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Abstract: This study analyzed the Groundwater Productivity Potential (GPP) of Okcheon city, Korea,
using three different models. Two of these three models are data mining models: Boosted Regression
Tree (BRT) model and Random Forest (RF) model. The other model is the Logistic Regression (LR)
model. The three models are based on the relationship between groundwater-productivity data
(specific capacity (SPC) and transmissivity (T)) and the related hydro-geological factors from thematic
maps, such as topography, lineament, geology, land cover, and etc. The thematic maps which are
generated from the remote sensing images. Groundwater productivity data were collected from
86 wells locations. The resulting GPP maps were validated through area-under-the-curve (AUC)
analysis using wells data that had not been used for training the model. When T was used in the BRT,
RF, and LR models, the obtained GPP maps had 81.66%, 80.21%, and 85.04% accuracy, respectively,
and when SPC was used, the maps had 81.53%, 78.57%, and 82.22% accuracy, respectively. The LR
model, which is a statistical model, showed the highest verification accuracy, also the other two
models showed high accuracies. These observations indicate that all three models can be useful for
groundwater resource development.

Keywords: groundwater; remote sensing; GIS; random forest; Boosted Regression Tree; logistic
regression

1. Introduction

According to The United Nations World Water Development Report (WWDR) 2018, more than
2 billion people in the World do not have access to safe drinking water and sanitation. If the
current levels of water pollution and consumption are not reduced, nearly one-third of the world’s
population will suffer under severe water stress by approximately 2050 [1]. Climate change, increasing
water scarcity, environmental degradation, population growth, and urbanization are already posing
challenges for surface water supply systems [2]. Other means of meeting the demand for freshwater,
such as using groundwater, will have to be determined. Presently around 20% of the total groundwater
resources are being used globally [3].

Groundwater is a very efficient resource and can be used for agriculture, forestry, rearing of
livestock, industrial purposes, and as a drinking water source for the community [4]. One of the most
valuable benefits of groundwater is that it is less susceptible to environmental pollution than surface
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water [5]. Therefore, effort to find high quality groundwater is growing globally [6]. In South Korea,
the rate of groundwater use has increased, and yet its supply does not meet the needs of the people [7].
Therefore, in South Korea, studies to evaluate the sustainability of groundwater in order to improve
the use of groundwater and to evaluate the potential of groundwater in order to efficiently manage
groundwater should be encouraged.

With scientific advancement in terms of GIS technology, various spatial modeling techniques
have been developed and applied to evaluate the potential of groundwater productivity in recent
years. GIS and remote sensing can be used to detail large areas in a more cost-effective manner [8–16].
In contemporary studies, Frequency Ratio (FR) [17–19], Random Forest (RF) [20–23], Logistic Regression
(LR) [24–26], Boosted Regression Tree (BRT) [27,28], Support Vector Machine (SVM) [13,29–31], Artificial
Neural Network (ANN) [32–36], Weights of Evidence (WoE) [37–39], Evidential Belief Function
(EBF) [40–42], and various other ensemble models have been applied for Groundwater Productivity
Potential (GPP) mapping.

Ensemble models such as RF and BRT were also used to study ecology, landslide, subsidence,
flood vulnerability, and etc. [43]. Nsiah, et al. [44] evaluated the groundwater potential of Ghana’s
Nabogo basin using the weighted overlay technique. They achieved more accurate and reliable results
by utilizing the commonly used specific capacity (SPC) values as wells as transmissivity (T) values.
Park, Hamm, Jeon and Kim [24] performed GPP mapping using the LR and Multivariate Adaptive
Regression Splines (MARS) models; these showed 84% and 87% verification accuracies, respectively.
Lee, et al. [45] analysed the relationships between the groundwater pumping capacity and related
factors using the FR and Boosted Classification Tree (BCT) models in Goyang-si in Gyeonggi-do
province, South Korea. The results of the accuracy rates were 68.31% and 69.39%, respectively. In the
previous studies, various ensemble models were used to predict GPP, and their accuracy showed a
reliable level of results (approximately, >65%). However, for high accuracy of results, many studies will
need to be carried out through the application of various topographical, geological and hydrological
data (e.g., data obtained through remote sensing images) and various models that have not been
utilized previously.

The purpose of the present study was to apply and analyze the LR (statistical model), RF & BRT
(machine learning models) and determine their ability to perform accurate and effective GPP mapping.
In addition, this study also intended to identify the important factors affecting GPP. Numerous
preceding studies have used various models to analyze GPP, however, the LR, RF and BRT models have
not yet been widely used. Therefore, we used them in correlation with hydrogeological factors related
to groundwater productivity data to perform a more accurate GPP analysis and to verify and compare
LR, RF and BRT models’ accuracy and suitability. Also, various groundwater-related factors used in
this study are derived from the thematic maps based on remote sensing data [46–49]. This study can
be used as a reference to related future studies, such as the development of clean water resources,
particularly groundwater [50].

