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Abstract: Extracting farmland from high spatial resolution remote sensing images is a basic task for
agricultural information management. According to Tobler’s first law of geography, closer objects
have a stronger relation. Meanwhile, due to the scale effect, there are differences on both spatial
and attribute scales among different kinds of objects. Thus, it is not appropriate to segment images
with unique or fixed parameters for different kinds of objects. In view of this, this paper presents
a stratified object-based farmland extraction method, which includes two key processes: one is
image region division on a rough scale and the other is scale parameter pre-estimation within local
regions. Firstly, the image in RGB color space is converted into HSV color space, and then the texture
features of the hue layer are calculated using the grey level co-occurrence matrix method. Thus,
the whole image can be divided into different regions based on the texture features, such as the mean
and homogeneity. Secondly, within local regions, the optimal spatial scale segmentation parameter
was pre-estimated by average local variance and its first-order and second-order rate of change.
The optimal attribute scale segmentation parameter can be estimated based on the histogram of
local variance. Through stratified regionalization and local segmentation parameters estimation,
fine farmland segmentation can be achieved. GF-2 and Quickbird images were used in this paper,
and mean-shift and multi-resolution segmentation algorithms were applied as examples to verify the
validity of the proposed method. The experimental results have shown that the stratified processing
method can release under-segmentation and over-segmentation phenomena to a certain extent,
which ultimately benefits the accurate farmland information extraction.

Keywords: remote sensing images; region division; scale parameter pre-estimation; image segmentation;
farmland extraction

1. Introduction

Farmland is one of the bases for agricultural production, and accurate information extraction
of farmland areas has become an urgent requirement for precision agriculture and sustainable
development [1]. With the development of satellite remote sensing technology, researchers have
begun to make use of remote sensing images for farmland extraction. The main methods of
farmland extraction include manual digitization with visual interpretation [2] and pixel-based
image classification [3–8]. However, the former not only takes time, but also requires experienced
researchers [9]. For the latter, although the extraction efficiency is better, most currently available
methods suffer from uncertainties in areas, locations, etc. [10–13]. Thus, due to the improvement of
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image spatial resolution, researchers proposed the object-based image analysis (OBIA) [14–16] method
for farmland extraction, especially for very high-resolution (VHR) images [17–20]. OBIA mainly
comprises two steps, including image segmentation and classification [21]. Gradually, some researchers
proposed segmentation parameters selection and optimization methods. For example, Peng and Zhang
presented a segmentation optimization and multi-features fusion method to detect farmland covered
change [22]. Ming et al. extracted cropland by combining hierarchical rule set-based classification
and spatial statistics-based mean-shift segmentation [23,24]. Although the methods mentioned above
have obtained good results through experiments, most of these study areas were only covered with
farmland, which reduced the difficulty of extraction and lacked universality. On the other hand,
these methods used unique or fixed scale parameters in the whole study area, which meant that they
were unable to meet the need of scale dependence and lead to the phenomena of error extraction or
leakage extraction.

Because of wide coverage, VHR remote sensing images have rich information on different ground
objects [25,26]. Therefore, if extracting information from the whole image, traditional methods always
consider the comprehensive effect of all kinds of objects, which ignores the accuracy of target object
extraction. Because the dominant objects in different local regions have different spatial scales, it is
inappropriate to segment images by using unique or fixed parameters. According to idea of spatial
dependence, the same kinds of objects often have a similar spatial scale and often cluster in a local
area, so images can be divided into some local regions within which the same objects gather. Aiming
at regional division, researches have presented different methods in recent years. Georganos et
al. [27,28] used the cutline creating algorithm and two other regular grid creating methods to divide
the image into local regions. Zhang et al. [29] used blocks data to divide images for functional zones
classification, which is similar to other research (e.g., Heiden et al. and Hu et al. [30,31]); however,
these methods include hard division of the whole image and they do not consider the aggregation
effect and geo-object’s self-hood scale. Additionally, the processing efficiency is low. Differently,
Kavzoglu et al. [32] applied a multi-resolution segmentation result to divide the image, which resulted
in a better accuracy than undivided classification. Zhou et al. [33] applied an image scene to divide
the VHR images. Handling the local regional images (i.e., segmentation and classification) with local
optimal parameters can effectively improve the accuracy of object extraction. Hence, scale selection
for local regions is very important and difficult for OBIA-based farmland extraction [34]. Currently,
several methods of selecting segmentation scale parameters are as follows:

