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Abstract: A spatially distributed land surface temperature is important for many studies. The recent
launch of the Sentinel satellite programs paves the way for an abundance of opportunities for both
large area and long-term investigations. However, the spatial resolution of Sentinel-3 thermal images
is not suitable for monitoring small fragmented fields. Thermal sharpening is one of the primary
methods used to obtain thermal images at finer spatial resolution at a daily revisit time. In the current
study, the utility of the TsHARP method to sharpen the low resolution of Sentinel-3 thermal data
was examined using Sentinel-2 visible-near infrared imagery. Compared to Landsat 8 fine thermal
images, the sharpening resulted in mean absolute errors of ~1 ◦C, with errors increasing as the
difference between the native and the target resolutions increases. Part of the error is attributed to the
discrepancy between the thermal images acquired by the two platforms. Further research is due to
test additional sites and conditions, and potentially additional sharpening methods, applied to the
Sentinel platforms.

Keywords: land surface temperature; image sharpening; TsHARP; thermal remote sensing; Sentinel-3;
Sentinel-2

1. Introduction

The land surface temperature (LST) at both high spatial and temporal resolutions is a key
variable in many environmental studies, including vegetation monitoring, moisture estimation [1,2],
drought assessment, evapotranspiration mapping [3–5], land-cover classification [6], and surface
energy balance quantification [7]. However, until recently, satellite-derived LST has been provided
at either a high temporal resolution (1 day) but low spatial resolution (1 km), e.g., National Oceanic
and Atmospheric Administration–Advanced Very High Resolution Radiometer (NOAA-AVHRR) and
Moderate Resolution Imaging Spectrometer (MODIS)-Terra/Aqua, or at a higher spatial resolution
(60–120 m) but a low revisit time of 16 days, e.g., Landsat Thematic Mapper (TM) - Enhanced Thematic
Mapper Plus (ETM+)/ Operational Land Imager (OLI).

To bridge this gap, attempts have been made to downscale frequently acquired low spatial
resolution thermal images in order to assess LST at a high spatial resolution, and further use the
data for the above-mentioned applications. The downscaling methods can be roughly classified into
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two categories: temperature unmixing and thermal sharpening [8–11]. Temperature unmixing is
based on obtaining a coarse resolution temperature for different land-cover types and applying a
split-window algorithm to retrieve the fine resolution results [12–14]. Thermal sharpening methods
are based on a correlation between thermal images and auxiliary data (e.g., Normalized Difference
Vegetation Index (NDVI), emissivity, albedo, digital elevation model, and normalized multi-band
drought index (NMDI)). A variety of sharpening methods have been proposed, among which are
DisTrad [7], STARFM [15], TsHARP [16,17], Artificial Neural Networks [18], the Data Mining Approach
(DMS) [19], and NL-DisTrad [20].

DisTrad utilizes the quadratic relationship between NDVI and LST [7]. Bindhu et al. [20] applied
a non-linear method, based on the DisTrad algorithm, to disaggregate the land surface temperature of
MODIS with a 960-m spatial resolution to Landsat ETM+ at 60-m resolution over India. Agam et al. [17]
improved the DisTrad algorithm by correlating the LST data with fractional vegetation cover (fc)
instead of NDVI. The algorithm, termed TsHARP, was developed and tested over homogeneous
fields in central Iowa, USA, and was proposed to disaggregate LST values over agricultural fields for
monitoring irrigation processes and evaluating evapotranspiration [16,17,20,21]. It was demonstrated
that sharpening thermal data at 960 m to 250 m, mimicking the sharpening of MODIS thermal to
visible-near infrared (VNIR) data, yields root-mean-square-errors (RMSE) of between 0.67 and 1.35 ◦C.
Sharpening thermal Landsat data from 120 and 60 m to a VNIR resolution of 20 m resulted in an
RMSE of 1.8–2.4 ◦C. TsHARP was also tested over different land cover types, moisture conditions,
and vegetation types [22–25]. Bisquert et al. [22] sharpened MODIS images with TsHARP with mean
errors of 1.9 ◦C between disaggregated and reference Landsat thermal images at a 120-m spatial
resolution. TsHARP’s utility was able to disaggregate MODIS temperature from 1000 m to 90 m with
an error of 2.7 ◦C [26].

Among all the sharpening methods, TsHARP is the most widely used due to its simplicity and
effectiveness. Bisquert et al. [27] examined three downscaling methods with MODIS and Landsat
images in the heterogeneous vegetated area of central Spain and reported that TsHARP outperformed
the others. Improving TsHARP was proposed by using a local modification of utility [24] and by
combining it with spatial interpolation [23]. Jeganathan et al. [24] tested five different versions of
TsHARP over a heterogeneous agricultural landscape in India. The methods were applied to aggregated
data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and used
for MODIS thermal maps. The local aggregation model yielded higher accuracy. Chen et al. [23]
combined TsHARP with thin plate spline interpolation, which improved the sharpening accuracy
by about 10% for grasslands and 5% for rural areas and croplands. Despite these encouraging
results, the fact that TsHARP is based on the LST–NDVI relationship makes it inapplicable when this
relationship is weak or reversed [28,29].

The recent initiation of the Copernicus Earth observation program of the European Commission
(EC) and the European Space Agency (ESA), and the launch of the Sentinel constellation of satellites
provides new opportunities to further examine the potential of TsHARP. Sentinel-2A and Sentinel-2B
were launched on 23 June, 2015 and 7 March, 2017, respectively. The MultiSpectral Instrument (MSI)
onboard these satellites has VNIR bands at around 6.65 and 8.35 µm, which enables the calculation of
different vegetation indices for vegetation characterization at a 10-m resolution. This constellation
has a revisit time of five days. Sentinel-3A and Sentinel-3B were launched on 16 February, 2016 and
25 April, 2018, respectively. The Sea and Land Surface Temperature Radiometer (SLSTR) on board
these satellites has two thermal bands, at 10.8 and 12 µm, which acquires LST at a ~1-km resolution
at nadir. The Sentinel-3 constellation has a revisit time of less than two days [30]. The remarkable
advantages of sharpening the Sentinel-3 LST to the VNIR resolution of the Sentinel-2 are that the
Sentinel satellites are synchronized in overpass time and ground coverage, and the images are in
the same projection and processing chain. Moreover, archived data are available free-of-charge by
the Copernicus Open Access Hub through several platforms (https://scihub.copernicus.eu). Lastly,
the planned life cycle of the satellites is 15–20 years [31]. A first attempt to sharpen Sentinel-3 LST
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using Sentinel-2 NVIR data has recently been published [32]. A methodology to derive land-surface
energy fluxes using the DMS approach was tested in agricultural and forest sites located in temperate
zones. The results of the study indicated an improvement in derived energy fluxes from sharpened
LST in comparison with low-resolution fluxes. However, the fluxes were still less accurate than those
derived from high-resolution LST. The overarching goal of the current project was to examine the
utility of TsHARP to sharpen the Sentinel-3 thermal data using Sentinel-2 VNIR imagery.

