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Abstract: Developments in the capabilities and affordability of unmanned aerial vehicles (UAVs) have
led to an explosion in their use for a range of ecological and agricultural remote sensing applications.
However, the ubiquity of visible light cameras aboard readily available UAVs may be limiting the
application of these devices for fine-scale, high taxonomic resolution monitoring. Here we compare
the use of RGB and multispectral cameras deployed aboard UAVs for assessing intertidal and shallow
subtidal marine macroalgae to a high taxonomic resolution. Our results show that the diverse spectral
profiles of marine macroalgae naturally lend themselves to remote sensing and habitat classification.
Furthermore, we show that biodiversity assessments, particularly in shallow subtidal habitats, are
enhanced using six-band discrete wavelength multispectral sensors (81% accuracy, Cohen’s Kappa)
compared to three-band broad channel RGB sensors (79% accuracy, Cohen’s Kappa) for 10 habitat
classes. Combining broad band RGB signals and narrow band multispectral sensing further improved
the accuracy of classification with a combined accuracy of 90% (Cohen’s Kappa). Despite notable
improvements in accuracy with multispectral imaging, RGB sensors were highly capable of broad
habitat classification and rivaled multispectral sensors for classifying intertidal habitats. High spatial
scale monitoring of turbid exposed rocky reefs presents a unique set of challenges, but the limitations
of more traditional methods can be overcome by targeting ideal conditions with UAVs.

Keywords: drones; multispectral; macroalgae; biodiversity; unmanned aerial vehicles (UAVs);
habitat; classification

1. Introduction

Kelp and macroalgal ecosystems cover a large proportion of the earth’s coastlines [1], support
diverse and productive ecosystems [2], and are some of the most prolific carbon fixers on the planet [3].
These habitats on rocky shores are a key component of temperate marine ecosystems, providing a
variety of ecosystem services, producing biomass for consumers within and far outside of kelp beds,
and contributing to carbon sequestration in deep sediments [4]. Kelp distributions are declining
globally [3], with warming trends and heatwave events causing the dramatic contraction of kelp beds

Remote Sens. 2019, 11, 2332; doi:10.3390/rs11192332 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9153-139X
http://www.mdpi.com/2072-4292/11/19/2332?type=check_update&version=1
http://dx.doi.org/10.3390/rs11192332
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 2332 2 of 18

in some regions [5–7]. Understanding the consequences of global climate change and other spatially
explicit stressors (e.g., eutrophication, sedimentation) requires broad-scale assessments of spatial
distributions and biodiversity.

Although imaging sensors aboard satellites have been frequently used for mapping terrestrial
vegetation [8–10] and specific marine vegetation (e.g., Macrocystis pyrifera, [11–13]; Nereocystis
leutkeana, [14]; and seagrass [15,16]), there are several limitations to using satellite imagery to assess
multiple habitat classes simultaneously, particularly in patchy habitats [17]. Marine assemblages often
form highly variable mosaics associated with a range of environmental and biological gradients [18,19].
In such cases, pixel resolution can be problematic for habitat classification, where spectral signatures of
multiple vegetation types are dampened (spectral confusion) [17]. Furthermore, satellite imagery is
greatly affected by meteorological conditions, such as cloud and aerosol interference, surface glare,
and poor synchrony with tides. For many applications these limitations are absorbed by the high
frequency of satellite passes. However, the chances of capturing high-quality images diminish greatly in
turbid coastal waters where accurate observations of the intertidal and subtidal zones require aligning
tide, meteorological, and oceanographic variables. Autonomous unmanned aerial vehicles (UAVs,
commonly referred to as “drones”) deployed to coincide with meteorological and oceanographic
conditions provide a potential alternative, allowing the targeting of key meteorological variables and
performing moderate-scale mapping of intertidal and shallow subtidal kelp and macroalgae beds [20].