• Unsupervised post-segmentation scale selections. These methods essentially define several
indicators to evaluate segmentation results, and select the most accurate ones as the final
segmentation parameters. The typical indicators are local variance (LV) and global score (GS).
Drǎguţ proposed LV as an indicator [35–37]. Woodcock and Strahler first calculated the value of
standard deviation in a small convolutional window, and then computed the mean value of these
values over the whole image [38]. Accordingly, the obtained value is LV in the image [37]. Johnson
and Xie proposed GS to evaluate results, which considered both intra-segment heterogeneity and
inter-segment similarity [39]. Georganos et al. presented a local regression trend analysis method
to select scale parameters [40]. Unsupervised post-segmentation scale selection methods need no
prior information, but they totally ignore the object category’s influence on scale selection;

• Supervised post-segmentation scale selections. These methods fall into three types: classification
accuracy-based, spatial overlap-based, and feature-based ways. For the first type, Zhang and
Du [41] used classification results at diverse scales to quantitatively evaluate multi-scale
segmentation results, and then determined the different categories’ optimal scales using the
evaluation results. For the second type, Zhang et al. [42] presented spatial overlapping degrees
between segments and object references to evaluate segmentation results, and the scale with the
largest overlapping degree was selected as the optimal scale for multi-resolution segmentations.
This kind of method can be sub-divided into two steps. First, segments are matched to object
references by boundary matching or region overlapping [43]. Then, the discrepancy measures
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are calculated on an edge-versus-non-edge basis or by prioritizing the edge pixels according to
their distance to the reference [44,45]. For the latter one, Zhang and Du employed a random
forest to measure feature importance, and the optimal scale with the largest feature importance
was selected from multiple scales [41]. Supervised post-segmentation scale selection methods
solidly considered influence factors of scale parameters, but they need referenced data. Therefore,
they are difficult to use in practical applications [46];

• Pre-segmentation scale estimation based on spatial statistics. Contrasted with the two methods
mentioned above, this method only needs spatial statistical features. Ming et al. generalized the
commonly used segmentation scale parameters into three general aspects: spatial parameter hs,
attribute/spectral parameter hr, and area parameter M [47]. Meanwhile, Ming et al. used the
average local variance (ALV) [48] or the semivariogram [49] to estimate the optimal hs, hr, and M.
Because this method is completely data-driven, it can reduce the experimental steps and improve
the efficiency without the tedious multiple scale segmentation.

In conclusion, considering the regional division and scale selection, this paper presents a stratified
scale pre-estimation method to extract farmland from VHR images, meeting the need of precision
agriculture and modern agriculture for farmland fine geometric information.

2. Materials and Methods

2.1. Study Area and Experimental Data

The study areas are located in the countryside of Handan, Hebei province and Gaoxiong,
Taiwan province, China. For the mean-shift segmentation experiment, this study uses multispectral
images acquired by GF-2 on 25 February 2017 and the image size is 2000 × 2000 pixels, with a spatial
resolution of 4m. Four bands of the multispectral image were studied, namely, blue (0.45–0.52 µm),
green (0.52–0.59 µm), red (0.63–0.69 µm), and near-infrared (NIR, 0.77–0.89 µm), which have similar
spectral ranges to the Quickbird multispectral image.