2. Study Area and Spatial Data Set

2.1. Study Area

The research area in this study was Okcheon-gun in South Korea. The region is geographically
located in the upstream area of the Geum River basin, which is the basin of one of South Korea’s
four major rivers. The Geum River flows from north to south in this area. Okcheon-gun lies between
36◦10′N and 36◦26′N latitudes and 127◦29′E and 127◦53′E longitudes. Its total area is 537.06 km2,
of which 347.04 km2 is forest land, 55.82 km2 is covered by fields, 45.63 km2 is used as paddy fields,
and other areas occupy 88.57 km2 [6]. The annual precipitation in the area is 1297.4 mm, which is
nearly equal to South Korea’s annual average precipitation of 1277.4 mm (1978~2007) [33]. However,
due to the influence of the East Asian Monsoon climate, rainfall is intense during summer and
winter, while there is not enough water during spring and autumn. This area uses approximately
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45,032,000 m3 of groundwater per year. Of the total consumed groundwater, 67.2% is used for living,
32.1% for agriculture, and 0.5% for industrial purposes. As a result, the Okcheon-gun uses most of the
groundwater as living and agricultural part, and the GPP map of Okcheon-gun is necessary for more
efficient groundwater management [51].

Geologically, this area was developed from the Okcheon era and includes the unrecorded Okcheon
supergroup. It also includes the Pyeongan supergroup, Paleozoic Choseon supergroup, the Triassic and
Jurassic granitic rocks, the Cretaceous sedimentary, Quaternary alluvium, volcanic rocks, and intrusive
igneous rocks (Figure 1). The Quaternary alluvium was found to be distributed along the tributaries
in the Okcheon area. The alluvial layers in the plain are developed in the granite area, and the basin
shape is narrow downstream in the plain. The Quaternary alluvium constitutes unconsolidated clastic
sediments consisting of gravel, sand, silt, and clay. Relatively, silt and clay are more thickly deposited
in the plain due to river flooding.
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Figure 1. Study area (a) and geological map (b).

The representative geological structure of the Okcheon area shows the fault to the northwest of
the Okcheon. It also shows the thrust fault in the Okcheon and Choseon supergroup, located over
the upper Pyeongan Supergroup. The thrust fault developed in the northeast and south-northwest
directions [7]. A strike-strip fault exists to the northwest of the Okcheon fault which occurs across
Jurassic granite rocks, the Okcheon supergroup, the Paleozoic sequence, and the Triassic granite rocks.
It stretches to tens of kilometers from the west side (Figure 1).
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2.2. Spatial Data Set

This study used three models that are based on the relationship between groundwater productivity
and geological factors (Table 1). To calculate GPP accurately, we used SPC and T as groundwater
productivity values.

Table 1. Spatial data set related to groundwater of the study area.

Category Factors Data Type Scale

Geological map 1 Hydrogeology Polygon 1:50,000

Land cover map 2 Land cover Polygon 1:5000

Soil map 3 Soil texture Polygon 1:25,000

Topographic map 4

Slope gradient
Hydraulic slope gradient

Relative slope position
Valley depth

Topographic Wetness Index (TWI)
Slope Length factor (LS-factor)

Drainage basin
Distance from lineament

Line density
Distance from fault

Distance from channel network
Depth of groundwater

Terrain Ruggedness Index (TRI)
Convergence index

Plan curvature

GRID 1:5000

1 The geology map offered by Ministry of Land, Transport and Maritime Affairs. 2 The land cover map offered
by the Korea Ministry of Environment. 3 The soil map and land cover map offered by the National Institute of
Agricultural Science and Technology. 4 Topographical maps offered by National Geographic Information Institute.

SPC is defined as the amount of water that can be produced by lowering a unit of the surface
of water contained in wells through pumping. Its value is derived using the pumping test results of
dividing the pumping rate by the drawdown. The pumping tests last for more than 24 h. The formula
for calculating the SPC is as follows:

SPC =
Q

h0 − h
(1)

where SPC is the specific capacity of aquifer [L2T−1]; m3/day/m), Q is the pumping rate ([L3T−1];
m3/day), and h0 − h is the drawdown ([L]; m). T is defined as the flow rate under unit pressure. It is a
function of the unit width of the entire aquifer. Therefore, T represents the ability to transfer the flow
in aquifers at constant thickness. T is the measure of a material’s capacity to transmit water according
to Darcy’s law. In other words, it indicates the volume of water flowing through a 0.3 m × 0.3 m
cross-sectional area of an aquifer under a hydraulic gradient of 0.3 m/0.3 m in a given amount of time
(usually 24 h).

K′(x, y) =
1
b

∫ b

0
K(x, y, z)dz (2)

T = Kb (3)

where T is transmissivity (L2T−1), b is aquifer thickness (L), and K is hydraulic conductivity [6].
Generally, high values of T indicate wider unit widths of the aquifer and better drawdown.
The mathematical calculations for the process of estimating T using SPC are explained in detail
in [52,53]. All the T and SPC values in this study were extracted from the pumping test recorded in [7].

The Table 2 shows that the results of the pumping test Okcheon for about 120 min for each
wells in Okcheon. The test were performed by Korea Institute of Geoscience and Mineral Resource,
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and all detailed experimental procedures and results are reported in the national groundwater survey
report [7]. The groundwater productivity data used in this study were converted into the binary
form, where 1 is displayed when there is more than a median value of groundwater productivity,
and 0 is displayed otherwise. The split criterion was T (2.6 m2/day) and the corresponding SPC
(4.88 m3/day/m), which is the median of the two values. In the present study, we applied T and SPC to
the three models.