UAVs are increasingly being used for a range of environmental and ecological monitoring
campaigns [20–27] and, although the use of aerial platforms for ecological monitoring is hardly new,
the deployment of imaging sensors on unmanned aerial drones has some advantages (as well as
disadvantages) over other manned and unmanned platforms. The key advantages of copter drones
are high pixel resolution, highly flexible deployment, and relatively low cost per unit of time [25,28].
Satellite platforms provide the cheapest option, especially per unit area, but suffer from low pixel
resolution and are restricted in the timing of imagery capture. One key benefit of satellite imagery is the
multiple discrete spectral bands available, particularly infrared bands that allow enhanced vegetation
detection [29]. However, the adaptation of multi-spectral and hyper-spectral imaging systems to
drone platforms in some ways closes the gap between low spatial resolution, high spatial coverage
satellite imagery, and traditional ecological monitoring techniques with high taxonomic resolution and
accuracy, but very low spatial coverage [25].

The dissipation of infrared wavelengths during the active photosynthesis of vegetation provides
a reflection of electromagnetic radiation in specific wavelengths (710–800 nm) and has been well used
in terrestrial applications for the remote sensing of vegetation, including biomass estimation and
assessments of vegetation health [8–10]. However, the rise of aerial drones for ecological research has
been dominated by units equipped with visible light cameras (known as RGB because of the three bands
of data representing the intensities of red, green, and blue wavelengths of each pixel [20,23]). Additional
spectral bands (i.e., not only red-green-blue) provide further opportunities to identify unique spectral
signatures among vegetation types. In this sense, marine macroalgae provide great opportunities for
high species separation compared to terrestrial plants, because of their high photosynthetic pigment
diversity [30–32]. Marine macroalgae fall across three phyla—Ochrophyta (brown algae), Chlorophyta
(green algae), and Rhodophyta (red algae)—with each showing unique pigment profiles [33], and
species within each phylum showing high variability in some cases [30,32]. The spectral separation
of the return reflection signal potentially provides utility in more detailed broad-scale mapping of
macroalgal communities with high species richness. The detection of these unique spectral profiles
may be enhanced by isolating key parts of the electromagnetic spectrum using multispectral imaging
with discrete, non-overlapping bands.

Here we examine the effectiveness and accuracy of UAVs for separating diverse species mixtures
of intertidal and shallow subtidal macroalgae. Autonomous UAVs are readily and cheaply available to
a range of specialist and citizen scientists and are commonly purchased with RGB (red-green-blue)
cameras. Vegetation detection is notably improved by measuring reflection in the near-infrared
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wavelengths [34], but infrared wavelengths are heavily absorbed by water, making them less useful
with increasing water depth. We examined the relative benefits of enhanced spectral sensing over
more readily available RGB sensors to (a) determine the potential applications and limitations of
readily available sensors, and (b) determine the potential of enhanced spectral sensors for marine
macroalgal taxonomic separation across intertidal and shallow subtidal habitats in turbid and
exposed environments.

2. Materials and Methods

2.1. Study Site

The Oaro reef is a limestone platform in the Kaikoura region of the South Island of New Zealand
(Figure 1). This is an open coast rocky reef exposed to oceanic swell but with several fringing rocky
platforms that can buffer all but the largest swells. These rocky intertidal and subtidal platforms have
one of the richest macroalgal floras in New Zealand, with over 200 individual species of Ochrophyta
(brown algae), Rhodophyta (red algae), and Chlorophyta (green algae) identified [35]. Several long-term
studies have examined small-scale, high-resolution biodiversity [35,36], making it an ideal location
to upscale macroalgal biodiversity assessments using UAVs. Much of this biodiversity is unlikely
to be identifiable from above due to the spatial and temporal rarity of many species [35] and the
occurrence of many species beneath canopies [37]. However, several canopy-forming brown algal
species (Hormosira banksii, Carpophyllum maschalocarpum, Durvillaea spp.) occur at high abundance at
this site, and there are also large stands of red (Gigartina spp., Cladhymenia oblongifolia, Corallina officinalis)
and green (Ulva spp.) macroalgal species. The high algal richness and broad taxonomic variation
make this an ideal location to examine the potential for UAVs to perform broad-scale biodiversity
assessments of major habitat-dominating algae.   Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 19 
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Figure 1. Study site location relative to the New Zealand archipelago (A), along the Kaikoura Coast
(B), with the area of aerial imagery captured near the Oaro settlement superimposed on the satellite
imagery panel (C).

