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Abstract: A large number of evenly distributed conjugate points (CPs) in entirely overlapping regions
of the images are required to achieve successful co-registration between very-high-resolution (VHR)
remote sensing images. The CPs are then used to construct a non-linear transformation model that
locally warps a sensed image to a reference image’s coordinates. Piecewise linear (PL) transformation
is largely exploited for warping VHR images because of its superior performance as compared to the
other methods. The PL transformation constructs triangular regions on a sensed image from the CPs
by applying the Delaunay algorithm, after which the corresponding triangular regions in a reference
image are constructed using the same CPs on the image. Each corresponding region in the sensed
image is then locally warped to the regions of the reference image through an affine transformation
estimated from the CPs on the triangle vertices. The warping performance of the PL transformation
shows reliable results, particularly in regions inside the triangles, i.e., within the convex hulls.
However, the regions outside the triangles, which are warped when the extrapolated boundary planes
are extended using CPs located close to the regions, incur severe geometric distortion. In this study, we
propose an effective approach that focuses on the improvement of the warping performance of the PL
transformation over the external area of the triangles. Accordingly, the proposed improved piecewise
linear (IPL) transformation uses additional pseudo-CPs intentionally extracted from positions on the
boundary of the sensed image. The corresponding pseudo-CPs on the reference image are determined
by estimating the affine transformation from CPs located close to the pseudo-CPs. The latter
are simultaneously used with the former to construct the triangular regions, which are enlarged
accordingly. Experiments on both simulated and real datasets, constructed from Worldview-3
and Kompsat-3A satellite images, were conducted to validate the effectiveness of the proposed
IPL transformation. That transformation was shown to outperform the existing linear/non-linear
transformation models such as an affine, third and fourth polynomials, local weighted mean, and PL.
Moreover, we demonstrated that the IPL transformation improved the warping performance over the
PL transformation outside the triangular regions by increasing the correlation coefficient values from
0.259 to 0.304, 0.603 to 0.657, and 0.180 to 0.338 in the first, second, and third real datasets, respectively.
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1. Introduction

The development and launch of satellites equipped with very-high-resolution (VHR) optical
sensors has allowed researchers in the remote sensing field to exploit VHR multi-temporal images for a
wide range of applications [1–3]. VHR multi-temporal images are easily acquired by unmanned aerial
vehicles mounted on cameras or optical sensors while capturing images [4–9]. Image co-registration,
the process of geometrically overlaying images acquired over the same areas at different times, should
be carried out to exploit the images for time-series remote sensing applications [6–10].

A large number of evenly distributed conjugate points (CPs) over the entire overlapping region
of images are required to achieve successful co-registration for the multi-temporal VHR images [11].
The CPs are then used to construct a non-linear transformation model that can minimize the local
distortion between images. The sensed image is warped to the geometric location of the reference image
through non-linear transformation models such as thin-plate spline, multiquadric, local weighted
mean (LWM), and piecewise linear (PL) used for VHR image warping [12,13]. Among these, PL
transformation is widely used because of its superior performance as compared to the other warping
methods [12,14,15].

PL transformation first constructs triangular regions by applying the Delaunay algorithm to
extract CPs from the sensed image, after which the corresponding triangular regions are accordingly
constructed in the reference image by using the same CPs. Each triangular region in the sensed image
is then locally warped to the region of the corresponding reference image via an affine transformation
estimated by the CPs located on the triangle vertices. The PL transformation is well-known for its
precise and reliable warping performance where the triangles are constructed, i.e., within the convex
hulls of the triangular regions. However, regions outside the convex hulls in which the warping
transformation is constructed through extrapolation by extending the boundary triangle planes incur
severe geometric distortion. Figure 1 shows an example of this phenomenon resulting from a PL
transformation. The image presented in Figure 1a is warped by the PL transformation in Figure 1b;
the triangular regions are constructed through the CPs connected with white lines, and as one can see
from the red circle in the warped image, severe distortion outside the triangular regions has occurred,
particularly in the lower part of the image.

