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Abstract: Numerous studies have shown an increased surface urban heat island intensity (SUHII)
in many cities with urban expansion. Few studies, however, have investigated whether such
intensification is mainly caused by urban warming, the cooling of surrounding nonurban regions, or
the different rates of warming/cooling between urban and nonurban areas. This study aims to fill that
gap using Beijing, China, as a case study. We first examined the temporal trends of SUHII in Beijing
and then compared the magnitude of the land surface temperature (LST) trend in urban and nonurban
areas. We further detected the temporal trend of LST (TrendLST) at the pixel level and explored its
linkage to the temporal trends of EVI (TrendEVI) and NDBI (TrendNDBI). We used MODIS data from
2000 to 2015. We found that (1) SUHII significantly increased from 4.35 ◦C to 6.02 ◦C, showing an
intensified surface urban heat island (SUHI) effect, with an annual increase rate of 0.13 ◦C in summer
during the daytime and 0.04 ◦C in summer at night. In addition, the intensification of SUHII was
more prominent in new urban areas (NUA). (2) The intensified SUHII, however, was largely caused
by substantial cooling effects in nonurban areas (NoUA), not substantial warming in urban areas.
(3) Spatially, there were large spatial variations in significant warming and cooling spots over the
entire study area, which were related to TrendNDBI and TrendEVI. TrendNDBI significantly affected
TrendLST in a positive way, while the TrendEVI had a significant positive effect (p = 0.023) on TrendLST
only when EVI had an increasing trend. Our study underscores the importance of quantifying and
comparing the changes in LST in both urban and nonurban areas when investigating changes in
SUHII using time-series trend analysis. Such analysis can provide insights into promoting city-based
urban heat mitigation strategies which focused on both urban and nonurban areas.

Keywords: urban heat island; land surface temperature; trend analysis; urban warming; urban
ecology; Beijing

1. Introduction

More than 50% of the world population is now living in cities [1]. Rapid urbanization results in
remarked changes of natural land to developed land, leading to a series of environmental issues [2–8].
Urban heat island (UHI), a phenomenon where urban areas have higher temperatures than surrounding
nonurban areas, is a well-known example associated with urbanization [9–12]. Elevated temperatures
in urban areas due to UHI may increase energy consumption [13–15], alter vegetation phenology [16]
and biodiversity [17], and lead to severe air pollution [18,19]. In addition, UHI can also directly affect
the comfort and health of urban residents [20,21].
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Urban heat island intensity (UHII), the difference in temperature (air temperature and/or land
surface temperature, LST) between urban and rural areas [10,11], is one of the most important indicators
that has been used to quantify the magnitude of the UHI effect [15]. Numerous studies have been
conducted to investigate UHII, aiming at addressing the following two questions: (1) What is the
spatiotemporal heterogeneity (i.e., spatial, diurnal, seasonal, and annual variations) of UHII at the
city scale? (2) How does UHII and its spatiotemporal variation relate to the social and biophysical
properties of urban and rural areas, such as urban size and urban–rural enhanced vegetation index
(EVI) difference? Previous studies have found strong and significant seasonal and diurnal variations in
UHII [22–27]. For example, the daytime surface urban heat island intensity (SUHII) was significantly
higher in summer than in winter for all the cities in the Yangtze River Delta Urban Agglomeration [25]
and other major cities in China [26], and it was more intense compared to in nighttime [10]. The UHII
and its spatiotemporal variations are related to urban and rural characteristics, including biophysical
and social attributes [10,24–29]. For example, UHII had a strong negative relationship with the
difference between the urban and rural vegetation indexes [10,25,27,29–31], but a significantly positive
relationship with urban–rural nighttime lights [26].

Previous studies have shown that UHII increased along with urban expansion [32–36] in cities such
as Beijing [37–40], Shanghai [41], Wuhan [42], and Lanzhou [22] and also in urban agglomerations [32,43].
A decrease in UHII was also observed in a few cities [33,34,44]. However, few studies have analyzed
the spatial heterogeneity of temporal trends of UHII [30] or have further investigated whether such
intensification (or alleviation) of UHII is caused by urban warming or the cooling of surrounding
regions [28,35]. Changes in UHII could be a result of changes in temperature in urban areas or
their surrounding rural areas or both. However, it is unclear whether the increasing or decreasing
trends of UHII are due to urban warming, cooling in surrounding rural areas, or different rates
of warming/cooling between urban and nonurban areas. Clearly, different processes resulting in
intensification/alleviation of UHII would have different social and ecological consequences and thereby
different implications for urban planning and management [28,45,46]. Answers to these questions
would greatly enhance our understanding on changes in UHII and provide important insights into
urban heat mitigation and adaption.

Additionally, it is important to understand the major factors that drive the changes in temperature
in both urban and rural areas and thereby the change in UHII. A large number of studies have
shown that differences in temperature between urban and nonurban areas and within urban areas
is significantly related to spatial patterns of land use and land cover [47–49]. Considerable research
has demonstrated the significant cooling effects of urban vegetation and significant warming effects
of impervious surfaces, using limited datasets and space-for-time substitution methods [49–53].
Increasing vegetation abundance, for example, the enhanced vegetation index (EVI), can greatly reduce
ambient air temperatures and LST [54–57]. In contrast, increased impervious surfaces result in elevated
temperatures [49,50,58]. Few studies, however, have investigated how the changes in land use/land
cover affect the trends of temperature due to continuous and rapid urbanization from the perspective
of a time-series analysis [44,59,60]. It is important to identify the regions with significant trends in
increases or decreases of temperature and to understand how land cover change could affect the UHI
effect. Addressing such questions requires the use of long-term time-series data and trend analysis.