2.2. Macroalgal Richness and Spectral Profiles

The species richness of algae across the study site was assessed at two tidal zones (mid and
low shore). At each shore height, the cover and identity of macroalgal species were enumerated
and identified using permanent transects and 1 m2 quadrats. A subset of these species from each
phylum—Ochrophyta (brown algae), Rhodophyta (red algae), and Chlorophyta (green algae)—was
selected for determining spectral signals.

The spectral signature of macroalgal reflection was determined for a number of key macroalgal
species in the region. An Ocean Optics® spectrometer (350–1000 nm range, band width of 0.3 nm)
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was used to identify the spectra reflected by macroalgal thalli. Samples were illuminated with a
tungsten-halogen light source within an integrating sphere (ISP-REF, OceanOptics®) for reflectance
measurements. Before testing reflection spectra, dark calibration and a white standard (Spectralon 99%)
were used for calibration and all data were collected using the OceanView (OceanOptics®) software.
In all cases, four replicate specimens of each species were used, with the combined spectra of the four
replicates averaged for each species. Reflection signals of each macroalgal thallus were averaged over
5 nm widths, and all four replicates were then averaged, and the standard error was estimated. Although
the remarkably high species richness of this site makes it difficult to examine the spectral signatures
of all individual species, we sampled several species across the Phaeophyceae, Rhodophyta, and
Chlorophyta. Species representing Ochrophyta (Carpophyllum maschalocarpum, Macrocystis pyrifera, and
Hormosira banksii), Rhodophyta (Cladhymenia oblongifolia, Champia novaezealandiae, and Polysiphona sp.)
and a single Chlorophyte (Ulva spp.) were assessed for reflection spectra. Reflection spectra were
standardized by peak reflection at wavelengths between 700 and 720 nm.

2.3. UAV Mapping

The capture of RGB and multispectral aerial imagery for habitat classification was completed at
the Oaro reef in February 2019 over 0.4 km2 of rocky reef (Figure 2). A DJI Matrice 600 equipped with
both an Airphen® (Hiphen®) six-band multispectral camera and a Sony mirrorless RGB camera was
used to capture imagery. The Airphen® multispectral camera has a focal length of 8 mm, a sensor
resolution of 1280 × 960 pixels, and six synchronized global shutter sensors each centered at 530, 570,
630, 670, 710, and 750 nm (band width 10 nm). The three bands of the Sony® RGB camera span the
visible wavelengths (400–700 nm), with large overlap between blue and green and green and red,
but little overlap between red and blue. The Sony camera was an A5100 with a 15 mm Voitlander®

rectilinear lens, providing final images of 6000 × 4000 pixels. Flights were completed during clear sky
conditions, during the lowest tide series of the month (one of the best tide series of the year) and were
completed within 30 minutes each side of peak low tide. Marine conditions were also favorable with a
swell <0.8 m (significant wave height). Flights were at an elevation of 50 m above sea level and single
images were taken with 95% overlap (RGB) and 80% overlap (multispectral camera); image capture on
both cameras was triggered simultaneously.

To geo-reference the orthoimages accurately, 12 ground control targets were laid out evenly across
the captured area. These targets were 0.5 × 0.5 m with high contrast blue and yellow squares to
accurately identify the center of the target. Each target was surveyed using a high accuracy RTK-GPS
system (Trimble™). Furthermore, 3 × 30 meter transects were laid out across the reef with weighted
bright orange cones positioned at 10 m intervals along each tape. Transects were dominated by
intertidal habitat, with only around 15% of transects covering shallow subtidal habitats. The cover
and diversity of macroalgae were assessed and photographed in situ in 30 × 0.25 m2 quadrats at 1 m
intervals along each transect to provide ground truthing of species composition. The positions of the
quadrats and relative species assessments were used to produce validated training samples on the
whole reef orthoimage.
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Figure 2. RGB (left) and multispectral (RGB) orthomosaic (right) of the Oaro reef, Kaikoura,
New Zealand. Blue boxes represent ground truth transects captured in aerial imagery.