2. Materials and Methods

2.1. TsHARP Method

The TsHARP algorithm is based on the linear correlation between LST and fractional vegetation
cover (fc). A detailed description of the TsHARP procedure is given in Agam et al. [17]. An empirical
linear regression model is fitted to the LST and fc data at the native coarse resolution of the LST image
after aggregating the fine (target) resolution fc image to match the coarse resolution of the LST image
(LSTcoarse and fc coarse, Equation (1)).

LSTcoarse = a + bfc_coarse (1)

with fc computed as follows (Equation (2)).

fc = 1−
(

NDVImax −NDVIi

NDVImax − NDVImin

)0.625

(2)

where NDVIi is the index value in a specific pixel while NDVImax and NDVImin are the maximum and
minimum values from the scene, respectively [33].

Assuming that the correlation between LST and fc is scale-independent, the resulting regression
coefficients (a and b) obtained at the low resolution are applied to the fine spatial resolution vegetation
index together with the fine resolution fc data (fc fine) to predict the regression-based LST at the target
fine resolution (LSTfine, Equation (3)). Lastly, the residual error (i.e., the difference between the native,
LSTnative, and the estimated, LSTcoarse, temperatures) for the corresponding coarse resolution pixel is
added to the predicted temperature to increase the prediction accuracy (Equation (4)).

Stage 1–sensor comparison and inter-calibration–before using Landsat-8 to validate the sharpening
product, the comparability between the Sentinel-3 and the Landsat-8 thermal images had to be evaluated.
To this end, six pairs of Sentinel-3 vs. Landsat-8 thermal images, acquired within a maximum of a
15-minute time difference, were compared. To minimize potential additional sources of error due
to different atmospheric corrections between the two sensors [34], the comparison, as well as the
sharpening, was applied on top-of-atmosphere brightness temperature (BT) images, which has been
previously done (e.g., [19,25,35]). The six BT image-pairs were compared at the coarse resolution of
960 m (see more in Section 2.4 hereafter). For the following analyses, two of the six pairs of images, for
which a coinciding same-day Sentinel-2 overpass was available (Table 1), were chosen. For these two
pairs, the linear regression coefficients resulting from regressing the Sentinel-3 BT values against the
Landsat-8 BT values were used to calibrate the images. The calibrated Landsat-8 BT images were used
in Stage 3 for validation (see below).

LSTfine = a + bfc fine (3)

LSTdownscale = LSTfine + (LSTinitial − LSTcoarse) (4)
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2.2. Methodological Workflow

Testing the accuracy of TsHARP for sharpening Sentinel-3 thermal images using Sentinel-2 VNIR
images was assessed by comparing the sharpened thermal images to Landsat-8 thermal images that
were acquired at a fine resolution. This was applied in three stages (Figure 1).Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 16 
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Table 1. List of study sites and Landsat 8, Sentinel-3, and Sentinel-2 images used in this study.

Site Acquisition
Date

Location Coordinates
Landsat 8 Sentinel-3 Sentinel-2

Path/Row Overpass Time (Local Time)

1 13-Jul-17 Campo Grande, Brazil 20.13◦S, 53.32◦W 224/74 9:34 9:34 9:51

2 20-Jun-17 Podebrady,
Czech Republic 50.14◦N, 15.15◦E 191/25 11:50 11:50 12:00

3 16-Jul-17 Omaha, Iowa -
Nebraska, USA 41.45◦N, 96.1◦W 28/31 12:05 12:00 -

4 16-Jul-17 Sacramento, CA, USA 38.54◦N, 121.39◦W 44/33 11:45 11:44 -
5 9-Jul-17 Sacramento, CA, USA 37.28◦N, 120.35◦W 43/34 11:39 11:25 -

6 17-Oct-17 Madhya Pradesh
District, India 23.6◦N, 79.33◦E 114/44 11:08 11:08 -

Stages 2 and 3 were, as mentioned, based on an analysis of two sites only, for which images from
all three satellites were available. In Stage 2–thermal sharpening–the TsHARP algorithm was applied
over the two sites, and, in Stage 3–validation–the accuracy of TsHARP was evaluated by a visual and
statistical comparison.
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2.3. Study Sites

Six areas representing different climatic conditions and land-cover types were selected (Table 1
and Figure 2).

Figure 2. Landsat 8 OLI color-infrared images at 30-m spatial resolution for: (a) Site 1, image acquired
on 13 July 2017. (b) Site 2, image acquired on 20 June 2017. (c) Site 3, image acquired on 16 July 2017.
(d) Site 4, image acquired on 16 July 2017. (e) Site 5, image acquired on 9 July 2017, and (f) Site 6 image
acquired on 17 October 2017. The outlines in Panels b and e delineate the analyzed areas.

- Site 1–Campo Grande, Brazil
A relatively homogeneous landscape characterized by extensive savanna formations crossed by

forests and stream valleys. The altitude of the site ranges from 298 to 764 m. The area includes irrigated
and rainfed wheat, corn, barley, rice, and soybeans fields, orchards, natural sand banks, savannahs,
open pastures, and bushes. The climate is classified as subtropical and tropical with an annual mean
temperature of 24 ◦C and annual mean precipitation of 1471 mm [36].

- Site 2–Podebrady, Czech Republic
Lying in a temperate climate zone with annual precipitation of about 660 mm, this site is

characterized by mild and humid summers with an average annual temperature of 8.8 ◦C. The altitude
varies from 146 to 1,385 m. This site contains mixed evergreen and broadleaves forests, urban areas,
croplands, pastures, orchards, wetlands, and water bodies. Most agricultural fields are planted with
winter wheat, barley, sugar beet, rapeseed, and maize.