Table 2. The results of the pumping test of wells in the Okcheon-gun.

Type of Aquifers
SPC (m3/day/m) T (m2/day)

Min Max Average Median Min Max Average Median

Porous rock
saturated aquifers 2.23 769.23 20.07

4.88
0.70 489.91 23.78

2.61
Alluvial aquifer 2.67 283.33 37.60 0.83 73.16 11.30

18 various topographical factors were used for GPP analysis, including terrain and surface data
derived from remote sensing images. (Figure 2). The selected factors were slope gradient, relative
slope position, plan curvature, hydrogeology, hydraulic slope, distance from faults, distance from
lineament, depth of groundwater, distance from channel network, lineament density, valley depth,
Topographic Wetness Index (TWI), slope length (LS) factor, drainage basin, Terrain Ruggedness Index
(TRI), convergence index, land-cover, and soil texture. The spatial database of these factors was
reproduced using the ArcGIS software with SAGA-GIS.

The topographical data was obtained through digitizing using aerial photographs taken in
2006; additional corrections were performed and updated by other high-resolution satellite images.
The satellite image used for correction was Pleiades 1A, spatial resolution of multi-spectral is 0.5 m,
and the image was similar to that of the aerial photograph. Land cover maps were classified into
8 main categories using an unsupervised classification method from aerial photographs with a spatial
resolution of 0.25 m taken in 2013. In addition, Kompsat-3 remote sensing image with spatial resolution
of 0.7 m was used to evaluate the classification accuracy [45].

The digital elevation model (DEM) was generated from a topographic map with a resolution
of 30 m using a 1:5000 digital topographic map from the National Geographic Information Institute
(NGII). The slope gradient, plan curvature, relative slope position, valley depth, LS factor, convergence
index, drainage basin, TWI, and TRI were calculated using the DEM [54]. Also, various thematic maps
such as those depicting soil texture, land cover, and hydrogeology were resampling at 30 m resolution
and used in this study [11].

Various parameters were used to analyze the GPP with more precision. The LS factor is the ratio of
soil loss per unit catchment area to the slope length (L) and slope steepness (S). The formula proposed
by Moore and Burch [55] for calculating the LS factor is as follows (Equation (4)):

LS =
( As

22.13

)0.6( sin β
0.0896

)1.3

(4)

where,

As is the catchment area
β represents the slope gradient measured in degrees

The convergence index represents the structure of the slope as a set of convergence and divergence
sites. The index value for maximum convergence is +100. Conversely, the index value for maximum
divergence is −100. If there is a flat, the index is 0 [56]. This means that the index value is closer to
convergence (+100) for larger slope values.
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3. Methodology 

The GPP mapping process is shown in Figure 3. A total of 84 groundwater wells were split: 50 
% were randomly demarcated as training data and the other 50 % were retained as validation data. 
A total of 18 hydrogeology-related factors were combined into a spatial database. Then, the selected 

Figure 2. The spatial database constructed for Groundwater Productivity Potential (GPP). (a) slope
gradient, (b) hydraulic slope, (c) relative slope position, (d) valley depth, (e) Topographic Wetness Index
(TWI), (f) Slope length (LS) factor, (g) drainage basin, (h) distance from lineament, (i) lineament density,
(j) distance from fault depth (continue). (k) distance from channel network, (l) depth of groundwater,
(m) Terrain Ruggedness Index (TRI), (n) Hydrogeology, (o) convergence index, (p) soil texture, (q) land
cover, (r) plan curvature.

The TRI is an index developed by Riley [57]. TRI represents the altitude difference between
adjacent cells in a grid. The TRI index is calculated by determining the height differences between
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the center cell and the eight cells surrounding it. This difference corresponds to the average altitude
change between any point on the grid and the surrounding area.

3. Methodology

The GPP mapping process is shown in Figure 3. A total of 84 groundwater wells were split: 50%
were randomly demarcated as training data and the other 50% were retained as validation data. A total
of 18 hydrogeology-related factors were combined into a spatial database. Then, the selected T and
SPC data (T values ≥ 2.61 m2/day and SPC values ≥ 4.88 m3/day/m) were used to train the three models.
Finally, the results of GPP maps was verified using Area-Under-the-Curve (AUC) analysis.
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The 18 factors were arranged in a grid format with 1016 rows by 1211 columns. There was a total
of 601,320 cells in the grid. The T and SPC values corresponded to a total of 86 cells.

3.1. Random Forest(RF) Model

The random forest model is an ensemble classification technique that was developed as an
extension of classification and regression trees (CART) to improve the prediction performance of the
model [58]. The RF model constructs numerous decision trees to estimate the spatial relationship
between groundwater and various topographic factors that consist of either categorical or continuous
response variables. The RF model functions in two steps. First, it constructs the plurality of decision
trees; this is the learning step. Second, a test to classify a loaded input value or predict its loading is
performed. The advantages of the RF model include extremely high accuracy, simple and fast learning
and testing algorithms, ability to handle thousands of input variables without deleting variables, good
generalization performance through randomization, and multi-class algorithm characteristics.