For the multi-resolution segmentation experiment, this study uses multispectral images acquired
by Quickbird (2.8m spatial resolution) on 3 July, and the image size is 1200 × 1200 pixels. Figure 1
shows the false color composition of the study area.
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2.2. Methods

This paper presents a stratified object-based farmland extraction method based on image region
division on a rough scale and scale parameter pre-estimation within local regions. Figure 2 shows the
workflow of the proposed method.
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In the first (image region division) step, the paper considers both spectrum and texture information
of VHR images and employs the ESP tool to select coarse scale parameters in a multi-resolution
segmentation algorithm. After that, it can obtain some local regions, which includes farmland covered
regions. For the second (fine scale segmentation parameters estimation) step, this paper uses an ALV
and LV histogram to estimate the spatial scale parameter and attribute scale parameter, respectively.
However, because the local images have an irregular shape, directly gathering statistics on them
will cause errors. Thus, this study selects the typical sub-regions of the image based on regional
division before scale estimation. For the last step, in order to verify that the presented method is
suitable for multiple data and different segmentation algorithms, the paper synthetically applies
GF-2, Quickbird image, mean-shift, and multi-resolution segmentation algorithms to extract farmland.
Uniformly, this paper uses a rule-based classifier in eCognition software. More details on each step are
provided below.

2.2.1. Region Division on Rough Scale

Tobler proposed that the shorter the distance between two objects is, the more related they will
be [50]. In other words, similar natural objects always cluster in the same local region with similar sizes.
Thus, dividing the VHR images and extracting farmland in local regions can improve the suitability
and accuracy of scale.
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Color transformation

In order to enhance the visual effect of multi-spectral images, researchers use different
combinations of RGB colors to show different objects. However, it is necessary to quantitate colors
because of the value difference in RGB color space among similar colors. Compared with other color
representation methods, the colors in HSV color space are closer compared to human vision [51].
It describes color with hue, saturation, and intensity. The hue layer contains digital number values of
the original images and objects with a similar color that have similarities in the hue layer.

Texture features extraction

Textures are local features of remote sensing images, and the first and second order of spatial
statistic features are usually used as textural measurements. Compared with the first order texture
matrix, the second order matrix considers the relationship between the referenced pixel and its neighbor
pixels. Grey Level Co-occurrence Matrix (GLCM) is a matrix in which elements are the amount of the
spatial combination times (i.e., the referenced pixel and its neighbor pixels co-occur in different statistic
window sizes and displacements) [52,53]. Normalized GLCM (NGLCM) can represent the frequency
of gray value combinations, and it is the frequency of each combination divided by the total frequency:

Pi,j =
Vi,j

N−1
∑

i,j=0
Vi,j

(1)

where i, j (i, j = 0, 1, 2 . . . N − 1) means the image gray level and N means the image grayscale.
Pi,j and Vi,j stand for the NGLCM and the GLCM elements, respectively. These notations have the
same meaning as the following Formula (2)–(4).

Most texture features are the weighted average of NGLCM elements, which emphasizes the
importance of different values in NGLCM. There are different kinds of indexes to describe the objects’
texture features, such as the mean, entropy, homogeneity, variance, contrast, dissimilarity, correlation,
second moment, and so on [54]. Considering the different importance of these textural features,
this paper uses mean, entropy, and homogeneity as the typical textural features for regional division.

The mean reflects the regulation of remote sensing images’ texture. The mean of GLCM is the
expectation of the discrete random variables, which can be computed by Formula (2). The more regular
the image texture, the larger the mean value will be [55].

ui =
N−1

∑
i,j=0

iPi,juj =
N−1

∑
i,j=0

jPi,j (2)

where ui and uj represent the mean of the referenced and neighbor pixels in NGLCM, respectively.
Due to the symmetry of NGLCM, ui and uj are equal in value.

