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Abstract: In this paper, we develop a hyperspectral feature extraction method called sparse and
smooth low-rank analysis (SSLRA). First, we propose a new low-rank model for hyperspectral
images (HSIs) where we decompose the HSI into smooth and sparse components. Then, these
components are simultaneously estimated using a nonconvex constrained penalized cost function
(CPCF). The proposed CPCF exploits total variation penalty, `1 penalty, and an orthogonality
constraint. The total variation penalty is used to promote piecewise smoothness, and, therefore,
it extracts spatial (local neighborhood) information. The `1 penalty encourages sparse and spatial
structures. Additionally, we show that this new type of decomposition improves the classification
of the HSIs. In the experiments, SSLRA was applied on the Houston (urban) and the Trento (rural)
datasets. The extracted features were used as an input into a classifier (either support vector machines
(SVM) or random forest (RF)) to produce the final classification map. The results confirm improvement
in classification accuracy compared to the state-of-the-art feature extraction approaches.

Keywords: classification; constrained penalized cost function; feature extraction; hyperspectral
image; low-rank; total variation; sparse features; smooth features

1. Introduction

Hyperspectral cameras can acquire remotely sensed images for a large number of contiguous
spectral bands. Thus, a hyperspectral image (HSI) contains detailed spectral information of a scene.
Since many kinds of materials have unique spectral signatures, this type of image is useful for
recognizing the types of materials in a captured scene [1]. On the other hand, due to the Hughes
effect [2], which is also known as the curse of dimensionality, the high spectral dimensionality makes
the analysis of HSIs a challenging task from both computational and statistical perspective. The limited
availability of training samples is a common issue in this kind of analysis since their collection can
be both time demanding and expensive [3]. An increase in the number of spectral features, after a
certain point, usually causes a decrease in classification accuracy when the number of training samples
is limited. As a result, reducing the spectral dimensionality (or feature reduction) is of great interest
in HSI analysis [4]. In general, dimensionality reduction (DR) techniques can be divided into feature
selection (FS) and feature extraction (FE). In this paper, we focus on FE.

FE is the process of finding a set of vectors that represent an observation while reducing the
dimensionality. For data classification, it is desirable to extract informative features that are useful for
differentiating between classes of interest. Although DR is important for HSI analysis, the error due to the
reduction in dimension has to occur without sacrificing the discriminative power of the classifier [5].
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FE techniques can be broadly divided, based on the availability of training data, into two main
groups: supervised FE (SFE) and unsupervised FE (USFE). The SFE methods require training samples
while the USFE techniques are used to extract distinctive features in the absence of labeled training data.

SFE has been widely studied in the hyperspectral community [1]. Discriminant analysis feature
extraction (DAFE) [6] is a classical SFE approach. It is a parametric method that extracts features that
maximize the proportion of the between-class variance to within-class variance. The main shortcoming
of DAFE is that this approach is not full rank and its rank at maximum is equal to the number of
classes minus one. In addition, the class mean values can highly affect the performance of DAFE.
Therefore, decision boundary feature extraction (DBFE) [7] and nonparametric weighted feature
extraction (NWFE) [8] are suggested for HSI classification. In DBFE, the decision boundary is defined
by applying the Bayes decision rules on the training samples and from that a decision boundary
matrix transformation is calculated to extract the feature vectors. Hence, DBFE could fail in the case
of having too few training samples since it directly works with the training samples to determine
the location of the effective decision boundaries. NWFE is designed to improve the limitations of
parametric feature extraction by putting different weights on samples to compute the local means
and define a new nonparametric between-class and within-class scatter matrices to produce more
features than DAFE. In addition, discriminant analysis based techniques such as the linear constraint
distance-based discriminant analysis (LCDA) [9], the modified Fisher’s linear discriminant analysis
(MFLDA) [10], and a tensor representation-based discriminant analysis [11] were all proposed to
improve the performance of the DAFE.