- Site 3–Iowa-Nebraska border near Omaha, Nebraska, USA
A relatively flat plain with an average altitude of 310 m above mean sea level (a.m.s.l) dominated

by croplands, mainly corn and soybean fields (93%), with a minority of sorghum, oats, and wheat.
Small areas of forest, grassland, riparian vegetation, and urban regions occur within the scene. The area
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is characterized by a humid continental climate, with an annual precipitation rate of 700 mm and an
annual temperature of 10.5 ◦C.

- Sites 4 and 5 are located near Sacramento, California, USA
These areas are predominantly agricultural landscapes with mainly irrigated rice fields. Other

common crops are grapes, citrus, almonds, and lettuce. A small fraction of the area comprises
grasslands, hay fields, and cattle ranches. The climate in the region is Mediterranean with average
annual high and low temperatures of 24.2 ◦C and 9.2 ◦C, respectively, and average precipitation of 485
mm that falls predominantly during the winter season (November–March). The altitude reaches a
maximum of about 2,230 m. Site five has a 15-minute gap between Landsat 8 and Sentinel-3 imagery,
while images were extracted at the same time at Site 4.

- Site 6–Madhya Pradesh District, India
This is a fertile land region with the main crop production of wheat, pulses, rice, oilseeds, sorghum,

soybean, and sugarcane. The average field size is 0.5 x 0.8 km, which is the smallest among all sites,
with the most diverse land cover. Other land covers found in the scene are ponds, grasslands, savannas,
hills, urban areas, and bushes. The climate is humid subtropical, with hot and dry summers and cold
and wet winters. The annual rainfall of the region is 1218 mm with an average annual high and low
temperatures of 33 ◦C and 18 ◦C, respectively. The altitude of the region varies from 312–970 m.

All scenes correspond to entire tiles of Landsat 8. The outlines in Panels b and e in Figure 2
delineate the analyzed areas for Site 2 and Site 5 since Sentinel-3 did not cover the whole Landsat scene
(Site 2) and to avoid clouds (Sites 5).

Sites 1 and 2, for which Sentinel-3, Sentinel-2, and Landsat 8 overlapped (Figure 3), were used to
perform the inter-calibration of NDVI maps (Stage 1, Figure 1), as well as to apply TsHARP (Stage 2,
Figure 1) and to validate the sharpening results (Stage 3, Figure 1).

2.4. Data

Thermal images from Landsat 8 OLI and Sentinel-3 Sea and Land Surface Temperature Radiometer
(SLSTR) were collected in June–October 2017. Landsat 8 OLI images containing VNIR and shortwave
infrared (SWIR) with 30-m spatial resolutions were downloaded from the official USGS website
(http://earthexplorer.gov.by). Landsat 8’s native thermal resolution is 100 m, but only the 30-m images
disaggregated by the Landsat Science Team were available publicly. The Sentinel-3 SLSTR products
were provided by the Scientific Sentinel Hub (http://scihub.copernicus.eu/). They consist of two thermal
bands at a 1,000-m spatial resolution in addition to the VNIR bands at a 500-m spatial resolution.

The Sentinel-2A data are composed of 13 spectral bands in the VNIR region resolutions ranging
from 10 to 60 m. The Sentinel-2 tile has a small fixed size of 100 x 100 km, so the selection of satellite
images was limited to the overlapping areas of the Landsat and Sentinel overpasses.

2.5. Data Processing

Landsat 8 images were calibrated to top-of-atmosphere reflectance and brightness temperature
using the Landsat Ecosystem Disturbance Adaptive Processing System [37]. Then, the reflectance
maps were atmospherically and geometrically corrected using the ATCOR module included in the
ERDAS IMAGINE software [38]. The atmospherically corrected red and near-infrared bands were
used to calculate NDVI. Water and artificial pixels were masked out using supervised classification
since they do not conform to the NDVI–BT relationship. Landsat 8 BT images were aggregated to 960
m, which is the closest multiple of 30 m to the 1,000-m resolution of the Sentinel-3 BT images. These
images were used to sharpen Landsat-to-Landsat to eliminate errors stemming from the differences
between sensors. In addition, Landsat 8 BT images were aggregated to 60, 120, and 240 m. All three
were used for validating the sharpening into these three resolutions to test the accuracy dependency
on the target resolution. Aggregation was conducted after converting BT to radiance, according to
the Stefan-Boltzmann Law, and converted it back to BT at the coarse resolution. Lastly, Sentinel-3 BT
images were resampled to 960 m, to match the aggregated resolution of Landsat 8. The Sentinel-3
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BT images were re-projected and geo-registered to the same reference system of the UTM Zone to
match Landsat 8 thermal imagery. The Sentinel-2A dataset was atmospherically corrected with sen2cor
software [39]. Band 8a (near-infrared, 20-m pixel size) and band 4 (Red, 10-m pixel size) were used to
calculate NDVI.
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2.6. TsHARP Performance Assessment

To evaluate the sharpening accuracy of Sentinel-3 BT images (BTsentinel3) to a finer resolution
based on VNIR data acquired by Sentinel-2, fine-resolution BT images acquired by Landsat 8 (BTlandsat)
were used. To evaluate the uncertainty caused by comparing results from different sensors, a two-step
analysis was performed. First, BTlandsat was aggregated to the coarse resolution of BTsentinel3 on which
the sharpening algorithms were applied. The sharpened images were then compared to the original
BTlandsat. After that, BTsentinel3 were sharpened and compared to BTlandsat. This allowed the isolation
of errors that were solely due to differences between the two sensors, which are irrespective of the
sharpening procedure.
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The level of agreement between the reference and the sharpened temperatures was estimated by
root-mean-square error (RMSE), mean absolute error (MAE), bias, the coefficient of determination (R2),
and the normalized root-mean-square error (nRMSE); Equations (5)–(9), respectively [40].