Entropy represents the complexity or heterogeneity of images’ texture. If the textures are
complicated and the neighbor values have a great difference, the values of entropy will be larger.
Entropy (Ent) can be calculated as below:

Ent =
N−1

∑
i,j=0

Pi,j(− ln Pi,j) (3)

The value of homogeneity, which represents the homogeneity of different local regions,
will decline when the typical objects change sharply. The value of local regions dominated by a single
type of object stabilizes or fluctuates in the vicinity of a certain number. However, in practice, the value
greatly fluctuates at local regions with mixed type objects, which provides the theoretical basis for
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scale stratified processing. According to this, the whole image can be divided into different regions
based on homogeneity feature on a rough scale. Homogeneity (Hom) can be calculated as below:

Hom =
N−1

∑
i,j=0

Pi,j

1 + (i − j)2 (4)

In conclusion, this region division method transforms an image from RGB color space to HSV by
color transformation, and then extracts hue layer texture features with GLCM. Finally, three textural
features, the mean, entropy, and homogeneity, are used to divide the image into several local regions
with high homogeneity on a rough scale. All of the processes mentioned above can be achieved in
ENVI software.

Scale selection for region division

Coarse scale and fine scale are a kind of scale nested structure, and can be expressed by
a variation function from the view of spatial statistics. Ming et al. pointed out that the ALVariogram
is approximately equivalent to the synthetic variogram in the condition of global traversal of the
image [48]. Drǎguţ et al. proposed an estimation scale parameter (ESP) method, which is a local
variance (LV) method based on post-segmentation evaluation [37]. Thus, this paper uses ESP to divide
images on a coarse scale.

The ESP tool by Drǎguţ et al. built a model on the idea of the LV of object heterogeneity within
a scene. It automatically segments the image with given scale parameters, and calculates the LV of the
objects because each object level is acquired through segmentation. The graphics of LV and its rate of
change (ROC) are used to evaluate the appropriate scale parameters [37] (i.e., the peak of the ROC
curve indicates the optimal scale parameter). ROC can be calculated by Formula (5):

ROC =

[
L − (L − 1)

L − 1

]
× 100 (5)

where L = LV at the target level and L − 1 = LV at the next lower level.

2.2.2. Scale Parameters Pre-Estimation in Local Regions

Scale is a widely used term. In general scientific research, scale mainly refers to the range or
degree of detail in research [56]. Because the basic unit of object-based image analysis (OBIA) is image
object, the scale in OBIA simply means the scale of image object, which is the size of image object in
the spatial domain. Ming et al. pointed out that from the view of the algorithm, the scale selection in
OBIA corresponds to the scale parameters selection in the multi-scale segmentation algorithm because
the image object is obtained by image segmentation [57,58]. Based on the spatial and attribute features
of spatial data, scale parameters are summarized as spatial scale segmentation parameter hs (spatial
distance between classes or range of spatial correlations), attribute scale segmentation parameter hr

(attribute difference between classes), and area parameter M (the area or pixel number of the minimum
meaningful object).

The essence of the scale problem remains as spatial autocorrelation or scale dependent in spatial
statistics, and the appropriate scale is a critical point which can exactly reflect the existence of spatial
correlation between ground objects. According to Ming et al.’s research [47], this paper uses the scale
pre-estimation method to select scale parameters. The essence of the method is based on the statistic
estimation of global or local features. First, the average local variance (ALV) of the image is calculated.
Formula (6) shows the relation between hs and window size (w). Then, the first-order rate of change in
ALV (ROC-ALV) and the second-order change in ALV (SCROC-ALV) are used to assess the dynamics
of ALV along hs (7-8). The related formulas for calculating ROC-ALV and SCROC-ALV are as follows:

w = 2 × hs + 1 (6)
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[ROC − ALV]i =
ALVi − ALVi−1

ALVi−1
(7)

[SCROC − ALV]i = [ROC − ALV]i−1 − [ROC − ALV]i (8)

where i stands for the target level and i − 1 stands for the next target level. [ROC-ALV]i is the rate of
change in ALV at level hs, and the value of [ROC-ALV]i is usually between [0,1]. [SCROC-ALV]i is
the change of [ROC-ALV]i, and the value of [SCROC-ALV]i is also usually between [0,1]. Most of the
[SCROC-ALV]i values are small fractions.