Here we chose Beijing, China, as a case study. The overarching goal of this study was to understand
the changes in SUHII in summer and the processes and major drivers of such changes. Specifically, the
objectives of this study were to (1) quantify the trend of SUHII and its spatial heterogeneity; (2) compare
the temporal trends of LST in urban and nonurban areas to understand the processes of changes in
SUHII and further analyze the spatial heterogeneity of temporal trends of LST; and (3) examine the
effects of temporal trends of EVI and normalized difference build-up index (NDBI) on temporal trends
of LST.
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2. Materials and Methods

2.1. Study Area

Beijing, the capital city of China, was chosen as the study area in this research (Figure 1). It
is located in the northwestern part of the North China Plain (latitude: 39◦28′–41◦25′N, longitude:
115◦25′–117◦30′E) and has a monsoon-influenced humid continental climate characterized by hot and
humid summers but cold and dry winters. It has an area of approximately 16,800 km2 and had a
total population of more than 22 million in 2016 [61]. In recent decades, Beijing has experienced rapid
urban expansion, with large areas of natural and agricultural land being converted into urban build-up
areas [62], which has led to deteriorating urban heat [37,39].
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Figure 1. The study area: the Beijing metropolitan area (OUA: old urban areas, the urban area
developed before 2000; NUA: new urban areas, the urban areas developed between 2000 and 2015;
NoUA: nonurban areas).

2.2. Identification of Different Urban Zones

We mapped the study area into two different parts, urban areas (UA) and nonurban areas (NoUA),
in 2015. Further, we subdivided UA into two different zones, namely urban areas developed before the
year 2000 (hereafter referred to as old urban areas, OUA) and urban areas developed between 2000
and 2015 (hereafter referred to as new urban areas, NUA). The UA and NoUA were mapped following
the methods detailed in Reference [37]. Briefly, we first created fishnets with a size of 900 m × 900 m
in order to approximately match the resolution of MODerate-resolution Imaging Spectroradiometer
(MODIS) products. We then calculated the percent of developed land in each fishnet in both 2000
and 2015 using a land cover dataset derived from 30-m Landsat Thematic Mapper (TM) data with an
overall accuracy of over 96% [63,64]. We defined the fishnets as urbanized fishnets if the percent of
developed land was greater than 50% [26,37,65]. Finally, the urbanized fishnets in 2015 were merged
to generate UA, and the urbanized fishnets in 2000 were merged to generate OUA. The NUA were
generated by removing OUA from UA. Relatively small land cover changes occurred in OUA from
2000 to 2015, but there were dramatic changes occurred in the NUA, where many different types of
land cover (e.g., farmland, forest) were transformed into developed land.
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2.3. LST, EVI, and NDBI from MODIS Products

A total of 416 images from MODIS Land Surface Temperature L3 product MOD11A2 Version 6,
with a spatial resolution of 1000 m, were used in this study. The MOD11A2 product provides 8-day
averaged LST based on daily LST produced by a split-window algorithm [66,67]. We calculated the
mean LST for each summer (June to August) from 2000 to 2015.

We used EVI data derived from MODIS Vegetation Index L3 product MOD13A2 (224 total images,
Version 6). The MOD13A2 product has a spatial resolution of 1000 m and provides a vegetation index
for a 16-day time period by choosing the best available value from the 16-day period [68]. We calculated
the mean EVI for each summer from 2000 to 2015. The EVI has been widely used to measure vegetation
abundance [26]. It has improved sensitivity over high biomass regions and improved vegetation
monitoring capability through a decoupling of the canopy background signal and a reduction in
atmosphere influences [68]. NDBI data in this study were derived from MODIS Surface Reflectance
L3 product MOD09A1 Version 6, with a spatial resolution of 500 m and a total of 416 images. The
MOD09A1 product provides an estimate of the surface spectral reflectance of Bands 1–7, corrected for
atmospheric conditions [69]. NDBI is defined as

NDBI = (RSWIR − RNIR)/(RSWIR + RNIR), (1)

where RSWIR and RNIR are the surface spectral reflectance of Band 6 and Band 2, respectively [70]. To
match the spatial resolutions of LST and EVI data, we resampled the MOD09A1 to 1000 m and then
calculated the mean NDBI for each summer from 2000 to 2015. All MODIS products used in this study
from Terra were acquired at 10:30/22:30 local time [71].

2.4. The Calculation of Temporal Trends for SUHII, LST, EVI, and NDBI

We first calculated SUHII at the city level for the three urban zones, namely the OUA, NUA, and
UA. The SUHII for each urban zone was defined as the difference in averaged LST between the urban
areas (i.e., OUA, NUA, and UA) and the nonurban areas (NoUA). We then calculated the SUHII at the
pixel level for each pixel in the UA, which was the difference between the LST of each pixel in the UA
and the averaged LST in the NoUA. After we obtained the data of SUHII, LST, EVI, and NDBI from
2000 to 2015, we investigated the temporal trends of such variables (e.g., SUHII) at every pixel using
ordinary least squares (OLS) linear regression models [36,43,72]. Here we use TrendLST as an example to
illustrate the calculation of TrendLST, TrendSUHII, TrendEVI, and TrendNDBI. We ran multiple OLS models
at each pixel, with LST as the dependent variable and the year as the independent variable, to examine
the regression coefficient, which was labeled as TrendLST and used to measure the trend and annual
magnitude of the change in LST. We tested the significance at the 0.05 level. For example, a positive
TrendLST with p < 0.05 means that LST at a specific pixel increased significantly from 2000 to 2015.