RMSE = bn−1
n∑

i = 1

(
Tsharp − Tref

)2
c

1/2 (5)

MAE =

 n−1
n∑

i = 1

(
Tsharp − Tref

) (6)

R2 = 1−

∑(
Tsharp − Tref

)2

∑(
Tsharp − Tref_mean

)2 (7)

bias =

∑n
i = 1

(
Tsharp − Tref

)
n

(8)

nRMSE =
RMSE

Tmax − Tmin
(9)

where Tsharp is the sharpened temperature, Tref and Tref_mean are the reference temperature and the
average of the reference temperature in the entire image, respectively, and Tmax and Tmin are the
maximum and minimum temperature values, respectively.

3. Results and Discussion

3.1. Sensor Intercalibration of Brightness Temperature

The surface temperature rapidly changes, especially during the mid-morning. The typical
overpass time of many satellites including Landsat and Sentinel. A comparison between sensors is,
thus, challenging, and, unless the acquisition time is exactly simultaneous, some of the differences
should be attributed to the time gap. As mentioned above, time acquisition was the primary criterion
for choosing the sites for this study, and, even with this careful screening, some gaps in time acquisition
were inevitable (Table 1).

Figure 4 displays the results of the correlation between the Sentinel-3 BT and the reference
aggregated Landsat-8 BT images, and Table 2 depicts the associated statistics. Strong positive
correlations were found between the images with the intercepts ranging from 0.10–1.73 ◦C and the
slopes from 0.96–1.0. The highest intercepts were detected for areas with a wide altitude range: Sites 2,
4, and 6.

RMSE and MAE ranged from 0.71–1.37 and 0.61–1.01 ◦C, respectively. The normalized RMSE
showed that all sites had nearly the same error range with values from 4.2% to 7.4% (Table 2).
The smallest errors were found for homogeneous and relatively flat regions (Sites 1 and 3), despite the
time difference between image acquisitions.

The positive biases signify that the Sentinel-3 derived BTs were slightly higher than those derived
by Landsat 8. The near-unity slopes and the relatively high R2 suggest that, despite the uncertainties
related to the calibration and different viewing geometries, the responses of both sensors are similar.
The regression results also indicate that it is possible, to a reasonable degree, to calibrate the derived
temperatures, i.e., “to correct” the Sentinel-3 data to better match the Landsat 8 data. The quotation
marks are added to indicate that we do not intend to define which of the two sensors is more accurate.
Rather, we inter-calibrate them for the purpose of testing the TsHARP algorithm.
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represents the regression line. The dashed red line is the graph 1:1 line.

Table 2. Quantitative analysis of the differences between the simulated Landsat 8 thermal data and
Sentinel-3 TM data at a coarse spatial resolution. The statistics include: the regression coefficients slope
and intercept, coefficient of determination (R2), root mean square error (RMSE), mean absolute error
(MAE), mean bias (Bias = Sentinel-3 (S3) minus Landsat 8 (L8)), and normalized RMSE (nRMSE).

Sites
Date of
Image

Acquisition

Acquisition Time
Difference (L8–S3)

(min)

Intercept
(◦C) Slope R2 RMSE MAE Bias nRMSE

1 13-Jul-17 0 0.75 0.99 0.85 0.92 0.72 0.42 7.4%
2 20-Jun-17 0 1.73 0.96 0.85 1.11 0.83 0.55 4.5%
3 16-Jul-17 5 0.97 0.99 0.92 0.71 0.61 0.57 5.9%
4 16-Jul-17 0 1.60 0.98 0.96 1.28 1.0 0.71 4.2%
5 9-Jul-17 15 0.10 1.0 0.93 1.38 1.0 0.18 4.4%
6 17-Oct-17 0 1.41 0.98 0.95 1.08 0.90 0.80 5.8%

To the best of our knowledge, the relationship between Sentinel-3 and Landsat 8 thermal bands
has not yet been reported. Studies comparing land surface temperature from MODIS and Landsat
platforms [41] revealed a significant difference between sensors induced by sensor measurement errors
and systematic errors that have led to alterations in radiance at the sensors. Liu et al. [42] found a
discrepancy between MODIS and aggregated ASTER surface temperature of about 3 ◦C due to the
difference in the retrieval algorithm, atmospheric correction, and sensor performance. Merlin et al. [43]
also reported errors between MODIS and ASTER data of about 2.4 ◦C. Weng et al. [44] pointed out
that thermal data from different sensors at a close acquisition time can be comparable after applying
pre-processing procedures, such as radiometric calibration, geometric detection, and atmospheric
correction. Nevertheless, biases can be observed due to the differences in acquisition time, bandwidth,
view geometry, swath width, geo-location errors, and a spectral response function [44,45]. Satellites’
altitude can also lead to temperature discrepancies [46].
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Despite the relatively high R2, which indicates that it is feasible to apply the inter-comparison
regression coefficients and use the Landsat 8 high-resolution images to evaluate the accuracy of the
sharpening approach, we conducted one additional intermediate step. To assess the accuracy of
TsHARP for the study sites, the sharpening procedure was first applied to the aggregated Landsat
scenes, using only one source of data. This allowed the assessment of the founding errors of the
method itself, excluding additional errors due to the differences between the sensors.

