain, overcast 109 1205 T F T T
Seq05 overcast, traffic light 365 4027 T F F T
Seq06 rain, overcast 151 1665 F F T T
Seq07 dusk, rain 183 2020 T F T T
Seq08 overcast, loop road 224 2474 T T F T
Seq09 sun, clouds 90 2690 F F F T
Seq10 night, dark 163 1795 T F T T
Seq11 snow 119 1314 T T T T
Seq12 snow, traffic light 252 2780 T T F T
Seq13 illumination change 152 1672 T T T T
Seq14 strong sunlight 188 2112 T F F T
Total – – – 11/14 5/14 7/14 14/14
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3.4. Accuracy Evaluation

The accuracy of the proposed method was also evaluated. Firstly, the absolute translation root
mean-square error (RMSE) [45] was employed as the quantitative metric to evaluate the performance of
accuracy. Sequence 05 in Oxford RobotCar Dataset was used as the testing data, which was captured by
forward-facing Bumblebee XB3 stereo camera and the backward-facing Grasshopper2 camera. The GPS +
INS (NovAtel) data was used as the ground truth. In the testing dataset, the speed of ego-vehicle changed
quickly and encountered a number of red lights. In order to evaluate the performance, some state-of-the-art
monocular and stereo visual odometry methods were compared. In the experiment, the trajectories of
monocular visual odometry were aligned to the ground truth using the similarity transformation method
for the lacking of scale. The results are shown in Figure 11 and Table 3.

Figure 11. Trajectory obtained by four methods on sequence 05 in Oxofrd RobotCar Datasets.

Table 3. Comparison of RMSE of four methods.

Method Setting RMSE (m) RMSE (%)

S-ORBSLAM2 Stereo 6.81 0.519
M-DSO Monocular 44.22 3.372

M-ORBSLAM2 Monocular 41.90 3.195
Our fusion Method Multicamera 5.49 0.419

From the results we can see that the accuracy of the monocular camera based methods of M-DSO and
M-ORBSLAM2 obtained the RMSE of 3.372% and 3.195% respectively, which were poor compared to the
stereo camera based methods because the monocular visual odometry always suffered from scale ambiguity
problem. In contrast, our method output the best accuracy performance among the 4 state-of-the-art
methods [33,44,46] with the RMSE of 0.419%, which is lower than the S-ORBSLAM2 method with the
RMSE of 0.519%. This was because our method can take advantage of the outstanding features of
symmetry-adaption configuration of forward and backward cameras and comprehensively utilizing the
nearby environment information.
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In the second experiment, we employed the average error (including AEX, AEY and AED) [47] as
the quantitative metric to evaluated the performance of accuracy. Among three average error metrics,
the assessment data of AED is more important than the others, since AEX and AEY depend on the choice
of the coordinate system, while AED is invariant to it. The calculation equation is shown in the following:

AEX =
∑N

i=0
∣∣Xi − XGT

i

∣∣
N

and AEY =
∑N

i=0
∣∣Yi −YGT

i

∣∣
N

(22)

AED =
∑N

i=0

√
(Xi − XGT

i )2 + (Yi −YGT
i )2

N
(23)

Here, N is the number of frames, XGT
i and YGT

i are the ground-truth values in X direction and Y
direction obtained by the GPS + INS at the ith frame. Xi and Yi are the output results in X direction and Y
direction obtained by the corresponding odometry method at the ith frame.

The experiment was carried out in sequence 18 of the Oxford RobotCar Dataset was on a drizzly day.
We compared the proposed method with some state-of-the-art algorithms including S-ORBSLAM2 [33]
and S-VINS (Stereo Visual-Inertial Systems) [46]. The visual results of the odometry estimations of
different methods are shown in Figure 12, which shows the trajectories consisting of each (Xi, Yi)
point. The ground-truth trajectories for each (XGT

i , YGT
i ) point were plotted as black line in Figure 12.

The results of the corresponding average error (including AEX, AEY, and AED) are also given in Table 4.
The results show that our method can achieve the best performance on AED, AEX and AEY among all
the methods, which indicates that the output results of our method are the most stable compared with
other methods [33,44,46]. In order to clearly demonstrate the results, we mapped the trajectories onto
Google earth.

 S-VINS
             S-ORBSLAM2

       Our Method
   GPS-INS

Starting Point

a

b

c d

e
f

g

Figure 12. Trajectories of 3 methods comparing with the ground truth on the Google earth map. The results
show that our proposed method can have smaller overall errors compared with other state-of-the-art
methods [33,44,46].
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Table 4. Average Trajectories Errors of Varied Method in the Oxford RobotCar Dataset.

Method AEX (m) AEY (m) AED (m)

S-ORBSLAM2 5.84 12.41 14.30
S-VINS 4.55 12.19 13.89

Our Method 1.83 7.14 7.60

We also present the error curves of all the methods compared with the ground truths from GPS+INS.
Figure 13 shows the distance error curve in each frame and the corresponding error for each method.
The results show that our proposed method can have smaller overall errors and error boundary compared
with other state-of-the-art methods [33,44,46]. So our method is capable of navigating in the real world for
kilometers and performs better than other state-of-the-art algorithms.
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Figure 13. Error curves of varied methods comparing with the ground truth. The horizontal coordinate
of the figure was the frame sequences of the camera. The vertical coordinate was the bias value between

the ground truth and the estimation in the corresponding frame (
√
(Xi − XGT

i )2 + (Yi −YGT
i )2). The curve

close to the zero line means the error was small.