2.4. Analysis and Validation

RGB imagery (8 bit) was stitched together using Agisoft Photoscan™. The final orthoproduct was a
three-band image with a final pixel size of 1.25 cm2 per pixel. Multispectral images (32 bit) were stitched
together using Agisoft Photoscan™, as well as the Airphen™ plugin for multiband imagery. The final
product was a six-band orthomosaic with 2.5 cm2 pixels. Reflectance was calibrated using a reference
panel and the radiometric calibration tool (Agisoft Photoscan™ and the Airphen™ plugin). Values from
the RGB camera represent brightness alone. Additionally, the RGB and multispectral orthomosaics
were combined into a composite nine-band orthomosaic by aligning the ground control targets
from each orthomosaic. To do this, the six band multispectral dataset was resampled using bilinear
interpolation to produce the same pixel size as the RGB imagery (1.25 cm2 pixels). The composite
imagery therefore combined the three broad bands of RGB and the six narrow bands of the multispectral
camera, as well as combining the finer-scale pixel resolution of the RGB images with the coarser-scale
multispectral images.

Habitat classification procedures were done on a per pixel basis using support vector machines
(SVM) trained using 50 training samples per class (Arc GIS Pro™). Samples were polygons selected
around habitat classes encompassing, in some cases, several hundred pixels. The assigned classes
were: Durvillaea spp.; Carpophyllum (mostly Carpophyllum maschalocarpum, also including the occasional
Cystophora sp.); Ulva spp.; red algae; Hormosira banksii; coralline algae (including articulated and
crustose coralline algae); a generic algal class not readily identifiable to species due to increasing depth
(but still identifiable as vegetation); bare rock; water (with no visible submerged vegetation); and
shadow. Furthermore, an additional 50 unique samples of each class were retained for validation
procedures (hereafter referred to as remote validation samples). On top of these remote validation
samples, in situ validation regions along the three delineated transects were also identified for accuracy
testing. These samples, unlike the validation samples, had uneven sample sizes of each class, but
provided higher resolution at a small scale. Images taken at ground level were GPS-referenced and
embedded into the whole region orthoimage, enabling the sampling of validation regions of the habitat
classes. Remote and in situ validation samples were assessed using the high-resolution RGB imagery,
where the color and shape of each habitat class was readily identifiable. Once samples were generated
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on the RGB images, the habitat classification was completed separately for RGB imagery, multispectral
imagery, and composite imagery (three-band RGB + six-band multispectral). The workflow for these
procedures is shown in Figure 3.

For accuracy assessments, confusion matrices were generated and the user accuracy, producer
accuracy, Cohen’s kappa, and combined agreement between reference samples and the classified maps
were determined. Furthermore, errors of omission (Type I errors) and errors of commission (Type II
errors) were also calculated for each class. This was done separately for the remote validation and the in
situ validation samples. Accuracy assessments used 10,000 random points and an equalized stratified
random sampling strategy which equally distributes random points across each class. Accuracy
assessments were done on RGB imagery, multispectral imagery, and the composite image (three-band
RGB + six-band multispectral).
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3. Results

Full macroalgal biodiversity surveys completed prior to aerial surveys revealed a total of
45 macroalgae, represented by three green algae, 15 brown algae, and 27 red algae (Appendix A).
Low shore assemblages had only a single green alga, 10 brown algae, and 26 red algae. Mid-shore
assemblages in contrast had more green algae (three species) and higher brown algal richness
(12 species), but lower red algal richness (19 species).