3.2. TsHARP Validation

Figures 5 and 6 present the results of sharpening the 960-m resolution BT images from both
aggregated Landsat 8 (TsHARPLandsat) and Sentinel-3 (TsHARPSentinel) to 60 m, alongside the ‘original’
coarse resolution image and the original Landsat 8 scene at 60 m, for Sites 1 and 2, respectively
(see Figure 3 for the RGB and false color images of the sites). A visual qualitative assessment reveals
that the spatial distribution of the reference image and disaggregated images showed a similar spatial
distribution both when using a single (Landsat 8) platform and when using two platforms for the
sharpening (Sentinel-2 and 3) and comparing the results to a third platform (Landsat 8). The maps
were comparable in regions with high NDVI values, and the sharpened thermal maps showed more
spatial detail than the coarse resolution BT imagery. However, the thermal maps obtained from a
single platform demonstrated a much higher contrast between low and high temperatures compared
to the reference image.
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The TsHARPLandsat and TsHARPSentinel images were compared with the reference BT images
at a 60-m resolution by computing the error difference (reference BT minus downscaled BT). Maps
of the differences between the three images (the two sharpened temperatures TsHARPLandsat minus
TsHARPSentinel and the Landsat reference image) for Sites 1 and 2, are presented in Figures 7 and 8,
respectively. In Site 1, both TsHARPLandsat and TsHARPSentinel imagery underestimated the temperature
over forests and dense vegetation and overestimated the temperature over sparse vegetation fields
and bare soils compared with the reference temperature. Differences >3 ◦C were observed in 0.09%
of the area (1283 pixels out of a total of 1,357,185 pixels in the scene) for TsHARPLandsat, and, in 7.2%
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of the area (98,216 pixels), the errors ranged from 1.5 to 3 ◦C, mostly along the borders of fields and
riparian areas. This can be explained by the high correlation between BT and NDVI (Figure 7a).
Agam et al. [21] reported that sharpening of homogeneously vegetated areas results in smaller errors
due to the accurate fitting of the BT-NDVI regression model. For TsHARPSentinel errors > 3 ◦C were
observed in 1.4% of the area (19,128 pixels) and errors ranging from 1.5–3 ◦C were observed in 20% of
the area (270,511 pixels) (Figure 7b). This is likely due to loss of accuracy between different satellite
platforms. Over this site, the Sentinel-based sharpened temperatures were mostly lower than those
from TsHARPLandsat (Figure 7c).
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aggregated Landsat 8 using Landsat 8 60-m NDVI. (d) Sharpened to 60-m BT derived from applying
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Sharpening over Site 2 yielded less accurate (±3 ◦C) temperatures for both TsHARPLandsat and
TsHARPSentinel. The lowest errors were found over agricultural landscapes for both platforms and
sites. However, densely vegetated areas and bare soils resulted in larger errors due to the variation in
NDVI values in different land covers. In this case as well, most errors were generally along the borders
of fields and riparian areas.



Remote Sens. 2019, 11, 2304 12 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 16 

 

(b) Reference Landsat 8 BT at 60 m. (c) Sharpened to 60-m BT derived from applying TsHARP to 
aggregated Landsat 8 using Landsat 8 60-m NDVI. (d) Sharpened to 60-m BT derived from applying 
TsHARP to Sentinel-3 using Sentinel-2 60-m NDVI. 

The TsHARPLandsat and TsHARPSentinel images were compared with the reference BT images at a 60-m 
resolution by computing the error difference (reference BT minus downscaled BT). Maps of the differences 
between the three images (the two sharpened temperatures TsHARPLandsat minus TsHARPSentinel and the Landsat 
reference image) for Sites 1 and 2, are presented in Figures 7 and 8, respectively. In Site 1, both TsHARPLandsat and 
TsHARPSentinel imagery underestimated the temperature over forests and dense vegetation and overestimated 
the temperature over sparse vegetation fields and bare soils compared with the reference temperature. 
Differences >3 °C were observed in 0.09% of the area (1,283 pixels out of a total of 1,357,185 pixels in the scene) 
for TsHARPLandsat, and, in 7.2% of the area (98,216 pixels), the errors ranged from 1.5 to 3 °C, mostly along the 
borders of fields and riparian areas. This can be explained by the high correlation between BT and NDVI (Figure 
7a). Agam et al. [21] reported that sharpening of homogeneously vegetated areas results in smaller errors due to 
the accurate fitting of the BT-NDVI regression model. For TsHARPSentinel errors > 3 °C were observed in 1.4% of 
the area (19,128 pixels) and errors ranging from 1.5-3 °C were observed in 20% of the area (270,511 pixels) (Figure 
7b). This is likely due to loss of accuracy between different satellite platforms. Over this site, the Sentinel-based 
sharpened temperatures were mostly lower than those from TsHARPLandsat (Figure 7c). 

Figure 7. Residuals maps of (a) TsHARPLandsat at a 60-m spatial resolution. (b) TsHARPSentinel at a 60-m 
spatial resolution, and (c) difference between TsHARPLandsat and TsHARPSentinel for Site 1. 

Sharpening over Site 2 yielded less accurate (±3 °C) temperatures for both TsHARPLandsat and TsHARPSentinel. 
The lowest errors were found over agricultural landscapes for both platforms and sites. However, densely 
vegetated areas and bare soils resulted in larger errors due to the variation in NDVI values in different land 
covers. In this case as well, most errors were generally along the borders of fields and riparian areas. 

The error statistics analysis indicates that the accuracy of the sharpening algorithm decreases as the target 
resolution becomes finer (Table 3), i.e., that the greater the difference between the original resolution and the 
target resolution becomes, the greater the errors. Agam et al. [17] and Essa et al. [47] also observed a decrease in 
accuracy with a finer resolution due to the increasing degree of subpixel variability. RMSE for TsHARPLandsat 
ranged from 0.68–0.83 °C and 0.85–1.17 °C, for Sites 1 and 2, respectively. The results of RMSE for TsHARPLandsat 
are comparable with the results from Agam et al. [17] where RMSE ranged between 0.67 and 1.39 °C, depending 
on the date and sensor. At both sites, BT obtained from TsHARPSentinel was less accurate with RMSE ranging from 
1.1–1.5 °C. The bias of TsHARPLandsat was small and negative for Site 1, which signifies an overestimation of the 
sharpened temperature. The bias of TsHARPSentinel indicates that the sharpened temperature was considerably 

Figure 7. Residuals maps of (a) TsHARPLandsat at a 60-m spatial resolution. (b) TsHARPSentinel at a
60-m spatial resolution, and (c) difference between TsHARPLandsat and TsHARPSentinel for Site 1.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 16 

 

lower than the reference temperature for both sites. The MAEs for TsHARPLandsat compared to the reference BTs 
were also lower than for TsHARPSentinel. Compared to TsHARPLandsat, the MAE for TsHARPSentinel was higher by 
~0.3 °C for Site 1 and by ~0.2 °C for Site 2 at 60-m spatial resolution. The R2 values for TsHARPSentinel were always 
less than those estimated for Landsat-8 data. 

An overall weaker performance was observed for Site 2 in comparison to Site 1 (Table 3, Figure 8). This is 
likely due to the weaker correlation between BT and NDVI for Site 2. The potential limitation of using NDVI-
based sharpening approaches for agricultural areas was shown by Karnieli et al. [28]. The authors suggested 
that, at high latitude regions, where plant growth is limited by availability of energy rather than by availability 
of water, the NDVI-BT correlation is positive. Being located at 50 N latitude, this may feature an additional 
explanation to the larger errors observed for Site 2. 