Figure 1. Example of severe distortion occurring outside the triangular region, caused by applying
piecewise linear (PL) transformation: (a) Before warping and (b) after warping.

These geometric distortions in the overlapping regions make it less feasible to use VHR images for
time-series applications. The way to minimize such distortions caused by the warping process
is to detect CPs along the image boundary. However, this is a difficult task when we apply
well-known feature-based CP extraction approaches, e.g., scale-invariant feature transform (SIFT) [16]
and speeded-up robust features (SURF) [17], which define features and their descriptors by considering
the pixels near the features’ center pixel. Therefore, features and CPs (portions of features that are
matched to the features in another image) are extracted while theoretically excluding the region along
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the image boundary, which implies that the distortions in such regions are inevitable when applying
the PL transformation. Therefore, most of the studies that use PL transformation for warping have
considered the warping result only from the region inside the convex hulls [18–22]. Research on
improving PL transformation by revising the triangular construction algorithm [14] or by combining it
with other warping transformations [11,23] has been conducted, but these approaches have not offered
a fundamental solution to the intrinsic problem of PL transformation. Therefore, research focusing on
minimizing the distortion occurring outside the image boundary is necessary to effectively exploit
PL transformation.

In this paper, we propose a simple but effective approach that focuses on the improvement
of the warping performance of PL transformation outside of the triangular regions constructed
with the CPs. To this end, the proposed improved piecewise linear (IPL) transformation uses CPs
extracted using an ordinal matching point extraction approach (e.g., SIFT and SURF) together with
additional CPs, called pseudo-CPs, which are intentionally extracted from positions outside the
image boundary of the sensed image. The corresponding pseudo-CPs in the reference image are
determined by estimating the affine transformation close to the located CPs. Accordingly, the triangular
regions are enlarged while both the CPs and the pseudo-CPs are simultaneously exploited for the PL
transformation-based warping. We analyzed the warping performance of the IPL transformation by
changing two parameters: The extracted number of pseudo-CPs along the boundary and the number
of CPs closest to the pseudo-CPs to be used for the location estimation of the pseudo-CPs on the
reference image. Experiments using a simulated dataset were implemented to find the optimal range
of the parameter values. Real datasets were then exploited to verify the effectiveness of the proposed
IPL transformation.

The main contributions of this paper are as follows: First, as the proposed method focuses on
improving the warping performance over the PL transformation, any feature-based or area-based
method can be used to extract CPs. Moreover, the method can be applied in VHR image pairs
irrespective of the acquisition environments such as the scene’s size and the land-cover type. Second,
the warping performance of the PL transformation, widely used for VHR image co-registration owing
to its reliable performance as compared to the other non-rigid transformation models, is maintained
in the triangular region constructed from the CPs. The pseudo-CPs are also extracted to enlarge the
triangular region. Third, the proposed IPL transformation is evaluated using simulated and real
datasets to investigate the reliable range of parameter values used in the IPL transformation as well as
to confirm the robustness of the warping performance under various conditions.

2. Methodology

In this section, we describe the PL transformation procedure with its inherent drawback, after
which the concept and the procedure of the proposed IPL transformation are explained.

2.1. Piecewise Linear (PL) Transformation

The procedure for the PL transformation can be summarized as follows [12]:

1. Determine the triangulation of CPs in one image by using the Delaunay triangulation method.
The triangulation of the CPs in the other image is accordingly obtained from the corresponding
CPs in the images.

2. Determine the affine transformation T that registers the two triangles for each pair of corresponding
triangles in the images. Thus, the triangular regions inside the convex hulls of the CPs in the two
images are registered.