3.5. Time Results

In this experiment, we tested all sequences 5 times in a computational platform with an Intel Core
i5-7500 CPU (four cores @3.4 Hz) and 8 GB RAM to eliminate the randomness in the results. In addition,
we set the extracting features as 2000, image pyramid layers as 8 for both stereo and monocular visual
odometry systems. The consuming time results of the main modules of our proposed method are shown
in Table 5. Besides, the monocular and stereo visual odometry systems ran at the same time on the
distributed robot operating systems. So, the maximum processing frame rate would be decided by the
system consuming more time. Therefore, the maximum processing frame rate would be determined by
the system that consumes more time. From the table we can see that the total consumption time of our
method is about 55 milliseconds with the capability of processing 20 frames per second.
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Table 5. Consuming Time Results of Our Proposed Method in Oxford Robotcar Dataset.

Part Module Times (ms)

Monocular Feature Extraction 20.42 ± 4.03
Pose Tracking 1.54 ± 0.41

Local Map Tracking 6.02 ± 1.27
Keyframe Selecting 1.12 ± 0.94

Total 29.10 ± 6.65
Stereo Feature Extraction 24.19 ± 3.52

Stereo Matching 15.73 ± 2.44
Pose Tracking 2.01 ± 0.34

Local Map Tracking 8.81 ± 3.12
Keyframe Selecting 2.72 ± 2.68

Total 53.46 ± 12.10
Fusion Scale Computation 0.31 ± 0.12

KF fusion 0.41 ± 0.17
Total 0.72 ± 0.29

4. Discussion

Based on the obtained results, as well as proving its efficiency, robustness, and accuracy, it can be
seen that our approach can achieve superior performance compared with other start-of -the-art methods.
The method can fully utilize the information of driving conditions to promote the performance of our
positioning system.

Regarding the scale estimation, the scale ambiguity problem of monocular visual odometry has
been solved with the MSE optimization method. We show that, in the sliding window, MSE was
used to dynamically correct and update the scale coefficient under the rigid body motion assumption.
After considering the effect of vehicle motion state, the scale coefficient can keep steady and smooth, which
makes the system not easily deviate from the ground truth.

Regarding the robustness, the proposed system can fully or partially bypass failure modules and make
use of the rest pipeline to handle sensor degradation. It can still work even under the harsh conditions that
one of the cameras fails. The proposed method was also tested in complex driving environments, such as
rain, dusk, night, direct sunlight, texture-less, intense illumination, bumpy road, and fast turns. We show
that our method can work well in the above mentioned complex and highly dynamic driving environments.

Regarding the accuracy, our method can utilize the remarkable characteristics of symmetry adaption
configuration of forward and backward cameras. Meanwhile, a novel fusion mechanism of two-layers
Kalman Fusion based data processing framework was employed to comprehensive utilize the nearby
environment information. We compare the proposed method with some state-of-the-art works including
M-ORBSLAM2, S-ORBSLAM2 [33], M-DSO, S-DSO [44] and S-VINS [46] algorithms. The results show
that our method can achieve the best performance on evaluation indexes of AED, AEX, AEY and RMSE
among all the methods, which indicates that the output results of our method are most accuracy compared
with other methods.

5. Conclusions

We have presented a novel low-cost visual odometry method for estimating egomotion for ground
vehicles in challenging environments. To improve the performance of system robustness and accuracy,
the scale factor of backward monocular visual odometry was estimated based on the MSE optimization
method in a sliding window. Then, in trajectory estimation, an improved two-layers Kalman filter was
proposed including orientation fusion and position fusion. The experiments carried out in this paper have
proved that our algorithm is superior to other state-of-the-art algorithms.
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Different from traditional localization methods that use differential GPS, precise IMU or 3D Lidar,
the proposed method only leverages data from inexpensive cameras. Meanwhile, our fusion system
employed the outstanding features of symmetry-adaption configuration of forward and backward cameras
and provided a new fusion mechanism of two-layers data processing framework to comprehensive utilize
the nearby environment information. Therefore, the proposed pipeline can fully or partially bypass
failure modules and make use of the rest pipeline to handle sensor degradation making the system more
robustness and accuracy.

In future work, we will further optimize our proposed algorithm, reduce its computation complexity,
and try to implement it in the compact embedded platform. We will try to integrate other lowcost sensors,
such as conventional low-cost GPS, IMU to our system. Meanwhile, we will also explore the method to
adjust accelerometer biases using the output of our system, since the velocity measured by our system
should be equal to the velocity integrated from the bias-corrected.
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Abbreviations

The following abbreviations are used in this manuscript:

VO Visual Odometry
GPS Global Positioning System
IMU Inertial Measurement Unit
MSE Mean Square Error
NASA National Aeronautics and Space Administration
SFM Structure from Motion
RANSAC Random Sample Consensus
BA Bundle Adjustment optimization approach
LC Loop Closure Method
RMSE Root Mean Ssqare Error
AEX Average in X Direction
AEY Average in Y Direction
AED Average in Distance
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