Table 3. Statistics of the disaggregated thermal maps in comparison with the referenced thermal 
imagery. 

 
Site 1 Site 2 

240 m 120 m 60 m 240 m 120 m 60 m 

MAE 
TsHARPLandsat 0.53 0.59 0.64 0.64 0.78 0.87 
TsHARPSentinel 0.88 0.92 0.95 0.92 1.02 1.09 

R2 
TsHARPLandsat  0.89 0.86 0.84 0.83 0.79 0.77 
TsHARPSentinel  0.80 0.78 0.76 0.69 0.67 0.65 

RMSE 
TsHARPLandsat  0.68 0.77 0.83 0.85 1.05 1.17 
TsHARPSentinel  1.12 1.17 1.20 1.20 1.34 1.45 

BIAS 
TsHARPLandsat  -0.003 -0.004 -0.004 0.007 0.009 0.013 
TsHARPSentinel  0.63 0.63 0.63 0.27 0.27 0.27 

 

 

Figure 8. Residuals maps of (a) TsHARPLandsat at a 60-m spatial resolution. (b) TsHARPSentinel at a
60-m spatial resolution, and (c) difference between TsHARPLandsat and TsHARPSentinel for Site 2.



Remote Sens. 2019, 11, 2304 13 of 17

The error statistics analysis indicates that the accuracy of the sharpening algorithm decreases
as the target resolution becomes finer (Table 3), i.e., that the greater the difference between the
original resolution and the target resolution becomes, the greater the errors. Agam et al. [17] and
Essa et al. [47] also observed a decrease in accuracy with a finer resolution due to the increasing degree
of subpixel variability. RMSE for TsHARPLandsat ranged from 0.68–0.83 ◦C and 0.85–1.17 ◦C, for Sites
1 and 2, respectively. The results of RMSE for TsHARPLandsat are comparable with the results from
Agam et al. [17] where RMSE ranged between 0.67 and 1.39 ◦C, depending on the date and sensor. At
both sites, BT obtained from TsHARPSentinel was less accurate with RMSE ranging from 1.1–1.5 ◦C.
The bias of TsHARPLandsat was small and negative for Site 1, which signifies an overestimation of
the sharpened temperature. The bias of TsHARPSentinel indicates that the sharpened temperature
was considerably lower than the reference temperature for both sites. The MAEs for TsHARPLandsat

compared to the reference BTs were also lower than for TsHARPSentinel. Compared to TsHARPLandsat,
the MAE for TsHARPSentinel was higher by ~0.3 ◦C for Site 1 and by ~0.2 ◦C for Site 2 at 60-m spatial
resolution. The R2 values for TsHARPSentinel were always less than those estimated for Landsat-8 data.

Table 3. Statistics of the disaggregated thermal maps in comparison with the referenced thermal imagery.

Site 1 Site 2

240 m 120 m 60 m 240 m 120 m 60 m

MAE
TsHARPLandsat 0.53 0.59 0.64 0.64 0.78 0.87
TsHARPSentinel 0.88 0.92 0.95 0.92 1.02 1.09

R2 TsHARPLandsat 0.89 0.86 0.84 0.83 0.79 0.77
TsHARPSentinel 0.80 0.78 0.76 0.69 0.67 0.65

RMSE
TsHARPLandsat 0.68 0.77 0.83 0.85 1.05 1.17
TsHARPSentinel 1.12 1.17 1.20 1.20 1.34 1.45

BIAS
TsHARPLandsat -0.003 -0.004 -0.004 0.007 0.009 0.013
TsHARPSentinel 0.63 0.63 0.63 0.27 0.27 0.27

An overall weaker performance was observed for Site 2 in comparison to Site 1 (Table 3, Figure 8).
This is likely due to the weaker correlation between BT and NDVI for Site 2. The potential limitation
of using NDVI-based sharpening approaches for agricultural areas was shown by Karnieli et al. [28].
The authors suggested that, at high latitude regions, where plant growth is limited by availability of
energy rather than by availability of water, the NDVI-BT correlation is positive. Being located at 50 N
latitude, this may feature an additional explanation to the larger errors observed for Site 2.

Most TsHARP research is based on disaggregating MODIS, ASTER, or Landsat images from TIR
to VNIR resolutions. Most of these studies have tested the sharpening using the same satellite
platform. Only a few of them attempted to sharpen thermal infrared images using multiple
platforms [15,20,22,40,43,44]. Mukherjee et al. [25] pointed out that using TsHARP to downscale a
MODIS image from 1000 m to 250 m resulted in an RMSE of about 1.59 ◦C and R2 = 0.82, while
downscaling aggregated Landsat 7 from 960 to 120 m yielded an error of 0.78 ◦C. Our results are
consistent with studies by Bisquert et al. (2016a) for whom RMSE values ranged from ± 1.6-± 1.7 ◦C
using one Landsat platform and ±1.8-±2.1 ◦C using MODIS versus Landsat satellites.

Lastly, to emphasize the advantage of TsHARP over a simple resampling, the Sentinel-3 coarse
resolution images for both sites were resampled to 60 m without applying a sharpening algorithm and
compared to the Landsat reference scenes (Figure 9).
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dashed red line is the 1:1 line.

The resulting lower R2 (0.53 vs. 0.75 and 0.30 vs. 0.65, for Sites 1 and 2, respectively) indicates that
TsHARP outperforms a simple sharpening. One should also bear in mind the possibility that the errors
obtained are, in fact, smaller than the ones reported in this paper. The lack of ground measurements
prevents us from determining whether the Sentinel-3 or the Landsat-8 thermal images better agree
with the actual surface temperatures. Thus, it is possible that we compared the TsHARP results to a
less accurate reference. This remains an open question.

4. Conclusions

The mean absolute differences between Sentinel-3 and Landsat 8 BT images were up to 1 ◦C in
all six sites, with the Sentinel-3 temperatures being typically higher. The smallest errors were found
for homogeneous and relatively flat regions despite the time difference between image acquisitions.
In comparative studies, such as the one presented in this paper, it is possible to intercalibrate between
these two sensors when needed.