3. Determine the transformation for mapping the points outside the convex hulls by extending the
boundary triangle planes and then use this plane to extrapolate the points between the convex
hull and the image border. Two planes belonging to two neighboring boundary triangles intersect
at a line, the projection of which in the image plane separates the points outside the convex hull
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and determines the triangle plane to which a point outside the convex hull should belong in the
extrapolation process.

Because of the extrapolation process in step (3), severe geometric distortion can occur outside
the convex hulls, as shown in Figure 1. The proposed IPL transformation focusing on improving the
warping result of such regions is described in the following sub-section.

2.2. Improved Piecewise Linear (IPL) Transformation

The proposed IPL transformation focuses on the improvement of the warping performance outside
the triangular regions. Assume that the number of M CPs ({Cm

sen, Cm
re f }, ∀m = 1, . . . , M) is extracted by

using any feature-based matching technique (such as SURF). To determine the IPL transformation, N
more CPs (i.e., pseudo-CPs), each of which is extracted along the boundary of the sensed image with
the same interval, are necessary. To find the corresponding CPs in the reference image, K CPs closest to
the pseudo-CPs extracted along the boundary position of the sensed image are selected. These are then
used to estimate affine transformation T by the least-squares method, after which the position of the
corresponding pseudo-CPs in the reference image is determined by applying T. Finally, the additional
N pseudo-CPs are used together with the original M CPs to construct the PL transformation with an
extensive triangular region. Thus, well-constructed triangular regions over the entire sensed image
can be produced from the intended additional selection of the pseudo-CPs. The sequence of tasks for
the proposed IPL transformation is shown in Figure 2, and the formula for the IPL transformation is
shown in Algorithm 1.

Figure 2. Sequence of tasks for the proposed improved piecewise linear (IPL) transformation.
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Algorithm 1 Improved Piecewise Linear Transformation

Input: CPs = {Cm
sen, Cm

re f }, ∀m = 1, . . . , M
Set N, K (K ≥ 3)
for each n∈ [1, N] do

Define pseudo-CPs CM+n
sen located along the boundary of the sensed image with the same interval

Find K CPs closest to the position of CM+n
sen

Estimate affine transformation Tn with K CPs by the least-squares method
Define CM+n

re f = Tn
(
CM+n

sen

)
end for
Output: CPs = {Cl

sen, Cl
re f }, ∀l = 1, . . . , M + N

Construct a piecewise linear transformation through CPs = {Cl
sen, Cl

re f }, ∀l = 1, . . . , M + N

The important parameters for the IPL transformation are the number of additional pseudo-CPs N
and the number of closest CPs K used to estimate the location of the pseudo-CPs on the reference image.
To find the optimal range of parameter values, we conducted a sensitivity analysis of the two parameters
while changing the parameters N and K. This experiment was carried out on a simulated dataset
composed of the same reference and sensed images in which geometric distortions were deliberately
included. Because the two images should be perfectly identical if all the geometric distortions are
removed, the correlation coefficient (CC) values were calculated to check the performance of the IPL
transformation according to the parameter values.

3. Experimental Results

3.1. Dataset Construction

We constructed both simulated and real datasets to prove the effectiveness of the proposed IPL
transformation. The reference and sensed images of the simulated dataset were basically constructed
from the same image acquired by a Worldview-3 multispectral sensor with a spatial resolution of
1.2 m. The reference image with a size of 4096 × 4096 pixels was acquired over Seoul, the capital
of South Korea, on 12 February 2015. The image includes diverse land covers such as mountains,
buildings, roads, and rivers. The sensed image was generated from this image but included non-linear
geometric distortions to clearly check the warping performance according to the parameter values in
the IPL transformation. We conducted experiments while varying the level of geometric distortion;
the warping results had a similar tendency irrespective of the distortion amount. Here, we put the
results from the sensed image obtained with a distortion of sinusoidal deformation in the positive
horizontal direction with a 50-pixel amplitude and a 20◦ period, and in the negative vertical direction
with a 30-pixel amplitude and a 10◦ period, only.