The reflection spectra of brown, green, and red macroalgal species showed clear spectral separation
between groups (Figure 3). In general, red algae showed reduced reflection between 520 and 650 nm
wavelengths compared to brown algae, while green algae showed consistent but low reflection at most
wavelengths except blue. The spectral sensitivity of RGB sensors integrate wavelengths that span peak
absorption and reflection (e.g., 600–700 nm), but the blue (400–500 nm) band spans wavelengths not
covered by the multispectral sensor (Figure 4a). In contrast, the bands of the multispectral camera are at
wavelengths corresponding to high absorption (troughs) and high reflection (peaks). Red algal species
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(Cladhymenia oblongifolia, Champia novaezealandiae, and Polysiphonia sp) had some crossover, but overall
showed unique signatures, particularly at near-infrared wavelengths (Figure 4b). The two fucoid species of
brown algae (Hormosira banksii and Carpophyllum maschalocarpum) had similar spectral profiles (Figure 4c),
but with some separation of the two species at the peak absorption of chlorophyll-a (670 nm). The single
laminarian brown alga (Macrocystis pyrifera) varied greatly from the fucoid species. The green algae
(Ulva spp.) had lower reflection overall than the red or brown species, with few distinct peaks of reflection
or absorption (Figure 4d). The spectral bands captured by the multispectral camera were positioned at
suitable wavelengths for separating macroalgal species, particularly between red, brown, and green algae,
but may lack the spectral resolution for separating species with similar spectral profiles within phyla.  Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 19 
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Figure 4. Spectral range of RGB (red, blue, and green curves) and multispectral bands represented as grey
bars (a) and % reflection (±SE) of red algal species, Polysiphonia sp, Champia novaezealandia, and Cladhymenia
oblongifolia (b), brown algal species Hormosira banksii, Macrocystis pyrifera, and Carpophyllum maschalocarpum
(c), and the green alga Ulva spp. (d) across the electromagnetic spectrum, ranging from 400 to 900 nm.
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Imagery revealed that a number of species were readily identifiable from 50 m altitude (Figure 5a–c).
However, not all species detected in situ were identifiable from aerial imagery, and so several species
were combined into functional groups. Habitat classification of three-band RGB imagery, six-band
multispectral imagery, and nine-band composite imagery showed comparable results (Figure 5e), but on
closer inspection there were some differences within increasing spectral bands. In particular, nine-band
composite imagery had >85% agreement between reference and classified datasets, while three-band
RGB and six-band multispectral imagery had <85% agreement for algal classes (Figure 5e). Habitat
classification of intertidal regions had relatively high rates of agreement between three-band, six-band,
and nine-band imagery, although there was much greater patchiness of the three-band RGB dataset
and greater connectedness of classes for the six-band multispectral and nine-band composite datasets
(Figure 6). Subtidal regions showed a high rate of misclassification of Carpophyllum in the three-band
RGB imagery, which was frequently misclassified as Hormosira, bare rock, and shadow (Figure 7).
In fact, one of the common misclassifications of the RGB dataset was the classification of vegetation
classes as null classes, particularly bare rock or shadow. Subtidal classification of multispectral imagery
also frequently misclassified water (with bare rock beneath) as Ulva. Both misclassification errors were
not obvious in the composite imagery. There was also a tendency for shallow submerged vegetation to
be grouped into the generic submerged algae class, which included red algal species, coralline algae,
and brown kelp and fucoid species.
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Figure 6. Examples of intertidal zone habitat imagery and the classification outputs from three-band
RGB imagery (a), six-band multispectral imagery (b), and nine-band composite imagery (c). Habitat
classification was done using support vector machines trained using 50 training samples for 10 classes:
Durvillaea spp.; Carpophyllum; Ulva spp.; red algae; Hormosira banksii; coralline algae; submerged algae;
bare rock; water; and shadow.
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Figure 7. Example of shallow subtidal zone habitat imagery and the classification outputs from
three-band RGB imagery (a), six-band multispectral imagery (b), and nine-band composite imagery
(c). Habitat classification performed using support vector machines trained using 50 training samples
for 10 classes: Durvillaea spp.; Carpophyllum; Ulva spp.; red algae; Hormosira banksii; coralline algae;
submerged algae; bare rock; water; and shadow.

Over the entire study area, RGB and multispectral imagery frequently misclassified several habitat
classes (i.e., 1/5 pixels assigned to a class were misclassified), though these classes differed between the
two imagery types. Multispectral imagery frequently misclassified Ulva and Durvillaea spp., whereas
bare rock, coralline algae, Hormosira, and Carpophyllum were frequently misclassified by the RGB
imagery (Table 1). In contrast, composite imagery (combined RGB + multispectral) had low rates of
misclassification (better than 1/10 pixels misclassified for most classes). In all cases the highest degree
of misclassification was for the fucoid algae, Hormosira banksii and Carpophyllum maschalocarpum, which,
according to the reflectance profiles (Figure 4), were the most similar of any two species examined.