2.5. Statistics Analysis

Linear regression analysis was used to examine the temporal trends of SUHII, LST, etc., and to
examine the effects of EVI and NDBI on LST across space for each year, with the NDBI and EVI as
predictors and LST as the response variable. We compared the relative importance between different
study zones of effects of NDBI and EVI on LST from 2000 to 2015 using standardized coefficients (i.e.,
beta coefficients) [49,53,73,74]. Finally, focusing only on the pixels with significant TrendEVI, TrendNDBI,
and TrendLST during the daytime, we used Pearson correlation analysis and multiple linear regression to
examine the effects of TrendEVI and TrendNDBI on TrendLST and the standardized coefficients to compare
the relative importance of TrendEVI and TrendNDBI. Figure 2 shows a flowchart of this study.
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3. Results

3.1. The Urban Heat Island Effect Was Intensified in Beijing from 2000 to 2015

There was a significant increasing trend in SUHII in urban areas (UA) from 2000 to 2015, suggesting
that the UHI effect was intensified in Beijing (Figure 3). During the daytime, SUHII in UA increased
from 4.35 ◦C in 2000 to 6.02 ◦C in 2015 (Figure 3), with a mean of 5.01 ◦C, a standard deviation of 0.70 ◦C
(Table A1), and a rate of 0.13 ◦C/year (Figure 3). Compared to the daytime results, nighttime SUHII
had a similar increasing trend from 2000 to 2015, but with smaller values (from 2.68 ◦C to 3.33 ◦C)
(Table A1) and a rate of 0.04 ◦C/year (Figure 3).

Additionally, OUA and NUA had a significant increasing temporal trend of daytime SUHII from
2000 to 2015 (Figures 3 and 4). Compared to OUA, the averaged daytime SUHII in NUA was smaller
(5.94 ◦C in OUA vs. 4.27 ◦C in NUA) (Table A1). However, the increasing rate of daytime SUHII in
NUA (0.145 ◦C/year) was higher than that in OUA (0.102 ◦C/year) (Figure 4), suggesting that NUA
faced more rapid daytime warming than OUA (Figure 4). Similar patterns of nighttime SUHII were
observed for OUA and NUA, but OUA had a slightly weaker trend (Figure 4).

Spatially, most of the areas in OUA had a significantly positive TrendSUHII during the daytime,
except for a few locations, such as the Beijing Olympic Park, which had negative TrendSUHII (Figure 5).
Compared to OUA, NUA usually had a smaller mean but a larger standard deviation of SUHII from
2000 to 2015 (Table A1). Additionally, NUA had large proportional areas with a higher increasing
rate of TrendSUHII, especially in the southeast UA (Figure 5). Similarly, most of the areas in UA had a
positive TrendSUHII during the nighttime (Figure 6), and NUA usually had large proportional areas
with a higher increasing rate of TrendSUHII (Figure 6) compared to OUA and UA. Obviously, SUHII
was usually lower at nighttime than daytime both in NUA and OUA (Figures 5 and 6).
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trends of SUHII (TrendSUHII) in urban areas (b) during the nighttime. Pixels filled with crosshatches are
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3.2. The Rate of Cooling in Nonurban Areas Was Larger than the Rate of Warming in Urban Areas

This significant increasing trend of averaged SUHII in UA, however, was largely caused by the
cooling trend in NoUA because of their relatively larger magnitudes of the cooling rate, although it
was also strengthened by the relatively weak warming trend in UA (Figure 3). The daytime LST in UA
had a very weak increasing trend, with a rate of 0.04 ◦C from 2000 to 2015 (Figure 3c). In contrast, there
was a stronger trend in the decrease of LST in NoUA, with an annual cooling rate of 0.08 ◦C (Figure 3c).
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Consequently, there was a significant increasing trend in SUHII in UA (Figure 3a). Similarly, a warming
trend (i.e., positive TrendLST) was observed in UA, but a cooling trend (i.e., negative TrendLST) with a
greater rate occurred in NoUA, which led to an increase of SUHII in UA during nighttime (Figure 3b,d).

Both OUA and NUA had significant increasing trends of daytime SUHII from 2000 to 2015
(Figure 4c). Compared to OUA, the averaged SUHII in NUA was smaller (Table A1). However, the
increasing rate of SUHII in NUA (0.15 ◦C/year) was higher than that in OUA (0.10 ◦C/year) (Figure 4a),
suggesting that NUA faced more rapid warming than OUA did (Figure 4a). The OUA had a very
weak trend in LST increase (0.02 ◦C/year), whereas NUA had a stronger warming trend (0.06 ◦C/year)
during the daytime (Figure 4c). Such warming rates, however, were both smaller than the cooling rate
in NoUA (0.08 ◦C/year) (Figure 4c). Therefore, the intensified SUHII was largely due to the cooling in
NoUA and also due to the relatively weak warming in both OUA and NUA. Ultimately, the cooling
rate in NoUA outweighed the warming rate in the NUA and OUA and resulted in an increasing trend
of SUHII in the two suburban areas (Figure 4a,c). During nighttime, similar patterns were observed for
OUA and NUA, but NUA had a slightly weaker increasing trend of LST during nighttime (Figure 4).