Before running the RF model, we have defined two parameters. The first is the number of
randomly sampled variables (mtry) to use in each tree building process and the number of trees (ntree)
to build in the forest to run. Both parameters should be optimized to minimize generalization errors.
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Breiman [59], Liaw and Wiener [60] stated that even a single variable (mtry = 1) can performance to
high accuracy, while Grömping [61] showed that more than two variables (i.e., mtry = 2, 3, 4, . . . , m)
should be used to increase the accuracy of the model.

The RF model consists of a combination of numerous trees generated by bootstrap samples using
out-of-bag (OOB) errors. Two thirds of the samples are used for training, and the other 1/3 are used for
verification. The OOB is an unbiased estimate of the generalization error. A detailed description of the
mathematical formulation of RF model is found in Breiman [59].

The goal of the RF model is to analyze the relationship between independent and dependent
variables in the model building stage to determine the weights for each factor. In this study, in order to
analyze correlations between groundwater and related factors, groundwater productivity data (T or
SPC) was used as a dependent variable, and 18 groundwater-related factors were used as independent
variables. The parameters used in the RF model are as follows: (1) the number of randomly sampled
variables in each spilt (mtry), (2) the number of trees to be grown (ntree), and (3) the minimum size of
the observations at the end node of the tree (node size). These parameters were set to 500, 10, and 5,
respectively using the STATISTICA 10.1 software [62].

3.2. Logistic Regression(LR) Model

The LR model is useful for predicting whether groundwater exists in a particular location, based
on the predictor variables. The primary reason for using the LR model is to explain the relationship
between dependent variables and independent variables [63]. The advantage of the LR model is that
variables need not have normal distribution, regardless of whether they are continuous, discrete, or a
combination of both types [26]. In this study, dependent variables indicate the presence of groundwater
using a binary variable. The following show the relationship between groundwater presence and the
dependency of a variable:

P =
eZ

1 + eZ (5)

Z = a + b1x1 + b2x2 + b3x3 + · · ·+ bmxm (6)

Z = loge

[
p

1− p

]
= logit(p) (7)

where a is the intercept of the LR model, x1, x2, · · · , xm are regression coefficient of the logistic
regression model, and Z is a linear combination function of the coefficient representing a linear
relationship. The parameters b1, b2, · · · , bm are the independent variable. The probability (p)
represents to the estimated probability of potential groundwater. The value of Z is denoted in
the binary form, where Z = 1 implies more than a specific amount of groundwater (T ≥ 2.61 m2/day or
SPC ≥ 4.88 m3/day/m), and Z = 0 indicates either less than that specific amount or no groundwater.
Function Z is represented as logit (p) is a likelihood ratio that the dependent variable Z is 1. The LR
model coefficient is a value that represents the percentage (%) of the variance of the dependent that
variable is explained by the independent variable, and has a value between 0.00 and 1.00. A value
closer to 1.00 means closer to a perfect relationship, which is almost the same as the square of the
multiple correlation coefficient in a linear regression.

3.3. Boosted Regression Tree (BRT) Model

BRT is one of the many ensemble models that combine two or more models to enhance the
capability for prediction. This model can be used to effectively classify or perform regression analysis
considering continuous and categorical data. The model constructs a binary tree that is divided into
two samples. Each split node determines whether an observed value corresponds to a binary of 1 or 0.
The residual and standard deviations of the node are calculated in the following step. It has also been
used in research to detect natural resources such as groundwater and minerals. Basically, the model
depends on the number of the regression trees produced. Thus, it is likely to be the same as the RF
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model. BRT adopts a machine learning technique to resolve regression problems and uses a predefined
loss function to create each regression tree step by step. It measures the error in a step and fixes it in
the subsequent steps. The BRT model does not need to transform original data or remove outlier data
for training. It is also suitable for analyzing nonlinear complex relationships [64].

3.4. GPP Mapping Process

First, we applied the Frequency Ratio (FR) method to calculate the spatial relationships between
groundwater presence and related topographical factors. In this study, we analyzed for correlation
between the groundwater wells locations and 18 factors related to groundwater productivity using
frequency ratio of each factor. The relationship analysis is the ratio of the area where groundwater
productivity in the total study area. So, a value of 1 indicates an average. In other words, if the
average value of FR is greater than 1, it has a higher correlation with groundwater. Also, the logistic
regression coefficient correlates with the potential productivity of groundwater, and the higher the
value, the higher the correlation. The details of FR calculations are described in more detail in [6].
To analyze the GPP, the results of the three models were compared based on the FR model results.
The results of the RF and BRT models were calculated using the STATISTICA software and there
were classified and re-summed over regression values at all nodes to calculate the importance of the
predictor. The LR model was calculated using SPSS 21 statistical software. Groundwater productivity
data (T and SPC) were randomly separated for each model. They were used as training (50%) and
verification (50%) data.

Most of the maps used in GPP analysis were generated using the ArcGIS 10.5 software. A number
of groundwater-related factor maps, including geological maps, were regenerated in the ASCII grid
format at a 30 m resolution. The groundwater productivity values (T and SPC) were set as independent
variables and used as training data. In the following step, all data were classified as categorical
or continuous data. The continuous variables included the Terrain Ruggedness Index (TRI), slope
length (LS) factor, hydraulic slope, depth of groundwater, lineament density, slope gradient, relative
slope position, drainage basins, valley depth, distance from faults, Topographic Wetness Index (TWI),
and distance from lineament. The categorical variables included the hydro-geology, soil texture,
convergence index, plan curvature, and land cover.