The thresholds of ROC-ALV and SCROC-ALV are respectively set as 0.01 and 0.001, which means
the optimal hs is determined by the window size w when the value of [ROC-ALV]i is less than 0.01 and
[SCROC-ALV]i is less than 0.001 for the first time. Based on the estimated hs, the LV histogram’s first
peak is used to assist in estimating the value of hr. In order to ensure that the segmentation results are
entirely determined by hs and hr, here, M is set as 0.

Because the scale parameters pre-estimation method is applicable to almost all image segmentation
methods, this paper takes the mean-shift segmentation and multi-resolution segmentation as examples
to demonstrate the feasibility of the proposed workflow for farmland extraction from VHR remote
sensing images.

Mean-shift segmentation

The mean-shift segmentation algorithm, a clustering method [59], incorporates the spatial
information into the feature space representation. This algorithm does not require a priori knowledge
of the number of clusters, and it can shift the points in the feature space to the local maxima of
the density function by effective iterations [60,61]. Thus, the mean-shift segmentation algorithm is
widely used and has advantages for farmland extraction [62,63]. In mean-shift-based multi-scale
segmentation, there are three scale parameters: spatial bandwidth, attribute bandwidth, and merging
threshold [64–66]. The three scale parameters exactly correspond to the three scale parameters (hs,hr,M)
presented in this paper. Therefore, the scale parameters of the pre-estimation approach presented in
this paper can also be applied to estimate the appropriate scale parameters of mean-shift segmentation.

Multi-resolution segmentation

Multi-resolution segmentation (MRS) is a bottom-up region-growing technique [67], which is
one of the most commonly used image segmentation algorithms [68]. It starts with one-pixel objects
and merges similar neighboring objects together in subsequent steps until a heterogeneity threshold,
set by a scale parameter (SP), is reached [69]. Other user-defined segmentation parameters include
band weight, color/shape weight (w1), and smoothness/compactness weight (w2). SP, an important
parameter of the multi-resolution segmentation algorithm, means the upper limit for a permitted
change of heterogeneity throughout the segmentation process and directly determines the average
image object size [70]. This paper uses the algorithm provided by eCognition software in image
segmentation. When the shape heterogeneity is set as 0, the parameter SP is uniquely determined by
spectral heterogeneity, and in this condition, the scale parameter SP corresponds to hr

2, the square of
spectral differences [71]. The lager the SP value, the bigger the image object sizes will be.

3. Experiments

In order to verify the feasibility of the proposed method, this paper used GF-2 and Quickbird
images as experimental data. Mean-shift and multi-resolution segmentation algorithms were used
to segment two experimental data, respectively. The overall accuracy (OA) and farmland extraction
accuracy (FEA) were applied to evaluate the accuracy of farmland extraction. FEA refers to the user’s
accuracy of farmland (e.g., high vegetation covered farmland and low vegetation covered farmland),
which means an omission error [16]. In order to prove the validity of proposed method, we compared
the farmland extraction results of the proposed stratified scale pre-estimation based method with those
of the undivided method by the original image.
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3.1. Experiments of Farmland Extraction Based on Stratified Scale Pre-Estimation

For the GF-2 image, color space (near infrared, red, and green bands) was firstly converted from
RGB into HSV. Second, texture features of the hue layer were calculated using a 3 × 3 window from
the upper left to the lower right. Third, layers of hue, mean, entropy, homogeneity, and original image
bands were stacked into a new image as the data source of regional division. Before the segmentation
of regional division, the ESP tool was used to estimate the optimal scale parameter and the estimation
results are shown in Figure 3a, according to which 800 was selected as the optimal parameter for the
first time region partition. Fourth, the generated image was segmented by using the multi-resolution
segmentation method, in which the weight of hue, mean, and homogeneity was set as 2, while the
weight of other layers was set as 1. Scale parameter, shape index, and compactness index were set
as 800, 0.1, and 0.5, respectively. After that, an urban region and a mixed region which includes
farmland were obtained as shown in Figure 4a. Next, we used the ESP tool to estimate the second
regional division parameter, and 280 was selected as the optimal scale parameter, as shown in Figure 3b.
The mixed region was segmented by the multi-resolution segmentation method with the estimated
second regional division scale parameter, and the shape index and compactness index were set as 0.1
and 0.5, respectively. Finally, by combining the two segmentation results and merging the small broken
parts, the GF-2 image was divided into three local regions called the farmland region, urban region I,
and urban region II, as shown in Figure 4b.