Spatially, there were large variations in significant warming and cooling spots for the entire study
area, as well for different zones (Figures 7 and 8). During the daytime, most UA had positive TrendLST
(Figure 7a,c,d), while only a few spots, such as the Beijing Olympic Park, had a negative TrendLST in
OUA (Figure 7a,b). The area percentage of significant warming in UA (15.28%) and OUA (5.81%) was
smaller than that of significant cooling in NoUA (15.96%), except for NUA with a large proportion of
the zone (22.80%) having a significant increase in TrendLST (Figure 7a,d). Additionally, the averaged
significant cooling rate in NoUA was 0.17 ◦C/year, similar to the warming rate in OUA, although
smaller than that in NUA (0.21 ◦C/year) and UA (0.20 ◦C/year) (Figure 7e).
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Figure 7. The statistical results of daytime TrendLST at the pixel level over all of Beijing (BJ) and its
different study zones. (a) Spatial heterogeneity of TrendLST. Pixels filled with crosshatches are locations
where LST increased or decreased significantly (p < 0.05). (b) An example (Beijing Olympic Park)
showing that land cover change during this period led to decreased LST. (c) An example showing
that land cover change during this period led to increased LST. (d) The percentage of area where LST
increased or decreased in different study zones. (e) The averaged slope of different LST increases or
decreases in different study zones.
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Figure 8. The statistics of TrendLST at the pixel level over Beijing (BJ) and its different study zones during
nighttime. (a) Spatial heterogeneity of TrendLST. Pixels filled with crosshatches are locations where
LST increased or decreased significantly (p < 0.05). (b) The percentage of area where LST increased or
decreased in different study zones. (c) The averaged slope of different LST increases or decreases in
different study zones.

The spatial pattern of TrendLST from 2000 to 2015 during the nighttime, however, was largely
different from that during the daytime (Figure 8). One of the most noticeable difference was that a
much larger proportion of the entire study area had a positive TrendLST during the nighttime compared
to during the daytime (Figure 7a, Figure 8a). The area percent of urban warming in UA (OUA and
NUA included) was similar to that of cooling in NoUA (Figure 8b) and similar to the comparison of
averaged magnitudes (Figure 8c).

3.3. The Trends of EVI and NDBI Significantly Affected LST Trends

Most of the NoUA had a positive TrendEVI from 2000 to 2015, with 46.11% of the areas having a
significant trend, with EVI increasing (Figure 9). Both the OUA and NUA had large area percentages
with positive TrendNDBI during this period (Figure 9). The percentage of areas in NUA experienced a
significant increasing trend in NDBI was 45.12%, which was larger than that in OUA (22.14%) (Figure 9),
suggesting that more areas in NUA faced with quick urbanization that natural land was transformed
to impervious area. In contrast, the percentage of areas in OUA had a significant increasing trend (i.e.,
significantly positive TrendEVI) was 54.74%, which was larger than that in NUA (18.84%), and even
NoUA (Figure 9). Spatially, EVI increased where NDBI decreased, especially in urban areas (i.e., NUA).
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over Beijing (BJ) and its different study zones during the daytime. Pixels filled with crosshatches are
locations where EVI or NDBI increased or decreased significantly (p < 0.05).

The results from OLS multiple linear regressions, with NDBI and EVI as the predictors and LST as
the response variable, showed that in all analytical areas, EVI had significantly negative effects on LST,
while NDBI had positive effects every year from 2000 to 2015. However, their relative importance on
affecting LST varied by zones and changed over time (Table 1). In UA, EVI and NDBI played a nearly
equally important role in predicting LST, and their relative importance remained largely unchanged
over time, as indicated by the standardized coefficients (Table 1). In contrast, in surrounding NoUA,
NDBI played a much more important role in predicting LST than EVI did, similarly to NUA (Table 1).
On the contrary, in OUA, EVI played a more important role than NDBI did from 2000 to 2004, and
then the two factors played a similar role in predicting LST (Table 1) Larger variations in LST were
explained jointly by EVI and NDBI in OUA than NUA (Table 1). As for R2 in UA and NoUA, in the
first few years, R2 values were larger in UA, but after 2009, the opposite was found.
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Table 1. Standardized coefficients from the ordinary least squares (OLS) multiple linear regressions, with the NDBI and EVI as the predictors and LST as the response
variable (p < 0.05 except for the bold).