To validate the algorithms, 86 T data points were divided into two different groups and randomly
selected. Verification was performed using the previously segregated verification data. In the final
verification process, a Receiver Operating Characteristics (ROC) curve was implemented. ROC is an
index for the performance of models [13]. To quantitatively determine the accuracy of the models’
verification, Area Under the Curve (AUC) of the ROC curve was recalculated for the total area and
the correct prediction accuracies were obtained. Typically, the accuracy of the validation of the model
is measured by the area under the ROC curve, and it can lie between 0.5 and 1. High AUC values
indicate the superior performance of an algorithm.

4. Results

4.1. Correlation between GPP and the Variables

Generally, the productivity of groundwater is affected by various factors such as topography,
hydrogeology, soil, forestation, and flow velocity [54]. To quantitatively analyze, we examined the
relationship between the related factors using the FR and LR models.

Table 3 shows the coefficients of the factors in each class range; they were calculated with respect to
groundwater T and SPC values. In general, the relationship between slope gradient and groundwater
is inversely proportional. Thus, when the slope gradient is high, it is difficult for groundwater to
accumulate in the aquifer. For slopes between 0◦ to 5◦, the ratio was approximately 3.0, which
indicated a high probability of GPP. The hydraulic slope gradient, relative slope position, valley depth,
and slope-length (LS) were also found to be inversely proportional to GPP.
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Table 3. Frequency ratio and logistic regression (LR) model’s results between groundwater productivity
data and related factors.

Factor Class
No. of

Pixels in
Domain a

% of
Domain

T ≥ 2.61 b SPC ≥ 4.88 c
Logistic

Regression
Coefficient

No. of
Data 1

% of
Data 1

FR of
Data 1

No. of
Data 1

%of
Data 1

FR of
Data 1

T ≥
2.61

SPC
≥ 4.88

Slope
gradient
(degree)

0–5.11 113,319 18.85 25 58.14 3.09 24 55.81 2.96

−0.58 −0.74
5.11–13.97 128,401 21.35 16 37.21 1.74 16 37.21 1.74
13.97–20.82 112,842 18.77 2 4.65 0.25 3 6.98 0.37
20.82–28.18 118,770 19.75 0 0.00 0.00 0 0.00 0.00

28.18–90 127,988 21.28 0 0.00 0.00 0 0.00 0.00

Hydraulic
slope (degree)

0–5 154,281 25.66 33 76.74 2.99 35 81.40 3.17

−0.40 −0.84
5–10 113,239 18.83 8 18.60 0.99 7 16.28 0.86
10–20 178,303 29.65 2 4.65 0.16 1 2.33 0.08
20–30 101,221 16.83 0 0.00 0.00 0 0.00 0.00
30–90 54,276 9.03 0 0.00 0.00 0 0.00 0.00

Relative
slope

position

0–0.0275 118,086 19.64 17 39.53 2.01 22 51.16 2.61

0.32 −0.52
0.0275–0.2235 122,639 20.40 19 44.19 2.17 14 32.56 1.60
0.2235–0.4784 121,248 20.16 2 4.65 0.23 2 4.65 0.23
0.4784–0.7529 120,084 19.97 1 2.33 0.12 3 6.98 0.35

0.7529–1 119,263 19.83 4 9.30 0.47 2 4.65 0.23

Valley depth
(m)

0–19.1231 118,571 19.72 8 18.60 0.94 6 13.95 0.47

−0.16 −0.28
19.1231–37.0510 126,094 20.97 17 39.53 1.89 12 27.91 0.79
37.0510–58.5645 122,756 20.41 5 11.63 0.57 11 25.58 1.25
58.5645–88.4443 119,947 19.95 10 23.26 1.17 8 18.60 1.42
88.4443–304.7743 113,952 18.95 3 6.98 0.37 6 13.95 1.07

TWI

−0.27–3.6 117,062 19.47 2 4.65 0.24 1 2.33 0.12

0.02 −0.11
3.6–4.35 129,046 21.46 2 4.65 0.22 3 6.98 0.33
4.35–5.4 118,685 19.74 3 6.98 0.35 2 4.65 0.24
5.4–7.8 117,832 19.59 17 39.53 2.02 19 44.19 2.26

7.8–25.37 118,695 19.74 19 44.19 2.24 18 41.86 2.12

LS factor

0–1.0473 117,812 19.59 25 58.14 2.97 25 58.14 2.97

−0.56 0.23
1.0473–3.7223 119,314 19.84 14 32.56 1.64 13 30.23 1.52
3.7223–6.3280 123,649 20.56 3 6.98 0.34 3 6.98 0.34
6.3280–8.9336 123,837 20.609 1 2.33 0.11 2 4.65 0.23

8.9336–47.4598 116,708 19.41 0 0.00 0.00 0 0.00 0.00

Lineament
density

(km/km2)

0–0.6219 118,888 19.77 4 9.30 0.47 4 9.30 0.47

0.06 0.05
0.6219–1.0305 123,348 20.51 7 16.28 0.79 7 16.28 0.79
1.0305–1.4036 123,437 20.53 9 20.93 1.02 11 25.58 1.25
1.4036–1.8300 118,218 19.66 11 25.58 1.30 12 27.91 1.42
1.8300–4.5306 117,429 19.53 12 27.91 1.43 9 20.93 1.07