Recent SFE approaches take the advantage of the local neighborhood properties (spatial
information) of data. Li et al. [12] considered local Fisher’s discriminant analysis [13] to perform DR
while preserving the corresponding multi-modal structure. In [14], local neighborhood information
is taken into account in both spectral and spatial domains to obtain a discriminative projection for
dimensionality reduction of hyperspectral data. Xue et al. [15] introduced a nonlinear FE approach
based on spatial and spectral regularized local discriminant embedding to address spatial variability
and spectral multi-modality.

USFE techniques are usually based on optimizing an objective function to project the original
features into a lower dimensional feature space. Principal component analysis (PCA) searches for a
projection to maximize the signal variance [16]. Maximum noise fraction (MNF) [17] and noise adjusted
principal components (NAPC) [18] seek a projection that maximizes the signal-to-noise ratio (SNR).
Such FE approaches are mostly used for data representation, usually as a preprocessing step, and
address the large size of hyperspectral datasets. Independent component analysis (ICA) [19,20],
non-negative matrix factorization (NMF) [21,22], and hyperspectral unmixing [23,24] are other
examples of USFE techniques.

Some FE techniques are proposed based on preserving local (spatial) information [25,26].
Neighborhood preserving embedding (NPE) [27], locality preserving projection (LPP) [28] and linear
local tangent space alignment (LLTSA) [29] are proposed for hyperspectral FE [30,31]. The work in [32]
develops a tensor version of the LPP algorithm for hyperspectral DR and classification. The work
in [33] proposes a common minimization framework called graph-embedding (GE), which is based on
estimating an undirected weighted graph to describe the desired intrinsic (statistical or geometrical)
properties of the data. The method uses either scale normalization or penalty graph constraints
that describe undesirable properties. In [34], a sparse graph-based discriminant analysis (SGDA)
technique that induces sparsity on the graph construction is proposed for hyperspectral DR and
classification. SGDA may not obtain acceptable results when the input data have a nonlinear and
complex nature. To address this issue, a kernel extension of SGDA is proposed in [35]. Image fusion
and recursive filtering [36] are designed in [37], which incorporate spatial information to extract
informative features. In [38], a DR approach is developed to estimate a sparse and low-rank projection
matrix by fulfilling the restricted isometric property condition on all secants of hyperspectral data to
preserve the nearest neighbor points of all pixels to improve the subsequent classification step further.
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Total variation (TV) regularization is suggested in [39] for HSI feature extraction. Wavelet-based sparse
reduced-rank regression [40] and sparse and low-rank modeling [41] are suggested for hyperspectral
feature extraction. Recently, in [42], orthogonal total variation component analysis (OTVCA) is
proposed, where a non-convex cost function is optimized to find the best representation for HSI in a
low dimensional feature space while controlling the spatial smoothness of the features by using a TV
regularization. The TV penalty promotes piecewise smoothness (homogeneous spatial regions) on the
extracted features, and thus substantially helps to extract spatial (local neighborhood) information that
is very useful for classification.

In this paper, we propose a USFE for the classification of HSI called sparse and smooth low-rank
analysis (SSLRA). SSLRA decomposes the HSI into sparse and piecewise smooth components.
To capture the spectral redundancy of HSI and perform DR, we assume that these components
can be represented in a lower dimensional space. Therefore, we propose a low-rank model for HSI in
which the HSI is modeled based on a combination of sparse and smooth components. The components
are estimated simultaneously by optimizing a constrained penalized cost function (CPCF). The TV and
`1 penalties are exploited by the CPCF to promote the smoothness and the sparsity of the corresponding
components, respectively. We assume that the unknown bases are orthogonal, and therefore we solve
the CPCF by enforcing an orthogonality constraint. In the experiments, we used two HSIs: (1) an
urban HSI of the University of the Houston campus; and (2) a rural HSI of the Italian city of Trento.
The experiments confirmed that SSLRA outperforms both OTVCA and state-of-the-art FE techniques
concerning classification accuracy.

The organization of the paper is as follows. The proposed hyperspectral feature extraction
technique (SSLRA) and the corresponding algorithm are derived and explained in Section 2. Section 3
is devoted to the experimental results. Finally, Section 4 concludes the paper.