Applying TsHARP on Sentinel-3 BT data using Sentinel-2 VNIR data resulted in mean absolute
errors of ~1 ◦C, with errors increasing as the difference between the native and the target resolutions
increases. Part of the error is attributed to the discrepancy between the BT images acquired by the
two platforms. This is reflected by the smaller errors observed when sharpening was applied on
synthetic-aggregated Landsat-8 BT images, with errors ranging between 0.53 and 0.87 ◦C. These
results show the potential for sharpening Sentinel-3 BT images using Sentinel-2 VNIR data for a range
of applications. Further research is needed to test additional sites and conditions, and potentially
additional sharpening methods, which can be applied to the Sentinel platforms.

Author Contributions: The contribution of the authors include: conceptualization—N.A., A.K., and Y.C.
Methodology—N.A. and W.P.K. Software—H.H. and N.P. Validation—H.H. Formal analysis—H.H. and
N.P. Writing—original draft preparation, H.H. Writing—review and editing, Y.C., A.K., W.P.K., and N.A.
Visualization—H.H., Y.C., A.K., and N.A. Funding acquisition—Y.C., N.A., and A.K.

Funding: The Israel Ministry of Agriculture and Rural Development (Eugene Kandel Knowledge Centers)
as part of the program Precision agriculture: Development of systems to improve resources application in
the field supported this research (contract No. 235/16). The European Union’s Horizon 2020 Research and
Innovation Program “Improving Future Ecosystem Benefits through Earth Observations” (Eco-potential) under
grant agreement No. 641762 also partly supported this research.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2019, 11, 2304 15 of 17

References

1. Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale
with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [CrossRef]

2. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index
space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [CrossRef]

3. Carlson, T. An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil
Moisture from Satellite Imagery. Sensors 2007, 7, 1612–1629. [CrossRef]

4. Qin, Z.; Berliner, P.; Karnieli, A. Micrometeorological modeling to understand the thermal anomaly in the
sand dunes across the Israel–Egypt border. J. Arid Environ. 2002, 51, 281–318. [CrossRef]

5. Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination
for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and
validation. Remote Sens. Environ. 2010, 114, 540–551. [CrossRef]

6. Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens.
2017, 9, 967. [CrossRef]

7. Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and
energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003,
85, 429–440. [CrossRef]

8. Chen, Y.; Zhan, W.; Quan, J.; Zhou, J.; Zhu, X.; Sun, H. Disaggregation of Remotely Sensed Land Surface
Temperature: A Generalized Paradigm. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5952–5965. [CrossRef]

9. Ha, W.; Gowda, P.H.; Howell, T.A. A review of downscaling methods for remote sensing-based irrigation
management: part I. Irrig. Sci. 2013, 31, 831–850. [CrossRef]

10. Ha, W.; Gowda, P.H.; Howell, T.A. A review of potential image fusion methods for remote sensing-based
irrigation management: part II. Irrig. Sci. 2013, 31, 851–869. [CrossRef]

11. Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely
sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ.
2013, 131, 119–139. [CrossRef]

12. Mitraka, Z.; Chrysoulakis, N.; Doxani, G.; Del Frate, F.; Berger, M. Urban Surface Temperature Time Series Estimation
at the Local Scale by Spatial-Spectral Unmixing of Satellite Observations. Remote Sens. 2015, 7, 4139–4156. [CrossRef]

13. Song, X.; Zhao, Y. Study on component temperatures inversion using satellite remotely sensed data. Int. J.
Remote Sens. 2007, 28, 2567–2579. [CrossRef]

14. Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.-C. Characterization
of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI
differences. Remote Sens. Environ. 2018, 215, 482–494. [CrossRef]

15. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance:
predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218.

16. Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Colaizzi, P.D. Utility of thermal sharpening over Texas high
plains irrigated agricultural fields. J. Geophys. Res. 2007, 112, D19110. [CrossRef]

17. Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial
sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [CrossRef]

18. Yang, G.; Pu, R.; Huang, W.; Wang, J.; Zhao, C. A Novel Method to Estimate Subpixel Temperature by Fusing
Solar-Reflective and Thermal-Infrared Remote-Sensing Data With an Artificial Neural Network. IEEE Trans.
Geosci. Remote Sens. 2010, 48, 2170–2178. [CrossRef]

19. Gao, F.; Kustas, W.; Anderson, M. A Data Mining Approach for Sharpening Thermal Satellite Imagery over
Land. Remote Sens. 2012, 4, 3287–3319. [CrossRef]

20. Bindhu, V.M.; Narasimhan, B.; Sudheer, K.P. Development and verification of a non-linear disaggregation
method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal
data to estimate evapotranspiration. Remote Sens. Environ. 2013, 135, 118–129. [CrossRef]

21. Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Colaizzi, P.D. Utility of thermal image sharpening for
monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions. Geophys. Res. Lett.
2008, 35, L02402. [CrossRef]

22. Bisquert, M.; Sánchez, J.M.; López-Urrea, R.; Caselles, V. Estimating high resolution evapotranspiration from
disaggregated thermal images. Remote Sens. Environ. 2016, 187, 423–433. [CrossRef]

http://dx.doi.org/10.5589/m04-043
http://dx.doi.org/10.1016/S0034-4257(01)00274-7
http://dx.doi.org/10.3390/s7081612
http://dx.doi.org/10.1006/jare.2001.0867
http://dx.doi.org/10.1016/j.rse.2009.10.012
http://dx.doi.org/10.3390/rs9090967
http://dx.doi.org/10.1016/S0034-4257(03)00036-1
http://dx.doi.org/10.1109/TGRS.2013.2294031
http://dx.doi.org/10.1007/s00271-012-0331-7
http://dx.doi.org/10.1007/s00271-012-0340-6
http://dx.doi.org/10.1016/j.rse.2012.12.014
http://dx.doi.org/10.3390/rs70404139
http://dx.doi.org/10.1080/01431160500181200
http://dx.doi.org/10.1016/j.rse.2018.04.031
http://dx.doi.org/10.1029/2007JD008407
http://dx.doi.org/10.1016/j.rse.2006.10.006
http://dx.doi.org/10.1109/TGRS.2009.2033180
http://dx.doi.org/10.3390/rs4113287
http://dx.doi.org/10.1016/j.rse.2013.03.023
http://dx.doi.org/10.1029/2007GL032195
http://dx.doi.org/10.1016/j.rse.2016.10.049