Distance
from fault (m)

0–783 116,641 19.40 10 23.26 1.20 11 25.58 1.32

−0.13 −0.27
783–1740 122,116 20.31 14 32.56 1.60 10 23.26 1.15

1740–2957 122,194 20.32 8 18.60 0.92 8 18.60 0.92
2957–4610 120,773 20.08 7 16.28 0.81 7 16.28 0.81

4610–11,090 119,596 19.89 4 9.30 0.47 7 16.28 0.82

Distance
from

lineament (m)

0–84 133,995 22.28 14 32.56 1.46 15 34.88 1.57

0.12 0.05
84–182 119,978 19.95 8 18.60 0.93 9 20.93 1.05

182–308 119,286 19.84 8 18.60 0.94 6 13.95 0.70
308–510 117,397 19.52 8 18.60 0.95 9 20.93 1.07
510–1804 110,664 18.40 5 11.63 0.63 4 9.30 0.51

Distance
from channel
network (m)

0–10.7073 126,750 21.08 25 58.14 2.76 28 65.12 3.09

−0.68 −0.05
10.7073–29.9805 124,456 20.70 15 34.88 1.69 12 27.91 1.35
29.9805–57.8195 120,035 19.96 1 2.33 0.12 2 4.65 0.23
57.8195–104.9317 115,499 19.21 1 2.33 0.12 1 2.33 0.12

104.9317–546.0730 114,580 19.05 1 2.33 0.12 0 0.00 0.00

Depth of
ground

water (m)

0–6 77,398 12.87 8 18.60 1.45 8 18.60 1.45

−0.37 0.33
6–12 165,831 27.58 22 51.16 1.86 24 55.81 2.02
12–18 118,083 19.64 9 20.93 1.07 9 20.93 1.07
18–24 87,655 14.58 2 4.65 0.32 1 2.33 0.16
24–30 152,353 25.34 2 4.65 0.18 1 2.33 0.09

Drainage
basin (km2)

0–100.8281 120,219 19.99 6 13.95 0.70 7 16.28 0.81

0.60 0.32
100.8281–125.4287 123,553 20.55 17 39.53 1.92 19 44.19 2.15
125.4287–157.2648 121,267 20.17 7 16.28 0.81 7 16.28 0.81
157.2648–202.1247 120,238 20.00 11 25.58 1.28 9 20.93 1.05
202.1247–442.3421 116,043 19.30 2 4.65 0.24 1 2.33 0.12

Terrain
Ruggedness
Index (TRI)

0–0.6067 114,532 19.05 22 51.16 2.69 24 55.81 2.93

0.75 0.52
0.6067–1.9716 130,756 21.74 19 44.19 2.03 16 37.21 1.71
1.9716–3.0333 125,987 20.95 1 2.33 0.11 1 2.33 0.11
3.0333–4.0950 115,656 19.23 1 2.33 0.12 2 4.65 0.24

4.0950–38.0000 114,389 19.02 0 0.00 0.00 0 0.00 0.00
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Table 3. Cont.

Factor Class
No. of

Pixels in
Domain a

% of
Domain

T ≥ 2.61 b SPC ≥ 4.88 c
Logistic

Regression
Coefficient

No. of
Data 1

% of
Data 1

FR of
Data 1

No. of
Data 1

%of
Data 1

FR of
Data 1

T ≥
2.61

SPC
≥ 4.88

Hydro
geology

Unconsolidated
clastic rock 94,010 15.63 17 39.53 2.53 17 39.53 2.53 −0.20 −1.44

Intrusive igneous rocks 255,683 42.52 19 44.19 1.04 17 39.53 0.93 0.04 −0.99
Dolomite rock 9173 1.53 1 2.33 1.52 0 0.00 0.00 0.75 −11.90
Non-porous
volcanic rock 431 0.07 0 0.00 0.00 0 0.00 0.00 −8.13 −8.27

Clastic sedimentary rock 15,536 2.58 1 2.33 0.90 1 2.33 0.90 1.02 −0.26
Carbonate rocks 3608 0.60 0 0.00 0.00 0 0.00 0.00 1.76 0.71

Metamorphic rocks 222,879 37.06 5 11.63 0.31 8 18.60 0.50 0 0

Land cover

Barren land 5464 0.91 1 2.33 2.56 0 0.00 0.00 0.50 10.05
Field 77,488 12.89 13 30.23 2.35 13 30.23 2.35 0.21 10.18

Paddy field 62,789 10.44 18 41.86 4.01 18 41.86 4.01 0.37 1.08
Mixed forest 395,630 65.79 4 9.30 0.14 5 11.63 0.18 −1.15 9.82

Water 24,128 4.01 1 2.33 0.58 0 0.00 0.00 −0.53 0.36
Wetlands 3963 0.66 0 0.00 0.00 0 0.00 0.00 −11.64 10.24

Urban area 21,945 3.65 5 11.63 3.19 6 13.95 3.82 0.53 10.97
Grass land 9913 1.65 1 2.33 1.41 1 2.33 1.41 0.00 0.00