Three sites were constructed for the real dataset by using images acquired from Worldview-3
multispectral (site 1 and site 2) and Kompsat-3A panchromatic (site 3) sensors. The first site was the
same location as in the simulated dataset, and the reference image of the first dataset was the same
as the simulated dataset. The sensed image (3389 × 3406 pixels) was acquired at a spatial resolution
of 1.6 m (different from the reference image) on 5 February 2018. The reference and sensed images
for the second site covering built-up areas, mountains, rivers, bare soils, etc., were acquired over
Gwangju, South Korea. The reference and sensed images consisting of 5833 × 5330 pixels and a spatial
resolution of 1.2 m were acquired on 26 May 2017 and 4 May 2018, respectively. The reference and
sensed images for the third site were constructed using Kompsat-3A panchromatic imagery with a
spatial resolution of 0.55 m. The site acquired over Daejeon, South Korea, is composed primarily of
built-up areas. The reference and sensed images were acquired on 28 October 2015 and 2 January 2019,
respectively. The size of both the images was 3000 × 3000 pixels. Note that all the used images were
geometrically corrected with a coarse digital elevation model (i.e., processing level 2A for Worldview-3
and 1G for Kompsat-3A), which implied that they had local geometric distortions as well as relative
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location displacements. The constructed datasets are shown in Figure 3, and their specific information
is provided in Table 1.

Figure 3. Datasets constructed from Worldview-3 and Kompsat-3A sensor data: (a) Reference image
from the simulated and the first real dataset (Worldview-3), (b) sensed image from the simulated dataset
(Worldview-3), (c) sensed image from the first real dataset (Worldview-3), (d) reference image from
the second real dataset (Worldview-3), (e) sensed image from the second real dataset (Worldview-3),
(f) reference image from the third real dataset (Kompsat-3A), and (g) sensed image from the third real
dataset (Kompsat-3A).
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Table 1. Specification of constructed datasets.

Dataset

Site 1 (Seoul) Site 2 (Gwangju) Site 3 (Daejeon)

Reference
Image

Sensed
Image

Reference
Image

Sensed
Image

Reference
Image

Sensed
Image

Sensor WorldView-3 Multi. WorldView-3 Multi. Kompsat-3A Pan.

Acquisition date 2015. 02. 12. 2018. 02. 05. 2017. 05. 26. 2018. 05. 04. 2015. 10. 28. 2019. 01. 02.

Off-nadir angle 14.9◦ 37.9◦ 21.6◦ 28.0◦ 24.1◦ 20.9◦

Azimuth angle 234.3◦ 140.9◦ 180.4◦ 133.3◦ 166.1◦ 187.8◦

Spatial resolution 1.2 m 1.6 m 1.2 m 1.2 m 0.55 m 0.55 m

Radiometric resolution 11 bit 11 bit 14 bit

Processing level Level 2A Level 2A Level 1G

3.2. Results with Simulated Dataset

The main purpose of the experiment implemented on the simulated dataset was to define an
optimal range of the important two parameters used in the IPL transformation, i.e., the number
of additional pseudo-CPs (N) extracted along the image boundary with the same interval and the
number of CPs (K) closest to the pseudo-CPs used for determining the location of the pseudo-CPs in
the reference image. We conducted the proposed IPL transformation while changing the parameter
values. To this end, the SURF-based CP extraction approach was used because of its efficiency [17],
and an outlier removal process by random sample consensus (RANSAC) was conducted. A threshold
ratio between the first and the second closest distance for SURF matching was set as 0.02. This value
was lower than the general range of the values (i.e., 0.6 according to the suggestion in [17]); therefore,
only CPs having similar description vectors to the others were extracted. The reason for setting the
strict threshold was that the reference and sensed images of the simulated dataset were constructed
from the same image in which many correctly and falsely matched CPs were extracted with the general
threshold value. The CP extraction process was applied to the red bands on which the seasonal
dissimilarities of the radiometric properties could be minimized as compared to the other bands [24].
The sensed image was warped by the constructed transformation through the CPs with a bilinear
resampling method. For the accuracy assessment, the CC value between the reference and the warped
sensed images was calculated. CC estimated the covariance-based similarity between two images
calculated using the following equation:

CC(Iref, Isen) =
σIrefIsen
√
σIrefσIsen

(1)

where σIrefIsen denotes the covariance between the reference and the sensed images, and σIref and σIsen

are the respective standard deviations associated with the images. In the case of the simulated dataset,
the CC value should be one when the geometric distortions are perfectly removed through the warping
process, as the reference and sensed images are originally the same. A higher value means a better
warping result.

The results of the SURF-based matching revealed that 1654 CPs finally remained after removing
the outliers. Figure 4a shows the warping results while changing the number of the nearest CPs for
the pseudo-CP location estimation (i.e., K). When N = 4, the accuracy was lower than in the other
cases irrespective of the number of the nearest CPs (K). When N was too large, as shown in the graph
with the dashed line in Figure 4a (N = 28), the results seemed to be unstable. Without regard to the
number of the nearest points, CC had stably higher values when N = 16. In the test for the number of
pseudo-CPs, illustrated in Figure 4b, the accuracy slightly improved with an increase in N. However,
the improvement was not significant when N reached 8. Moreover, unstable results were observed
when N > 20. When K = 7, the results had a tendency to be stable irrespective of the number of CPs.
According to the sensitivity analysis, we selected the optimal parameter values of N and K as 16
and 7, respectively.
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Figure 4. Sensitivity analysis for improved piecewise linear (IPL) transformation parameters: Warping
accuracy while changing (a) the number of the nearest points for pseudo-conjugate points (pseudo-CP)
extraction (K) and (b) the number of pseudo-CPs along the image boundary (N).

3.3. Results with Real Dataset

The aim of conducting the warping on the real dataset was to confirm the effectiveness of the
proposed approach on multi-temporal image pairs captured under different acquisition conditions.
The ratio of the first and the second distance for the SURF-matching was the generally recommended
value of 0.6 [17]. Outliers were removed by calculating root mean squares errors (RMSEs) of the CPs
relating the estimated affine transformation and eliminating CPs with RMSE values larger than 10.
The sensed and reference images of the first real dataset had different spatial resolutions (i.e., 1.2 m
and 1.6 m of the reference and sensed images, respectively) according to the acquisition environment,
although they were both captured by the Worldview-3 multispectral sensor. Moreover, on the basis
of the off-nadir angles (14.9◦ and 37.9◦ of the reference and sensed images, respectively) and the
azimuth angles (234.3◦ and 140.9◦ of the reference and sensed images, respectively) of the images,
the built-up areas characterized by tall buildings exhibited different magnitudes and directions of
relief displacement. Therefore, general feature-based approaches such as SIFT and SURF could not
guarantee the extraction of large numbers of evenly distributed CPs as compared to the simulated
dataset constructed from the same image. In this case, the application of a non-linear transformation
such as PL and LWM was more likely to incur severe distortions over regions where a sufficient number
of CPs were not extracted. By applying the SURF-based matching method with outlier elimination,
we extracted 50 CPs by using the real dataset (Figure 5a). As expected, this represented fewer CPs
than the simulated dataset. Again, the same parameter values as those used for the simulated dataset
warping were set to warp the sensed image to the reference image’s coordinate system. The constructed
triangular regions created with the PL and IPL methods overlaid with the sensed image are compared
in Figure 6. As we can see from the boundary of the images in Figure 6a) (PL transformation) and
6b (IPL transformation), the IPL transformation could effectively construct the region even along
the boundary.