In general, the accuracy of remote validation samples was higher than that for in situ validation
samples. However, this was not the case for RGB imagery, which had slightly lower rates of
misclassification for in situ validation samples (Table 1; Appendix B). This may be associated with the
dominance of intertidal habitat in the validation transects and the low sample size of several subtidal
habitat classes. Combining three broad bands and six narrow bands of RGB and multispectral cameras
provided the best results for the classification of marine macroalgae (ca. 1/10 pixels misclassified,
compared to ca. 1/5 pixels misclassified for both RGB and multispectral imagery).
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Table 1. Accuracy assessment of habitat classification for three-band RGB, six-band multispectral, and
nine-band composite imagery, including the accuracy of each class (user accuracy “U-acc” and producer
accuracy “P-acc”), the combined agreement between classified data and reference data (“Agreement %”),
and the Cohen’s kappa estimate of accuracy (negative values indicate that classification is significantly
worse than random; values close to 1 indicate that classification is significantly better than random).
Accuracy was assessed from validation samples collected in two ways: directly from imagery (remote
validation) and from ground truth samples from three transects captured in the orthoimages (in situ
validation). Bold values highlight the imagery type that had the lowest rate of misclassification.

Remote Validation In Situ Validation
Three-band Six-band Nine-band Three-band Six-band Nine-band

Class U-acc P-acc U-acc P-acc U-acc P-acc U-acc P-acc U-acc P-acc U-acc P-acc
Durvillaea spp. 0.88 0.71 0.76 0.71 0.89 0.78 0.72 0.96 0.63 0.91 0.79 0.96
Ulva 0.87 0.92 0.65 0.91 0.94 0.95 0.97 0.92 0.7 0.84 0.93 0.92
Carpophyllum 0.7 0.8 0.85 0.86 0.84 0.89 0.71 0.87 0.86 0.7 0.79 0.92
Coralline 0.71 0.89 0.84 0.81 0.84 0.83 0.72 0.79 0.7 0.84 0.81 0.9
Red algae 0.89 0.79 0.8 0.84 0.82 0.84 0.91 0.44 0.8 0.62 0.88 0.9
Submerged algae 0.82 0.73 0.75 0.65 0.84 0.98 - - -
Hormosira 0.55 0.66 0.82 0.91 0.89 0.9 0.62 0.71 0.67 0.76 0.73 0.86
Rock 0.75 0.6 0.98 0.53 0.98 0.87 0.82 0.99 0.98 0.68 0.99 0.99
Shadow 0.92 0.84 0.99 0.99 0.99 0.99 0.88 0.67 0.99 0.74 0.99 0.99
Water 0.99 0.99 0.61 0.94 0.98 0.95 0.99 0.93 0.76 0.83 0.99 0.87
Agreement % 79% 81% 90% 81% 77% 88%
Cohen’s Kappa 0.77 0.79 0.89 0.79 0.75 0.87

4. Discussion

Marine macroalgae are a key component of coastal ecosystems worldwide, and in many marine
temperate systems they are the key habitat-formers and ecosystem engineers. Loss of marine macroalgae
is often associated with the collapse of many essential ecosystem functions [38], with metrics of
macroalgal richness and abundance therefore representing an integrated assessment of ecosystem
health. These habitat-formers are threatened by a spatial hierarchy of anthropogenic disturbances, from
local-scale point source discharges of sediments/pollutants [39,40] and regional-scale overfishing [41] to
global-scale climate change [6,42]. Although the use of satellite sensors for monitoring some temperate
macroalgal species is well established [11–14], these techniques are not reliable in all situations and do
not enable the estimation of the relative cover of several overlapping species.

Targeting optimal meteorological and oceanographic conditions for high-resolution remote sensing
with UAVs ideally fills a gap between high spatial cover, low-resolution satellites and low spatial
cover, high-resolution in situ sampling [25,27]. High-resolution remote sensing using UAVs has
great potential to detect changes in rocky reef ecosystems, but importantly may have the spatial and
taxonomic resolution to detect subtle changes preceding ecological collapse (i.e., tipping points). Such
subtle cues may include (a) species displacement (e.g., replacement of native Durvillaea spp. by invasive
Undaria pinnatifida [7]), (b) distribution shifts at fringes of exposure [43,44], and (c) shifts in species
compositions/richness/distributions.