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

OUA
EVI −0.60 −0.55 −0.59 −0.45 −0.52 −0.37 −0.36 −0.41 −0.36 −0.40 −0.37 −0.25 −0.30 −0.31 −0.43 −0.44

NDBI 0.23 0.27 0.26 0.29 0.28 0.43 0.38 0.37 0.45 0.35 0.41 0.46 0.46 0.47 0.37 0.34
R2 0.51 0.60 0.63 0.46 0.57 0.53 0.46 0.52 0.56 0.44 0.47 0.40 0.48 0.50 0.50 0.47

NUA
EVI −0.22 −0.15 −0.31 −0.20 −0.33 −0.21 −0.17 −0.36 −0.29 −0.19 −0.26 −0.21 −0.22 −0.28 −0.27 −0.19

NDBI 0.60 0.55 0.46 0.48 0.39 0.46 0.41 0.38 0.42 0.43 0.44 0.48 0.43 0.45 0.41 0.53
R2 0.47 0.43 0.49 0.39 0.42 0.38 0.28 0.44 0.41 0.32 0.40 0.39 0.34 0.43 0.37 0.43

UA
EVI −0.51 −0.40 −0.50 −0.41 −0.46 −0.37 −0.32 −0.45 −0.41 −0.41 −0.42 −0.34 −0.36 −0.38 −0.47 −0.39

NDBI 0.41 0.46 0.39 0.41 0.41 0.47 0.45 0.40 0.44 0.36 0.38 0.44 0.41 0.42 0.31 0.40
R2 0.58 0.66 0.72 0.57 0.66 0.60 0.52 0.61 0.60 0.50 0.52 0.48 0.48 0.53 0.49 0.51

NoUA
EVI −0.26 −0.21 −0.15 0.04 −0.39 −0.09 −0.04 −0.39 −0.31 0.01 −0.07 −0.04 −0.29 −0.22 −0.07 −0.13

NDBI 0.49 0.34 0.45 0.72 0.28 0.65 0.67 0.34 0.40 0.72 0.72 0.72 0.52 0.60 0.75 0.68
R2 0.44 0.26 0.31 0.49 0.38 0.50 0.49 0.43 0.40 0.50 0.60 0.56 0.55 0.62 0.64 0.62
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We further explored how the changes in EVI and NDBI influenced LST, considering the pixels
with significant TrendEVI, TrendNDBI, and TrendLST (Figure 10). For pixels with significantly positive
TrendLST, TrendEVI had a significantly negative relationship with TrendLST, while TrendNDBI had a
significantly positive one (Figure 11). This result suggested that the magnitudes of temporal trends of
EVI and NDBI would significantly affect the magnitude of the temporal trend of LST in long-term
time series. Decreased LST (TrendLST < 0) was related to increased EVI (TrendEVI > 0) and decreased
NDBI (TrendNDBI < 0) significantly, meaning that LST would decrease when EVI increased and NDBI
decreased significantly (Figure 11). A positive relationship between TrendNDBI and TrendLST was found,
indicating that a higher TrendNDBI was related to a higher TrendLST (Figure 10). Interestingly, TrendEVI
had a weak but significantly positive relationship with TrendLST (p = 0.023), which was different from
the negative relationship between those two when TrendEVI was negative. This result indicated that
an increase in EVI would lead to a decrease in LST. However, a more rapid increase of EVI did not
lead to a more rapid decrease of LST. In fact, the larger increasing rate of EVI was associated with
a slower decreasing rate of LST. In addition, TrendNDBI was a more important predictor of TrendLST,
playing a much more important role in predicting TrendLST than TrendEVI, as suggested by the standard
coefficients (Table 2).
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were considered to analyze how the changes in EVI and NDBI could influence LST, with the background
map indicating the land cover of Beijing in 2015 (derived from 30-m Landsat images) [63,75].
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Figure 11. Relationships between TrendEVI, TrendNDBI, and TrendLST. Note: a positive TrendLST means
LST increased significantly at a specific pixel and at different rates of warming. A positive TrendEVI

means EVI increased significantly at the specific pixels at a different increasing rate, and it was the
same for TrendNDBI.

Table 2. The results of a regression analysis considering pixels with significant trends in changes in
EVI, NDBI, and LST at a 0.05 level.

Variables Coefficient Standard Coefficient R2

TrendEVI −4.74 −0.14
0.86TrendNDBI 23.83 0.67

4. Discussion

4.1. Understanding the Process of Intensified SUHII by Comparing the Differences in LST Trends in Urban and
Nonurban Areas

The Beijing metropolitan area had intensified SUHI, as suggested by the increasing trend of
SUHII from 2000–2015. This result is consistent with that from a large amount of studies, which
found that with urban expansion, the UHII (both SUHII and UHII in terms of air temperature) tends
to increase [33,37,39,41,43,60,72,76–78]. Compared to old urban areas (OUA in this study), the new
urbanized and urbanizing areas (NUA in this study) had a more rapid intensification of UHI, which was
indicated by both the SUHII and LST values, similarly to findings from previous results [34,42,60,79].
What is new in this study is that we further revealed that such intensification in Beijing was largely due
to the cooling trend in surrounding nonurban areas but not due to significant warming in urban areas.
While both the cooling trend in nonurban areas and the warming trend in urban areas contributed to
such intensification, the magnitude of the cooling rate in nonurban areas was much larger than that of
the warming rate in urban areas. This result has significant implications for urban heat mitigation
and adaptation. The cooling trend in the surrounding nonurban areas was likely due to the ecological
restoration projects conducted in Beijing, especially the Million Mu Trees Campaign, which greatly
increased the coverage of forests [80]. While the urban areas from 2000–2015 overall had an increasing
LST trend, a relatively large proportion (38.50%) of OUA had a trend of cooling. This was likely due to
increased efforts dedicated to urban greening in Beijing, such as the “Plant Where Possible” policy in
the urban core areas [81,82], which have led to the establishment of lots of new urban vegetation and
parks in old urban areas [81,83]. Such greening efforts can help reduce LST in urban areas [53,54,59,84].
However, LST in the new urban areas generally had a trend of increase, and at a higher rate compared
to old urban areas. Urban expansion, especially edge expansion and leapfrogging in NUA [75,85,86],
typically includes replacing vegetation and natural land with impervious surfaces, which changes
characteristics toward lower albedo, more anthropogenic heat (e.g., more cars, more air conditioning),
higher heat storage (e.g., more tall buildings), and lower evapotranspiration in urban areas [87–90].
These changes thereby lead to the increase of LST. However, it is worth noting that even though LST
had an increasing trend in the new urban areas, the annual warming rate was small (Figure 4). This was
also a result of the great efforts that Beijing has devoted to urban greening. For example, a regulation
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was enforced in 2010 that requires that the percentage cover of vegetation be greater than 30% in all
newly built residential areas.