Remote Sens. 2019, 11, 2304 16 of 17

23. Chen, X.; Li, W.; Chen, J.; Rao, Y.; Yamaguchi, Y. A Combination of TsHARP and Thin Plate Spline Interpolation
for Spatial Sharpening of Thermal Imagery. Remote Sens. 2014, 6, 2845–2863. [CrossRef]

24. Jeganathan, C.; Hamm, N.A.S.; Mukherjee, S.; Atkinson, P.M.; Raju, P.L.N.; Dadhwal, V.K. Evaluating a
thermal image sharpening model over a mixed agricultural landscape in India. Int. J. Appl. Earth Obs.
Geoinformation 2011, 13, 178–191. [CrossRef]

25. Mukherjee, S.; Joshi, P.K.; Garg, R.D. A comparison of different regression models for downscaling Landsat and
MODIS land surface temperature images over heterogeneous landscape. Adv. Space Res. 2014, 54, 655–669. [CrossRef]

26. Duan, S.-B.; Li, Z.-L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically
Weighted Regression: Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469.
[CrossRef]

27. Bisquert, M.; Sanchez, J.M.; Caselles, V. Evaluation of Disaggregation Methods for Downscaling MODIS
Land Surface Temperature to Landsat Spatial Resolution in Barrax Test Site. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2016, 9, 1430–1438. [CrossRef]

28. Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of
NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633.
[CrossRef]

29. Karnieli, A.; Bayasgalan, M.; Bayarjargal, Y.; Agam, N.; Khudulmur, S.; Tucker, C.J. Comments on the use of
the Vegetation Health Index over Mongolia. Int. J. Remote Sens. 2006, 27, 2017–2024. [CrossRef]

30. Malenovsky, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; Garcia-Santos, G.; Fernandes, R.; Berger, M. Sentinels
for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere,
and land. Remote Sens. Environ. 2012, 120, 91–101. [CrossRef]

31. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.;
Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

32. Guzinski, R.; Nieto, H. Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution
evapotranspiration estimations. Remote Sens. Environ. 2019, 221, 157–172. [CrossRef]

33. Choudhury, B.; Ahmed, N.; Idso, S.; Reginato, R.; Daughtry, C. Relations between evaporation coefficients
and vegetation indices studied by model simulations. Remote Sens. Environ. 1994, 50, 1–17. [CrossRef]

34. Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative
Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014,
6, 9829–9852. [CrossRef]

35. Fasbender, D.; Radoux, J.; Bogaert, P. Bayesian Data Fusion for Adaptable Image Pansharpening. IEEE Trans.
Geosci. Remote Sens. 2008, 46, 1847–1857. [CrossRef]

36. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification
updated. Meteorol. Z. 2006, 15, 259–263. [CrossRef]

37. Schmidt, G.L.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) Algorithm Description; US Geological Survey: Reston, VA, USA, 2013; p. 17.

38. Richter, R. A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. 1996, 17, 1201–1214.
[CrossRef]

39. Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Gascon, F. Sentinel-2
SEN2COR: L2A Processor for Users. In Living Planet Symposium; Ouwehand, L., Ed.; European Space Agency:
Prague, Czech Republic, 2016; pp. 1–8.

40. Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313.
[CrossRef]

41. Essa, W.; Verbeiren, B.; van der Kwast, J.; Batelaan, O. Improved DisTrad for Downscaling Thermal MODIS
Imagery over Urban Areas. Remote Sens. 2017, 9, 1243. [CrossRef]

42. Liu, Y.; Hiyama, T.; Yamaguchi, Y. Scaling of land surface temperature using satellite data: A case examination
on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens. Environ. 2006, 105, 115–128.
[CrossRef]

43. Merlin, O.; Duchemin, B.; Hagolle, O.; Jacob, F.; Coudert, B.; Chehbouni, G.; Dedieu, G.; Garatuza, J.; Kerr, Y.
Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2
images. Remote Sens. Environ. 2010, 114, 2500–2512. [CrossRef]

44. Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat
and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [CrossRef]

http://dx.doi.org/10.3390/rs6042845
http://dx.doi.org/10.1016/j.jag.2010.11.001
http://dx.doi.org/10.1016/j.asr.2014.04.013
http://dx.doi.org/10.1109/TGRS.2016.2585198
http://dx.doi.org/10.1109/JSTARS.2016.2519099
http://dx.doi.org/10.1175/2009JCLI2900.1
http://dx.doi.org/10.1080/01431160500121727
http://dx.doi.org/10.1016/j.rse.2011.09.026
http://dx.doi.org/10.1016/j.rse.2011.05.028
http://dx.doi.org/10.1016/j.rse.2018.11.019
http://dx.doi.org/10.1016/0034-4257(94)90090-6
http://dx.doi.org/10.3390/rs6109829
http://dx.doi.org/10.1109/TGRS.2008.917131
http://dx.doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.1080/01431169608949077
http://dx.doi.org/10.1175/1520-0477(1982)063&lt;1309:SCOTEO&gt;2.0.CO;2
http://dx.doi.org/10.3390/rs9121243
http://dx.doi.org/10.1016/j.rse.2006.06.012
http://dx.doi.org/10.1016/j.rse.2010.05.025
http://dx.doi.org/10.1016/j.rse.2014.02.003


Remote Sens. 2019, 11, 2304 17 of 17

45. Brown, M.E.; Pinzon, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency of long-term
NDVI time series derived from AVHRR,SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. [CrossRef]

46. Stathopoulou, M.; Cartalis, C. Downscaling AVHRR land surface temperatures for improved surface urban
heat island intensity estimation. Remote Sens. Environ. 2009, 113, 2592–2605. [CrossRef]

47. Essa, W.; Verbeiren, B.; van der Kwast, J.; Van de Voorde, T.; Batelaan, O. Evaluation of the DisTrad thermal
sharpening methodology for urban areas. Int. J. Appl. Earth Obs. Geoinformation 2012, 19, 163–172. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2005.860205
http://dx.doi.org/10.1016/j.rse.2009.07.017
http://dx.doi.org/10.1016/j.jag.2012.05.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	TsHARP Method 
	Methodological Workflow 
	Study Sites 
	Data 
	Data Processing 
	TsHARP Performance Assessment 

	Results and Discussion 
	Sensor Intercalibration of Brightness Temperature 
	TsHARP Validation 

	Conclusions 
	References