Our results confirm that UAVs are a useful tool for the identification of multiple intertidal habitat
types (see also [20,23,24,26]). Multispectral sensors aboard UAVs for high-resolution multiband imagery
have, to our knowledge, not been used on temperate coastal marine environments. Spectrally rich imagery
has enormous potential for producing spatial distribution maps of macroalgal distribution at relatively
high taxonomic resolution. We showed the separation not only of broad taxonomic groupings (Ochrophyta,
Rhodophyta, and Chlorophyta), but also of species within phyla. There are, however, limitations to the
depth at which sufficiently unique spectral signals are returned, and limitations to the distinctness of
spectral profiles that can be separated. For example, two spectrally similar species (the fucoids Hormosira
banksii and Carpophyllum maschalocarpum) had the highest rates of misclassification.

UAVs are becoming a ubiquitous tool in local-scale remote sensing research [25,28]. However, the best
practices and limitations of these tools for marine coastal biodiversity assessments are yet to be established.
Our study highlights the potential of UAVs to accurately assess the richness of marine macroalgal vegetation
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in intertidal and shallow subtidal environments, but also strongly recommends the use of multispectral
imaging systems (or hyperspectral systems) for detecting unique spectral signatures and maximizing
taxonomic resolution. Habitat classification accuracy was greater when combining the broad spectral
ranges of RGB bands and the narrow multispectral bands, suggesting that greater spectral resolution would
lead to increasing accuracy and greater taxonomic resolution. However, RGB (three-band) imagery did
perform remarkably well compared to composite (nine-band) imagery in classifying intertidal habitats,
suggesting that imagery from readily available drones could be useful in determining broad-scale coverage
of multiple intertidal habitat types [20,24,26]. This research promotes the use of RGB cameras aboard UAVs
for high spatial resolution studies of intertidal macroalgal coverage but urges caution in the number of
habitat classes that can be readily separated and suggests that immersed habitats may have insufficient
spectral information to be classified accurately.

Regardless of the spectral resolution of the imaging system, there were limitations in the application
of aerial tools for mapping submerged habitats. The dampening of spectral signals with increasing
water column depth only allows the detection of taxonomically broad submerged algal classes. Beyond
a depth of 2–3 m in turbid coastal waters, the accurate detection of any vegetation classes should be
treated with caution. There were also limitations in the use of in situ transects for validating habitat
classification procedures at a broad scale. The relatively small scale covered by in situ transects and the
patchy nature of macroalgal assemblages can result in an uneven distribution of validation samples
across habitat classes. We recommend trialing multi-height UAV flights (e.g., discrete 20 m altitude
strips within an area mapped at 50 m altitude) to produce extremely high-resolution imagery over
narrow strips (ideally including survey features such as transects and markers) to enable accurate
validation sample collection, potentially leading to a greater separation of taxonomic richness.

There is, however, great potential in multispectral and hyperspectral sensing for the high taxonomic
separation of intertidal and shallow macroalgal species [45], and potentially enhanced signature
detection through increasing distances of water column with increasing band resolution. Multispectral
imaging was more accurate than RGB imagery; however, combining the broad RGB signal with the
narrow multispectral imagery produced high rates of accurate habitat classification. Hyperspectral
imaging has been successfully used to separate even optically similar species, such as multiple species
of seagrass [16], and a higher spectral resolution may be necessary for species-level classification in
some cases (e.g., separating spectrally similar species such as Hormosira and Carpophyllum). Compact
field deployable hyperspectral systems hold much promise for many applications [46], and their use
for classifying marine macroalgae could allow species-level identification over moderate spatial scales.

5. Conclusions

Exposed coastal rocky reef ecosystems are particularly challenging habitats to monitor for several
reasons: (a) they are ecologically highly variable in space and time (e.g., mosaic communities, substrate
heterogeneity, stress gradients); (b) they are often exposed to swell, being exposed for short periods
and sometimes difficult to access due to coastal topography; and (c) rocky reefs are typically a narrow
interface between land and sea, making them difficult to sample in situ over large distances. For these
reasons UAVs may be an ideal tool for sampling these habitats over broad spatial scales, while
maintaining sufficient pixel resolution for species, genus, or functional group taxonomic resolution.