For the Quickbird image, the processing is similar to the GF-2 experiment. Differently, the optimal
scale parameter estimated by the ESP tool is 700. As shown in Figure 4c, the Quickbird image
was segmented into four local regions: cloud and shadow region, farmland region, urban region I,
and urban region II.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 19 

 

the farmland extraction results of the proposed stratified scale pre-estimation based method with 
those of the undivided method by the original image. 

3.1. Experiments of Farmland Extraction Based on Stratified Scale Pre-Estimation 

For the GF-2 image, color space (near infrared, red, and green bands) was firstly converted from 
RGB into HSV. Second, texture features of the hue layer were calculated using a 3 × 3 window from 
the upper left to the lower right. Third, layers of hue, mean, entropy, homogeneity, and original 
image bands were stacked into a new image as the data source of regional division. Before the 
segmentation of regional division, the ESP tool was used to estimate the optimal scale parameter and 
the estimation results are shown in Figure 3a, according to which 800 was selected as the optimal 
parameter for the first time region partition. Fourth, the generated image was segmented by using 
the multi-resolution segmentation method, in which the weight of hue, mean, and homogeneity was 
set as 2, while the weight of other layers was set as 1. Scale parameter, shape index, and compactness 
index were set as 800, 0.1, and 0.5, respectively. After that, an urban region and a mixed region which 
includes farmland were obtained as shown in Figure 4a. Next, we used the ESP tool to estimate the 
second regional division parameter, and 280 was selected as the optimal scale parameter, as shown 
in Figure 3b. The mixed region was segmented by the multi-resolution segmentation method with 
the estimated second regional division scale parameter, and the shape index and compactness index 
were set as 0.1 and 0.5, respectively. Finally, by combining the two segmentation results and merging 
the small broken parts, the GF-2 image was divided into three local regions called the farmland 
region, urban region I, and urban region II, as shown in Figure 4b. 

For the Quickbird image, the processing is similar to the GF-2 experiment. Differently, the 
optimal scale parameter estimated by the ESP tool is 700. As shown in Figure 4c, the Quickbird image 
was segmented into four local regions: cloud and shadow region, farmland region, urban region I, 
and urban region II. 

  

(a) (b) 

 

(c) 

Figure 3. Scale parameter estimation using ESP tool. (a) The first time estimation of GF-2 image. (b) 
The second time estimation of GF-2 image. (c) Estimation of Quickbird image. 

 

Figure 3. Scale parameter estimation using ESP tool. (a) The first time estimation of GF-2 image.
(b) The second time estimation of GF-2 image. (c) Estimation of Quickbird image.



Remote Sens. 2019, 11, 108 9 of 19Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 19 

 

  

 

(a) (b) 

 

 

(c) 

Figure 4. Results of regional division based on scale stratified processing. (a) The first time region 
division result of GF-2 image. (b) The second time region division result of GF-2 image. (c) Regional 
division result of Quickbird image. 

Before scale parameter estimation in local regions and image segmentation, the depth of the 
image was reduced to 8 bits, which can not only ensure the consistency of results, but also reduce the 
calculation quantity of the experiment. In order to avoid the statistic error, this paper estimated scale 
parameters within a typical sub-region instead of an irregular original local image, as shown in Figure 
1. The estimation of hs and hr is shown in Figures 5 and 6. 
  

Figure 4. Results of regional division based on scale stratified processing. (a) The first time region
division result of GF-2 image. (b) The second time region division result of GF-2 image. (c) Regional
division result of Quickbird image.