Soil texture

High Infiltration rate 247,471 41.15 21 48.84 1.19 23 53.49 1.30 0.50 10.71
Moderate

infiltration rate 105,563 17.56 10 23.26 1.32 7 16.28 0.93 0.21 10.24

Low Infiltration rate 199,492 33.18 7 16.28 0.49 8 18.60 0.56 0.37 10.03
Very slow

infiltration rate 22,539 3.75 4 9.30 2.48 5 11.63 3.10 −1.15 10.22

Water 26,255 4.37 1 2.33 0.53 0 0.00 0.00 −0.53 0.00

Plan
curvature

Concave (−) 308,875 51.37 29 67.44 1.31 27 62.79 1.22 0.35 −1.20
0 1409 0.23 0 0.00 0.00 0 0.00 0.00 −9.79 −9.66

Convex (+) 291,036 48.40 14 32.56 0.67 16 37.21 0.77 0.00 0.00

Convergence
index

Concave (−) 294,208 48.93 26 60.47 1.24 26 60.47 1.24 0.43 0.91
0 1434 0.24 0 0.00 0.00 0 0.00 0.00 −9.67 −7.87

Convex (+) 305,678 50.83 17 39.53 0.78 17 39.53 0.78 0.00 0.00

a Total number of pixels is 601,320. b,c Total number of pixels of wells location is 43 (training set).

In the case of hydrogeological factors, the frequency ratio was higher for unconsolidated clastic
sediment areas (Table 3). It was 0 for carbonate rocks, dolomite rock, and non-porous volcanic rocks.
The areas with unconsolidated clastic sediments were shows that have a stronger GPP than areas with
carbonated rocks because groundwater cannot easily penetrate between their particles that were so
tiny and dense. With regards to land cover, groundwater potential values were higher for paddy fields
and urban areas and lower in the mixed forest area. In fact, it is highly probable that there are many
wells containing a large amount of groundwater in the mixed-forest covered area, but the frequency
ratio was relatively low because 65% of the study area was covered with mixed-forest.

In the case of soil texture, the frequency ratio was higher for the D class (very slow infiltration
rate) and lower for the C class (low infiltration rate). Sandy soil (D class) has an excellent effect on
groundwater penetration because of its high permeability. Conversely, clay soil (A) has a low impact
on groundwater accumulation because of its poor drainage capability and permeability.

In case of plan curvature, concave areas have a ratio of about 1.2 which is considerably higher
than that of convex areas (approximately 0.70). Concave surfaces contain more water, particularly
during periods of heavy rainfall. Therefore, areas with concave surfaces are more advantageous than
areas with convex surfaces for storing groundwater. The GPP frequency ratio generally increases with
increase in linear density. That is, the nearer the linear density is to 0, the lower the GPP generation
is. When the value of linear density is larger, the GPP generation is also higher. With regards to the
topological factors, such as distance from a fault, lineament, and channel network, the closer the area
is to a river, the higher is the likelihood of the groundwater productivity. The longer the distance is,
the lesser is the likelihood of groundwater generation. In other words, various linear structures and
remote areas were leakier, while the nearby areas had better recharge and higher penetration.

The depth of groundwater was highest between 6 m and 12 m. The TWI index is defined as a
function of the upstream contributing area per unit and the slope gradient. The results have shown
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that as the TWI value increases, the groundwater productivity ratio also increases. This is because high
wetting index demonstrates better groundwater retention capability of an area.

The TRI index represents the altitude difference between adjacent cells in grid. That is, the higher
the TRI value, the greater is the difference in altitude between adjacent areas. Therefore, low TRI value
indicates high groundwater content because the GPP is higher at low altitude differences. A drainage
basin represents a catchment area. When the TRI value is between 100 and 105, the GPP is the highest.

For mapping the GPP, the LR coefficients of the 18 factors were computed using the SPSS software
(Table 3). The LR coefficient represents the probability of occurrence, and this value typically ranges
between 0 and 1. If the value of multiple logistic coefficients is calculated to be less than 0, the GPP is
low. This is so because GPP becomes smaller than 1 when converted to the corresponding log value.

Positive values were obtained for the relative slope position, TWI, lineament density, distance
from lineament, drainage basin, and TRI when T productivity was used in the LR model. SPC
productivity values were positive for LS factor, lineament density, distance from lineament, depth of
groundwater, drainage basin, and TRI. Non-porous volcanic rocks had the lowest T and SPC values for
the hydrogeology factor, thereby indicating the lowest impact on GPP. The urban areas had the highest
values of land-cover factor. The flat item showed least influence on the GPP corresponding to plan
curvature and convergence index variables.

Table 4 shows the importance of the values of each predictor variable in the BRT and RF models.
The data in the table also explain the correlation between GPP and the related factors. The predictor
importance ranges between 0 and 1. It indicates a factor near 1 that can be said to be closely related to
the presence of groundwater. As shown in Table 4, the most important variable affecting groundwater
productivity (both T and SPC values) when applying the BRT and RF models is land cover. Conversely,
the least influential variable in the case of both models is plan curvature.

Table 4. Predictor of importance factor of the Boosted Regression Tree (BRT), Random Forest (RF) models.