The deployment of discrete multispectral sensors for identifying marine macroalgae greatly
increased classification accuracy compared to the use of RGB imagery, but the greatest benefits were
observed when RGB and multispectral bands were combined (RGB, 79% accuracy; multispectral 81%
accuracy; composite 90% accuracy). There were clear limitations in RGB imagery for classifying shallow
submerged macroalgae, whereas multispectral and composite imagery were able to better distinguish
two spectrally similar species (Carpophyllum maschalocarpum and Hormosira banksii). However, all camera
platforms had limited utility at water depths beyond 3 m under the turbid conditions characteristic of
many temperate coastlines.
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Long-term monitoring of these important habitats to observe local- or global-scale changes may
benefit greatly from well-timed deployments of UAVs, particularly when equipped with enhanced
multi- or hyper-spectral sensors. However, the ubiquity of RGB sensors aboard readily available UAVs
also holds promise for broad-scale marine macroalgal assessments. Such sensors could be effectively
deployed by specialist scientists and citizen scientists alike to monitor functional group level shifts in
marine macroalgae, but caution must be exercised regarding the higher rate of misclassification with
limited spectral bands available.
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Appendix A

Table A1. Macroalgal biodiversity and mean percent cover and standard deviation (SD) at mid-shore
and low shore zones at the Oaro reef, Kaikoura, New Zealand.

Low Shore Mid-Shore

Phylum Species/Genus Mean %
Cover SD Mean %

Cover SD

Chlorophyta Bryopsis sp. 0.0 0.0 0.1 0.3
Codium fragile 0.0 0.0 0.4 1.3

Ulva sp. 10.6 9.6 16.4 18.3
Ochrophyta Adenocystis utricularis 0.0 0.0 0.1 0.3

Carpophyllum maschalocarpum 16.4 17.6 1.1 2.1
Colpomenia complex 0.0 0.0 0.2 0.3
Colpomenia bullosa 0.0 0.0 0.1 0.3
Cystophora scalaris 8.9 13.3 0.7 1.3
Cystophora torulosa 0.0 0.0 0.1 0.3

Dictyota spp. 0.2 0.4 0.1 0.2
Durvillaea poha adult 32.0 34.4 0.0 0.0

Durvillaea willana adult 0.1 0.3 0.0 0.0
Halopteris sp. 0.6 0.8 0.2 0.6

Hormosira banksii 0.0 0.0 12.3 9.4
Marginariella boryana 0.5 1.6 0.0 0.0

Notheia anomala 0.0 0.0 0.3 0.6
Ralfsia verrucosa 0.4 1.0 0.0 0.0

Zonaria 0.0 0.0 0.1 0.3
Rhodophyta Coralline turf 18.7 21.4 51.2 36.1

Coralline Paint 20.0 20.4 0.7 0.8
Jania sp. 0.0 0.0 0.1 0.1

Ceramium spp. 0.5 1.3 0.6 1.1
Champia 1.2 1.5 1.7 1.9

Chondria macrocarpa 15.8 17.7 0.3 0.7
Cladhymenia spp. 1.9 3.1 0.1 0.2

Curdiea flabellata/Gig leathery 0.1 0.2 0.0 0.0
Echinothamnion spp. 3.0 2.3 1.2 2.5

Euptilota 0.1 0.2 0.0 0.0
Gelidium caulacantheum 1.5 3.2 11.7 8.4
Gigartina circumcincta 3.3 5.5 0.0 0.0

Gigartina clavifera 1.0 2.0 0.3 0.6
Gigartina chapmanii/Caulachantus 0.0 0.0 0.1 0.3

Gigartina decipiens 0.4 0.7 0.4 0.7
Gigartina lanceolata 4.4 5.0 1.0 1.0

Gigartina livida 0.5 1.6 0.0 0.0
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Table A1. Cont.

Low Shore Mid-Shore

Phylum Species/Genus Mean %
Cover SD Mean %

Cover SD

Gigartina multibranched 0.1 0.3 0.0 0.0
Gigartina stripy 0.2 0.6 0.0 0.0

Laurencia thysifera 0.4 1.3 2.0 2.2
Lophothamnion hirtum 0.3 0.4 0.9 1.9
Lophurella caespitosa 0.1 0.3 0.0 0.0

Plocamium microcladioides 0.0 0.0 0.1 0.3
Polysiphonia mullerii 20.4 29.4 0.0 0.0

Polysiphonia spp. 3.3 5.9 0.3 0.4
Polysiphonia strictissima 0.8 1.3 5.1 7.7

Pterocladia lucida 1.0 1.2 0.0 0.0
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