Our study underscores the importance for urban heat mitigation strategies of quantifying and
reporting the temporal trends of LST in both urban and surrounding nonurban areas when investigating
SUHI and its changes. Such points have been conducted in previous studies [33,36], which found
significantly intensified SUHII but with different LST changes between urban and nonurban areas [33,36],
and also revealed that the cooling in rural areas (e.g., because of EVI enhancement) could explain
such intensified SUHII (e.g., around 22.5%) [35]. What’s new in this study is that we further gave four
potential scenarios that have intensified SUHII based on a comparison between LST change in urban
and nonurban areas: (a) LST increased in both urban and nonurban areas, but at a greater magnitude
of warming rate in urban areas (Figure 12a); (b) the LST in urban areas increased, while it decreased
in nonurban areas. The warming rate in urban areas outweighed the cooling rate in surrounding
nonurban areas (Figure 12b). (c) The LST in urban areas increased, while it decreased in nonurban
areas. The cooling rate in surrounding nonurban areas outweighed the warming rate in urban areas
(Figure 12c). (d) The LST decreased in both urban and nonurban areas, but at a greater magnitude of
cooling in nonurban areas (Figure 12d). While SUHII may increase along with urbanization, as has
been shown in many previous studies, intensified SUHI as a result of scenario d would be the best
(and scenario a would be the worst) from the perspective of urban sustainable development. Our
classification differed from the classification which was based on seasonal and diurnal variations of
LST changes in Reference [36]. Our classification, which focused on the LST changes in both urban
and nonurban areas, could be more important for specific cities in city-based urban heat mitigation
strategies designing.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 24 

 

requires that the percentage cover of vegetation be greater than 30% in all newly built residential 
areas. 

Our study underscores the importance for urban heat mitigation strategies of quantifying and 
reporting the temporal trends of LST in both urban and surrounding nonurban areas when 
investigating SUHI and its changes. Such points have been conducted in previous studies [33,36], 
which found significantly intensified SUHII but with different LST changes between urban and 
nonurban areas [33,36], and also revealed that the cooling in rural areas (e.g., because of EVI 
enhancement) could explain such intensified SUHII (e.g., around 22.5%) [35]. What’s new in this 
study is that we further gave four potential scenarios that have intensified SUHII based on a 
comparison between LST change in urban and nonurban areas: a) LST increased in both urban and 
nonurban areas, but at a greater magnitude of warming rate in urban areas (Figure 12a); b) the LST 
in urban areas increased, while it decreased in nonurban areas. The warming rate in urban areas 
outweighed the cooling rate in surrounding nonurban areas (Figure12b). c) The LST in urban areas 
increased, while it decreased in nonurban areas. The cooling rate in surrounding nonurban areas 
outweighed the warming rate in urban areas (Figure12c). d) The LST decreased in both urban and 
nonurban areas, but at a greater magnitude of cooling in nonurban areas (Figure 12d). While SUHII 
may increase along with urbanization, as has been shown in many previous studies, intensified SUHI 
as a result of scenario d would be the best (and scenario a would be the worst) from the perspective 
of urban sustainable development. Our classification differed from the classification which was based 
on seasonal and diurnal variations of LST changes in Reference [36]. Our classification, which focused 
on the LST changes in both urban and nonurban areas, could be more important for specific cities in 
city-based urban heat mitigation strategies designing. 

 

Figure 12. Four possible categories of LST change in both urban and nonurban areas attributed to an 
increase in SUHII (a-d). And the results from Beijing belong to scenario c (g), in which LST incrased 
in UA (e), but decreased in NoUA (f).  

The changes in urban temperature were the results of warming (e.g., urban heat island) and 
cooling effects (e.g., urban cool island) in urban areas [28,37]. A warming effect due to urban 
expansion (both in the horizontal and vertical dimensions, and both in urban land intensification and 
urban population concentration) may lead to an increase in temperature in urban areas. Meanwhile, 
increased vegetation cover due to the great efforts of urban greening policies [81], plus vegetation 
management such as irrigation [28], can result in a decrease in temperature. Changes in temperature 
depend on the net effects of warming and cooling [28]. Similarly, rapid urbanization could increase 

Figure 12. Four possible categories of LST change in both urban and nonurban areas attributed to an
increase in SUHII (a–d). And the results from Beijing belong to scenario c (g), in which LST incrased in
UA (e), but decreased in NoUA (f).