In the case of the second real dataset, 1102 CPs were extracted by applying the SURF-based
method with the same parameter values (Figure 5b). This large number of CPs as compared to the first
dataset was attributed to the fact that the captured seasons of the reference and sensed images of the
second dataset were quite similar. The constructed results of the triangular region using the PL and
IPL transformations are also displayed in Figure 6a,b, respectively. Because of the sufficient number
of extracted CPs, the constructed triangular regions based on both PL and IPL transformations were
sufficiently large to cover all the sensed images.

The third real dataset was constructed from Kompsat-3A panchromatic images with a higher
spatial resolution (5.5 m) than that of the Worldview-3 multispectral images (1.2–1.6 m) used for
the construction of the first and the second real datasets. The site covered primarily built-up areas
with similar objects such as buildings and roads. Because of the similar descriptors used for the CP
matching, these objects make it difficult to find a sufficient number of reliable CPs. Accordingly, 84 CPs,
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which were insufficient to construct a reliable non-rigid transformation, were extracted using the
SURF-based method (Figure 5c). The relatively wide portions of regions not triangulated using the
PL transformation (Figure 6a) were effectively constructed using the proposed IPL transformation
(Figure 6b).

Figure 5. Extraction of conjugate points (CPs) from the real dataset: (a) First (Seoul), (b) second
(Gwangju), and (c) third (Daejeon) sites. The yellow circles show speeded-up robust features
(SURF)-based CPs, and the red circles show pseudo-CPs.

Figure 6. Construction of triangles using conjugate points (CPs) extracted using (a) piecewise linear
(PL) transformation and (b) improved piecewise linear (IPL) transformation. First dataset (Seoul);
second dataset (Gwangju); third dataset (Daejeon).
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The results of warping by the IPL transformation are presented in Figure 7, in which a portion of
blocks from the reference and the warped sensed images are repeatedly attached. To visually emphasize
the warping results, the reference image is displayed with a false color composition (i.e., blue, green,
and red bands are allocated to the RGB channels, respectively), and the sensed image is displayed
with a true color composition (i.e., red, green, and blue bands are allocated to the RGB channels,
respectively). As we can see from the boundary of the blocks where lines and objects align correctly,
co-registration was reliably conducted by the proposed IPL transformation. For a visual comparison
of the warping results by the PL and IPL transformations, some parts of the image boundary are
magnified in Figure 8. In the case of the results after warping, severe distortion occurred in some
regions after PL transformation (the red circles in Figure 8a), which are not present after the proposed
IPL transformation (the red circles in Figure 8b).

Figure 7. Results of warping using improved piecewise linear (IPL) transformation from the real
dataset: (a) First site, (b) second site, and (c) third site.

Figure 8. Magnified warping results over the image boundary between the warped and the reference
images: (a) Piecewise linear (PL) transformation and (b) improved piecewise linear (IPL) transformation.
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4. Discussion

IPL-based warping was conducted on the basis of the predetermined parameter values, and the
accuracy was assessed by calculating the CC value. For the comparative analysis, the sensed image was
warped using the existing linear/non-linear transformation models that are used primarily for remote
sensing image warping: Affine, third and fourth polynomials, LWM, and PL. For the application of
the LWM, the number of points in the local weighted mean calculation was set at 20. The accuracy
of warping on the simulated dataset is reported in Table 2. The proposed IPL method achieved the
highest accuracy of 0.975. In some regions where CPs were not extracted, we observed that the LWM
transformation could not properly warp the image. This resulted in the lowest accuracy.

Table 2. Comparative accuracy of warping transformations (simulated dataset).

Transformation Method Number of CPs Correlation Coefficient

Without co-registration – 0.319
Affine 1654 0.957

Third polynomial 1654 0.962
Fourth polynomial 1654 0.961

Local weighted mean 1654 0.632
Piecewise linear 1654 0.953

Improved piecewise linear 1670 0.975

CPs: Conjugate points.