Before scale parameter estimation in local regions and image segmentation, the depth of the
image was reduced to 8 bits, which can not only ensure the consistency of results, but also reduce
the calculation quantity of the experiment. In order to avoid the statistic error, this paper estimated
scale parameters within a typical sub-region instead of an irregular original local image, as shown in
Figure 1. The estimation of hs and hr is shown in Figures 5 and 6.
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(f) urban region II.

Then, local images were segmented with the estimated parameters listed in Table 1. For the GF-2
image, in order to extract farmland, four categories, including high vegetation covered farmland,
low vegetation covered farmland, bare land, and construction land, were determined by visual
interpretation. For the Quickbird experiment, the image was classified into five categories, including
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high vegetation covered farmland, low vegetation covered farmland, water, vegetation except
farmland, and construction land. The numbers of training and testing samples are shown in Table 2.
Local regional classified results were merged into a complete image, in which the confusion matrix
is accumulated by each regional results’ confusion matrix in the corresponding position. Finally,
as shown in Table 3, the OA and FEA of the classification results were recorded.

Table 1. Estimated scale parameters.

Region
GF-2 Image Experiment Quickbird Image Experiment

Estimated hs Estimated hr Estimated hs Estimated hr Estimated SP

farmland region 20 5 17 6 36
urban region I 15 7 14 7 49
urban region II 10 8 15 7 49

Table 2. Descriptions of land-cover types and sample amounts.

Class

GF-2 Image Experiment Quickbird Image Experiment

Training Sample
Amounts

Testing Sample
Amounts

Training Sample
Amounts

Testing Sample
Amounts

Low 27 54 42 79
High 23 311 18 29
Con 25 375 50 103
Bare 30 97

Water 10 20
Veg 56 101

Total 105 837 176 332

Low refers to low vegetation covered farmland, High refers to high vegetation covered farmland, Con refers to
construction land, Bare refers to bare land, and Veg refers to vegetation except farmland.

3.2. Experimental Results

The final farmland extraction results, which contain two categories (high vegetation covered
farmland and low vegetation covered farmland), are demonstrated in Figure 7. Table 3 shows the OA
and FEA of classification results and the classification images are shown in Figure 8a,b. For the GF-2
image, the OA and FEA of the three local regions merged image are 0.7238 and 0.9154, respectively.
Furthermore, for the Quickbird image, the OA is 0.7693 and the FEA is 0.7326.

Table 3. OA and FEA of classification results.

Image
GF-2 Image Experiment Quickbird Image Experiment

OA FEA OA FEA

farmland region 0.8113 0.9391 0.6977 0.8633
urban region I 0.6603 0.8182 0.8364 0.2069
urban region II 0.6344 0.6667 0.8361 0.4756
merged image 0.7238 0.9154 0.7693 0.7326
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3.3. Contrast Experiments

In order to verify the validity of the proposed method, we segmented and classified the original
image without using stratified processing (using the estimated optimal parameters that are suitable for
extracting the farmland for the whole image). The comparison classification results image of the two
experiments without having been stratified are shown in Figure 8c,d.

Table 4 shows the OA and FEA of the merged image by the proposed stratified method and
original image without stratified processing. The OA is improved by 3.64% and 7.04%, respectively,
in the two experiments. According to the two experimental results mentioned above, it is proved
that the proposed stratified scale pre-estimated method can extract farmland qualitatively and
quantitatively and it has practical significance in large extent remote sensing geo-applications ascribed
to regional division.

Table 4. OA and FEA of two experiments.

Image
OA FEA

Stratified
Method

Original Image Without
Stratified Processing

Stratified
Method

Original Image Without
Stratified Processing

GF-2 0.7238 0.6984 0.9154 0.9075
Quickbird 0.7693 0.7187 0.7326 0.6473

4. Discussion

4.1. Effectiveness of Scale Parameters Estimation

In order to evaluate the proposed scale parameters estimation method, this paper utilized
the synthetic evaluation model (SEM) to test the optimal scale parameters [72]. SEM is based on
homogeneity within the segmentation parcels (F(U)) and the heterogeneity between the parcels (F(V)).
The synthetic evaluation score (Score) is calculated by Formula (9):

Score = w × F(U) + (1 − w)× F(V) (9)

where w is the weight of the homogeneity index.
For more details about SEM, please refer to Ming et al. [49]. This paper used the sub-region of the

farmland region in the GF-2 image (shown in Figure 1a) and the mean-shift segmentation algorithm as
an example to verify the accuracy of the proposed method.