Remote Sens. 2019, 11, 2229 15 of 23

The changes in urban temperature were the results of warming (e.g., urban heat island) and
cooling effects (e.g., urban cool island) in urban areas [28,37]. A warming effect due to urban expansion
(both in the horizontal and vertical dimensions, and both in urban land intensification and urban
population concentration) may lead to an increase in temperature in urban areas. Meanwhile, increased
vegetation cover due to the great efforts of urban greening policies [81], plus vegetation management
such as irrigation [28], can result in a decrease in temperature. Changes in temperature depend on the
net effects of warming and cooling [28]. Similarly, rapid urbanization could increase temperature in
nonurban areas because of the strong effect of urban areas on surrounding nonurban areas, such as
great changes in rural landscapes [41]. Meanwhile, along with urbanization, the migration of rural
populations to urban areas and great greening polices lead to the restoration of ecosystems in nonurban
areas, which can make the nonurban area temperatures lower [91]. Changes in temperature in rural
areas depend on the net effects of these two opposite processes as well.

In scenario d (as an example), an increase in SUHII is the result of a decrease in temperature in
both urban and rural areas. In contrast, in scenario a, an increase in SUHII is the result of an increase in
temperature in both urban and rural areas. While the trends in SUHII are similar, that is, increases in
both scenarios, a and d, their implications for human health and urban and regional sustainability
are totally different. Beijing generally fits in scenario c, with a smaller magnitude of warming rate in
urban areas than in the cooling rate in nonurban areas. This is likely due to greening efforts dedicated
to urban areas [81], which can effectively alleviate the continuous increase of urban temperatures.
These great greening polices, which lead to the restoration of ecosystems in rural areas, can make the
temperature lower in nonurban areas as well [91].

The classification of cities into one of the four types with increasing SUHIIs could provide
more information on urban heat and help promulgate greening regulations according to the specific
conditions of urban and rural areas. It should be noted that the classification of a city into one of the
types may vary by the environmental context of a specific city and may change with time (daytime or
nighttime or in different seasons). Therefore, cross-city comparison research would be desirable in
future studies to design city-based heat mitigation strategies.

4.2. Understanding the Effect of Land Cover Changes on LST Change by Using Long-Term Time Series Data

EVI and NDBI both significantly affected LST. However, their relative importance in predicting
LST varied by zone and year. Our results show that NDBI played a more important role in predicting
LST in new urban areas and surrounding nonurban regions, which is similar to findings from previous
studies [57,92]. Many previous studies found that impervious abundance index, such as NDBI or
percent cover of impervious surface area (ISA), was more important than vegetation abundance index,
such as EVI, the normalized vegetation index (NDVI), or percent cover of vegetation [57,92–95]. The
relative importance of the two variables, however, was different in old urban areas. EVI generally
played a slightly more important role in predicting LST than NDBI did in old urban areas (Table 1). Old
urban areas in Beijing typically have less vegetation coverage than new urban areas and surrounding
nonurban regions [63,81]. This result may suggest that increasing vegetation coverage in old urban
areas could lead to better cooling effects [53]. Additionally, although increasing vegetation generally
could lower LST, the relationship between vegetation and LST varied spatially across the city. Such
variation may be related to other characteristics of vegetation (e.g., quality) in addition to the amount
of vegetation [96]. For example, previous studies have shown that local climate zones can be a useful
tool in exploring the relationship between vegetation and LST by considering the different vegetation
classes in terms of height and density of vegetation [97]. Future research that uses local climate zones
to better understand the relationship between EVI and LST is highly desirable.
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Additionally, the temporal trend of EVI and NDBI could also lead to LST variability (significantly).
Our results showed that TrendEVI was negatively related to TrendLST only when EVI decreased, which
was consistent with results from previous studies [44,60], indicating that the higher the rate of the loss
of existing urban vegetation was, the more rapid the LST increase was [60]. However, our results also
showed that TrendEVI positively affected TrendLST significantly when EVI increased (i.e., TrendEVI was
positive), which was slightly different from the results found in Wang et al., 2016 [60], suggesting that
the magnitude of increase of new urban vegetation might not result in the same amount of magnitude
decrease in LST. In other words, with an increase in new urban vegetation, its effects on or capacity
to lower LST declined. This was likely due to the fact that newly generated urban vegetation did
not have the same cooling capacity as the the existing vegetation did [59]. For example, compared
to mature trees, newly planted trees generally are shorter and have less tree canopy coverage, and
therefore the same amount of vegetation may provide less shading and evapotranspiration but may
lead to a decrease in albedo because of more underlying bared soil. Consequently, although a gain in
trees could ameliorate urban heat, if we just focus on an increase in the amount of urban vegetation,
such as creating new urban vegetation rapidly, the cooling effect will not be high as we expect [59].
These results highlight the importance of not only considering increases in the amount of vegetation,
but also improving its quality [54,98].

We also found that the change in NDBI played a much more important role in predicting LST
change than did the change in EVI. These results were different from previous work that showed that a
cooling effect of increased vegetation cover was actually stronger than the heating effect due to urban
development and expansion [60]. However, it should be noted that Wang et al. (2016) focused on two
time slices (i.e., 2000 and 2014), but we used the temporal trends of EVI and NDBI from a time series of
remote sensing data, which could potentially reduce the effects just from one or two years. It should be
noted that although aggregating LST to a summer mean level greatly increased the spatial coverage of
LST pixels, it reduced the temporal resolution of the LST data, and thus could have potentially resulted
in information loss compared to the use of entire LST scenes individually.