For the real datasets, the CC values were also calculated on the basis of the warping transformations
and are shown in Table 3. The absolute CC values were generally lower than those in the simulated
dataset. Because of the dissimilarity of the acquisition environment, the radiometric properties between
the reference and the sensed images in the real datasets differed. However, similar accuracy patterns
were derived with the simulated dataset. Because of the fact that the relatively few CPs (i.e., 50 CPs)
could not properly construct the non-linear transformation models to correct the local geometric
distortions, the non-linear transformation models (i.e., polynomial, LWM, PL, and IPL transformations)
could not attain the significantly higher warping results over the affine-based linear transformation.
However, the third polynomial and the proposed IPL transformations could achieve better CC values
than the value acquired by the affine transformation. Comparatively, non-linear transformation models
could achieve better accuracy than the affine transformation in the second dataset from which a large
number of CPs were extracted (i.e., 1102 CPs). Among them, the IPL transformation achieved the best
CC value of 0.675. In the third dataset, a result similar to that obtained with the first real dataset was
achieved because fewer CPs were extracted (i.e., 84 CPs). The proposed IPL transformation achieved
the best warping performance. This implied that it could warp the VHR image by using a limited
number of CPs with the additional extracted pseudo-CPs along the image boundary.

Table 3. Comparative accuracy of warping transformation models (real dataset).

Transformation Model

Site 1 (Seoul) Site 2 (Gwangju) Site 3 (Daejeon)

Number
of CPs

Correlation
Coefficient

Number
of CPs

Correlation
Coefficient

Number
of CPs

Correlation
Coefficient

Affine 50 0.266 1102 0.632 84 0.502
Third polynomial 50 0.272 1102 0.641 84 0.495

Fourth polynomial 50 0.251 1102 0.641 84 0.474
Local weighted mean 50 0.258 1102 0.659 84 0.483

Piecewise linear 50 0.254 1102 0.671 84 0.371
Improved piecewise linear 66 0.270 1118 0.675 100 0.523

CPs: Conjugate points.
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To verify the effectiveness of the IPL transformation over the PL transformation, only the outer
triangular regions generated by the PL transformation were extracted to calculate the CC values. In this
case, an extrapolation process was carried out in the PL transformation to warp the outer triangular
regions that might cause severe geometric distortions. The results, shown in Table 4, demonstrated
that the IPL transformation improved the warping performance as compared to that in the case of the
PL transformation in the outer triangular regions by increasing the CC values from 0.259 to 0.304, 0.603
to 0.657, and 0.180 to 0.338 in the first, second, and third real datasets, respectively.

Table 4. Comparative accuracy of PL transformation (real dataset) in the outer triangular region.

Transformation Model
Correlation Coefficient

Site 1 (Seoul) Site 2 (Gwangju) Site 3 (Daejeon)

Piecewise linear 0.259 0.603 0.180

Improved piecewise linear 0.304 0.657 0.338

5. Conclusions

We proposed an IPL transformation for warping VHR remote sensing images by focusing
on the image boundary where the triangular region was barely constructed through a general PL
transformation. To this end, additional pseudo-CPs were intentionally extracted along the image
boundary to construct triangular regions over the entire image. A simulated dataset constructed
from Worldview-3 images was used to investigate the effects of the parameters used for applying the
proposed IPL transformation. The real datasets acquired in various acquisition environments from the
Worldview-3 and Kompsat-3A VHR multi-temporal images were used to evaluate the performance of
the IPL transformation compared with that of other warping transformation models. We concluded
that the proposed IPL transformation achieved the best and most stable warping accuracy among the
warping methods considered. Moreover, it showed better alignment of objects and improved warping
performance than PL transformation outside the triangular regions by increasing the CC values from
0.259 to 0.304, 0.603 to 0.657, and 0.180 to 0.338 in the first, second, and third real datasets, respectively.
Therefore, the proposed IPL transformation is an effective alternative to PL transformation with higher
warping accuracy.
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