To reduce the computation of verification, the evaluation of the segmentation results is based on
hs from 5 to 30, with a step of 5. The hr and M are set as 5 and 0, respectively. The evaluation results
are shown in Figure 9, where w is set as 0.5.
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Figure 9 clearly shows that Score has the maximum value when hs is 20, and it is the same as
the estimation result generated by the proposed method. This result means that the scale parameters
pre-estimation method could obtain the optimal scale parameters in a sense.

4.2. Influence Factors of Farmland Extraction Accuracy

A small amount of mis-classification or missed-extraction of farmland parcels still exists in
the experiment. The influence factors of FEA can be considered from two aspects based on the
regional division. Firstly, spectral similarity between high vegetation covered farmland and woodland
(vegetation except farmland) is the main factor that causes mis-classification in the farmland region.
For example, in the Quickbird image-based experiment, the vegetation located in the middle of the
image is mis-classified as farmland. Secondly, farmland in the urban region is not the dominant object
and the low vegetation covered farmland is often confused with construction land. The category
confusion degrades the FEA, which can be presented by Table 5.

Table 5. Urban region I confusion matrix of Quickbird experiment.

Water Con Veg High Low Sum

Water 26 2 0 0 0 28
Con 0 100 0 0 0 100
Veg 0 10 47 0 0 57

High 0 0 0 0 0 0
Low 0 23 0 0 6 29
sum 26 135 47 0 6 214

Con refers to construction land, Veg refers to vegetation except farmland, High refers to high vegetation covered
farmland, and Low refers to low vegetation covered farmland.

The FEA values of urban region I and II in the Quickbird image are lower. However, compared
with the original image without stratified processing, the FEA is still improved by 13.18% when using
stratified processing. This indicates that the proposed stratified processing method is able to guarantee
the thematic information extraction accuracy.

5. Conclusions

Regional processing and stratified processing are the main and classical strategies in geographical
analysis. Based on scale stratified processing, this paper presents an object-based farmland extraction
method. The main processes include: transforming the image from RGB color space to HSV, calculating
the texture features of the hue layer, dividing the image into local regions on a coarse scale by using local



Remote Sens. 2019, 11, 108 15 of 19

variance evaluation, segmenting the image by estimated scale parameters on a fine scale, and farmland
extraction by object-based classification. The superiorities of this proposed method are as follows:

• Regional division on a coarse scale can extract the farmland region on a rough scale, which not
only improves the efficiency of farmland extraction, but also ensures the method’s universality;

• Pre-segmentation scale estimation based on spatial statistics can avoid under and over
segmentation to a certain extent. Meanwhile, the estimation accuracy is guaranteed by the SEM
method. Furthermore, it ensures the accuracy of farmland extraction;

• Theoretically, this proposed stratified processing method can be extended to extracting other
thematic information which statistically satisfies the hypothesis of the second order stationary.
In other words, the proposed stratified farmland extraction method is more suitable for
extracting thematic information with a statistically uniform size from the images covered by
a complex landscape.

Meanwhile, this proposed method also requires further improvement in future research.
The accuracy of segmentation and classification is limited in the region where objects are complex.
In future research, more efforts should be made to refine the categories, optimize the selection of
training samples, and improve the classifiers in order to further improve the farmland extraction
performance. In recent years, deep learning, semantic segmentation, and image scene classification
methods have been proposed [73–77], and these concepts could be theoretically involved in stratified
region division. In addition, there is an urgent need to develop image processing parallelization of
different local images to further improve cropland extraction efficiency in future research.
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