5. Conclusions

This study aimed to reveal whether the intensification of SUHI is mainly caused by urban warming
or the cooling of surrounding nonurban regions and to investigate the potential drivers of LST change.
Using time-series analysis, we found that (1) there was a significant increasing trend in SUHII from
2000 to 2015, suggesting intensified SUHI effects in Beijing, especially in OUA. (2) This significant
intensified SUHII, however, was largely due to a cooling trend in the NoUA, not to significant warming
in UA. While both the cooling trend in NoUA and the warming trend in UA contributed to such
intensification, the magnitude of cooling in NoUA contributed much more to the intensification than
did warming in the UA. Spatially, there was a smaller percentage of areas with significant urban
warming in OUA than the percentage of areas with significant cooling in NoUA. Locations with cooling
trends also occurred in UA, particularly in OUA. (3) The EVI and NDBI could affect LST significantly
(negatively and positively, respectively), but with varied importance in different study zones and time.
(4) TrendEVI significantly affected TrendLST positively when EVI increased, suggesting that a more rapid
increase in new urban vegetation (EVI increase) could lead to a slower decrease in LST but not to a
quicker decrease in LST, as we expected.



Remote Sens. 2019, 11, 2229 17 of 23

This study also presents a research framework that underscored the importance for urban heat
mitigation strategies of comparing and reporting the temporal trends of LST in both urban and
surrounding nonurban areas when investigating SUHII and its changes. The framework highlighted
that it is not enough to focus on SUHII and its changes alone, which might even be misleading. It
also suggests that this is necessary for city-based urban heat mitigation strategies. This is because
an intensified SUHI may be caused by totally different warming/cooling processes in urban and
nonurban areas. Therefore, more city-based research and cross-city comparisons are highly desirable.
Additionally, this study also enhances our understanding of evidence and the drivers of intensified
urban heat island effects.
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Variables and Acronyms

SUHII Surface urban heat island intensity
UA Urban areas, urban areas developed before 2015
OUA Old urban areas, urban areas developed before the year 2000
NUA Nonurban areas, rural areas that were not urbanized before the year 2015
NoUA Nonurban areas, rural areas that were not urbanized before the year 2015
TrendSUHII Temporal trend (i.e., the coefficient) of SUHII from 2000 to 2015, both at a city and pixel level
TrendLST Temporal trend (i.e., the coefficient) of LST from 2000 to 2015, both at a city and pixel level
TrendNDBI Temporal trend (i.e., the coefficient) of NDBI from 2000 to 2015 at a pixel level
TrendEVI Temporal trend (i.e., the coefficient) of EVI from 2000 to 2015 at a pixel level
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Appendix A

Table A1. The statistics, including mean and standard errors, for SUHII from 2000 to 2015 in UA, OUA, and NUA. For example, Mean_UA and std_UA mean the
mean value and standard errors of SUHII in UA in different years during the day and at night.

Year
Day Night

Mean_UA std_UA Mean_OUA std_OUA Mean_NUA std_NUA Mean_UA std_UA Mean_OUA std_OUA Mean_NUA std_NUA

2000 4.38 1.74 5.42 1.24 3.52 1.62 2.72 1.32 3.75 1.08 1.86 0.79
2001 4.42 1.65 5.59 1.19 3.45 1.31 2.94 1.27 3.96 1.02 2.10 0.72
2002 3.77 1.42 4.81 1.07 2.92 1.04 2.64 1.27 3.60 1.03 1.82 0.80
2003 3.86 1.39 4.70 1.14 3.18 1.17 2.91 1.27 3.94 0.95 2.05 0.78
2004 5.01 1.60 6.24 1.23 4.00 1.04 3.14 1.26 4.10 1.04 2.35 0.77
2005 5.18 1.48 6.24 1.12 4.30 1.10 3.22 1.23 4.20 0.97 2.40 0.74
2006 5.32 1.40 6.20 1.19 4.60 1.09 3.13 1.15 3.97 0.98 2.43 0.72
2007 4.36 1.35 5.24 1.10 3.64 1.05 3.18 1.18 4.08 0.94 2.43 0.76
2008 5.46 1.51 6.39 1.32 4.70 1.16 3.17 1.20 3.97 1.06 2.51 0.84
2009 5.15 1.35 5.98 1.09 4.47 1.11 3.20 1.35 4.25 1.08 2.32 0.82
2010 5.34 1.24 5.99 1.05 4.81 1.10 3.50 1.39 4.51 1.18 2.66 0.91
2011 5.20 1.30 5.92 1.16 4.61 1.05 3.59 1.19 4.47 0.98 2.86 0.77
2012 5.51 1.41 6.31 1.20 4.85 1.19 3.33 1.37 4.36 1.18 2.47 0.80
2013 5.88 1.33 6.62 1.10 5.28 1.16 3.25 1.37 4.27 1.17 2.40 0.86
2014 5.99 1.49 6.90 1.12 5.23 1.30 3.28 1.20 4.18 0.87 2.53 0.89
2015 6.08 1.53 6.82 1.24 5.49 1.46 3.37 1.20 4.27 0.90 2.62 0.85

Averaged 5.01 0.70 5.94 0.65 4.27 0.77 3.12 0.26 4.11 0.25 2.34 2.34
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