Factor
Boosted Regression Trees Random Forest

T ≥ 2.61 SPC ≥ 4.88 T ≥ 2.61 SPC ≥ 4.88

Land cover 1.000000 1.000000 1.000000 0.823951

Relative slope position 0.250930 0.690807 0.139181 0.698339

Hydraulic slope gradient 0.282250 0.509170 0.231625 0.723901

Depth of groundwater 0.176912 0.484824 0.121499 0.970446

Slope gradient 0.297003 0.480254 0.302406 0.677954

Distance from channel network 0.259162 0.457526 0.109057 0.845124

Hydrogeology 0.371401 0.455671 0.113639 0.843345

Topographic Wetness Index (TWI) 0.217793 0.349910 0.255783 0.642187

LS-factor 0.251877 0.323731 0.250476 0.850150

Terrain Ruggedness Index (TRI) 0.332975 0.311433 0.162339 0.723926

Distance from fault 0.170614 0.302349 0.523101 0.933228

Soil texture 0.181788 0.301434 0.556208 1.000000

Drainage basin 0.169170 0.253417 0.149756 0.841819

Line density 0.101006 0.214975 0.260951 0.612850

Distance from lineament 0.114429 0.201170 0.174736 0.403119

Convergence index 0.061917 0.135385 0.155390 0.347651

Valley depth 0.155604 0.133019 0.070290 0.532714

Plan curvature 0.052066 0.060235 0.134918 0.392855
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4.2. GPP Mapping and Validation

The GPP map was generated using the predictor values determined by the three models. That is, the
higher the value of probability for an area, the more likely it is to contain groundwater. The probabilities
calculated by the three models was re-expressed in the form of the groundwater productivity potential
index (Figure 4).
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The next step was to validate the GPP maps created using the BRT, RF, and LR models.
The prediction rate of the validations was determined by comparing the GPP maps created using the
RF, LR, and BRT models with the remaining 50% of groundwater wells data not used in the training
set. A GPP rank with more than 10% value could explain the presence of 30% of the groundwater
wells and rank with more than 60% value could explain 90% of the groundwater wells identified by
the three models.

AUC was used to comparatively analyze the results of the three models in order to quantitatively
compare the results of each model. Upon validation of the GPP maps (Figure 5), the LR, RF, and BRT
models produced AUC values of 0.8504, 0.8021, and 0.8166 with T values (i.e., the prediction accuracy
was 85.04%, 80.21% and 81.66%), respectively, and 0.8222, 0.7857, and 0.8153 with SPC values
(i.e., the prediction accuracy was 82.22%, 78.57% and 81.53%), respectively. All models indicated the
presence of 90% of the potential groundwater wells in 60% of the study area.

This study applied the RF, BRT (data mining), and LR (statistics) models to estimate GPP. The RF
and BRT data mining models showed good accuracy while spatially predicting GPP. Their accuracy
amounted to approximately 80% and more. The LR statistical model showed the highest verification
accuracy, reaching beyond 85%.
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5. Conclusions and Discussion

The region of Okcheon in South Korea needs a stable water management system that can provide
high-quality drinking water and water for agricultural use; this system should be based on sources
other than surface water. To provide a sufficient amount of water, it is very important to predict the
locations of uncontaminated usable groundwater with accuracy. Therefore, this study estimated the
groundwater of the un-surveyed area by analyzing the relationship between the well locations and
the surrounding environment including the topographic factors using three models. For the models
applied in this study, half of well location data (43 well locations) were used as training data and the
other half were used as validation data. Total 18 topography, soil, and land cover variables were used
as independent variables. Finally, the estimated potential groundwater maps were provided by using
three models of LR, RF and BRT.

From the results of the LR, RF and BRT models, the following relationships between wells data
and the examined factors could be established. GPP is higher in gentle slopes, hydraulic slopes, lower
relative slope positions, and shorter slope lengths because rainfall running off from the upper regions
accumulates in the lower regions. This in turn positively influences the aquifer. In addition, the TRI is
an index representing the altitude difference between two adjacent areas in open terrain. The GPP is
higher where the altitude difference is not significant. On the other hand, distance from fault, lineament,
and channel network showed a negative correlation with GPP. Groundwater in aquifers hydrologically
flows from high to low gradients like surface water. As a result, most of the groundwater charged in
areas of low altitude and some are eventually discharged back to the river, the lowest zone. In the end,
most areas with large amounts of groundwater are close to the river, which are clearly reflected in this
study. These results indicate that closeness to rivers increases the GPP of an area, as is known from the
hydrogeological point of view.

In case of “distance from the fault” factor, Bense, et al. [61] mentioned that the deformation along
faults in the shallow crust (<1 km) introduces permeability heterogeneity and anisotropy, which has
an important impact on processes such as groundwater. While the results in this paper show that
voids between defects have a positive effect on groundwater recharge, direct assessment of the impact
between defects and groundwater recharge remains a difficult discussion. We considered that needs to
be further discussed through various experiments.

In conclusion, the three proposed models were able to estimate the location of groundwater wells
with an average GPP probability of over 80%. These results validate the usefulness of the three models
for groundwater resource development. The final GPP map proposed in this paper used 86 limited
wells data, so there is a limit to reflect the real world. However, if we collect more wells data for this
region in the future and perform a GPP analysis, you can expect better results. Also, it is showed
from the results that the accuracy is higher when GPP is predicted using T values rather than SPC
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values. Despite the limitations, these GPP mapping methods can be efficiently applied in the future for
national groundwater development and utilization planning in Korea.
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