Notation

The notations used in this paper are as follows. The number of spectral bands and pixels in each
band are denoted by p and n, respectively. r indicates the rank of the HSI. Matrices are represented by
bold and capital letters, vectors by bold letters, the (i, j)th element of X by xij, and the ith column by
x(i). Ip denotes identity matrix of size p× p. X̂ stands for the estimate of X. The Frobenius norm and
TV-normare denoted by ‖.‖F and ‖.‖TV, respectively. The definitions of the symbols used in the paper
are given in Table 1.

Table 1. The definitions of the symbols used in this paper.

Sym. Definition

xi the ith entry of the vector x
xij the (i, j)th entry of the matrix X
x(i) the ith column of the matrix X
xT

j the jth row of the matrix X
‖x‖1 l1-norm of the vector x, obtained by ∑i |xi|
‖x‖2 l2-norm of the vector x, obtained by

√
∑i x2

i

‖X‖1 l1-norm of the matrix X, obtained by ∑i,j

∣∣∣xij

∣∣∣
‖X‖F Frobenius-norm of the matrix X, obtained by

√
∑i,j x2

ij

X̂ the estimate of the variable X
‖x‖TV Total variation norm (explained in Appendix A)
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2. Hyperspectral Modeling and Sparse and Smooth Low-Rank Analysis

HSIs are often represented by using low-rank models. Such models have, for example, been
shown to be more appropriate for HSI in terms of mean squared error than full-rank models [41].
However, the rank is unknown and has to be estimated [43,44]. We model the observed HSI as

Y = X + N, (1)

where Y =
[
y(i)

]
is an n × p matrix containing the vectorized observed image at band i in its ith

column, X =
[
x(i)
]

is an n× p matrix representing the HSI, and N =
[
n(i)

]
is an n× p matrix that

represents the noise and model error. Here, we assume that X is a low-rank matrix, i.e., it has rank
r << min(n, p). The low-rank property can be enforced by representing X as a product of two rank r
matrices (F + S) and VT , which leads to the following low-rank model:

Y = (F + S)VT + N, (2)

where F =
[
f(i)
]

and S =
[
s(i)
]

are matrices of size n× r containing the unknown smooth and sparse
components, respectively, and V is an unknown p× r subspace matrix. The model in Equation (2)
separates the sparse features from the smooth features. The smooth features can be used to promote
smooth regions of interests in the classification maps.

Assuming the model in Equation (2), we propose a CPCF to simultaneously estimate F, S, and V
by solving

min
F,S,V

J (F, S, V) s.t. VTV = Ir, (3)

where

J (F, S, V) =
1
2

∥∥∥Y− (F + S)VT
∥∥∥2

F
+ λ1

r

∑
i=1

∥∥∥f(i)
∥∥∥

TV
+ λ2 ‖S‖1 .

In Equation (4), the TV-norm (see Appendix A) promotes piecewise smoothness on F, the `1 norm
promotes sparsity on S, and the constraint VTV = Ir enforces the orthogonality condition on the
subspace. Note that minimization of Equation (3) is non-convex and therefore the solution might lead
to a local minima.

To solve Equation (3), we use a cyclic descent (CD) algorithm [45–47] where the problem is solved
with respect to one matrix at a time while the others are assumed to be fixed. As a result, the proposed CD
approach consists of the four steps discussed below: initialization, the F step, the S step, and the V step.

2.1. Initialization

Decompose Y by using truncated (rank-r) singular value decomposition (SVD), i.e., SVD(Y) =
UKWT . Then, initialize V0 = W and S = 0.

2.2. F-Step

Given fixed Vm and Sm, get Fm+1 by solving Equation (3) which can be reduced to

min
F

r

∑
i=1

1
2

∥∥∥g(i) − f(i) − s(i)
∥∥∥2

2
+ λ1

r

∑
i=1

∥∥∥f(i)
∥∥∥

TV
, (4)

where G =
[
g(i)

]
= YVm. The problem in Equation (4) can be thought of as r-separable TV

regularization problems [48] that can be solved using the split Bregman iterations method given in
[49] (also known as the alternative direction method of multipliers (ADMM) [50]) denoted by

Fm+1 = SplitBregman(G− Sm, λ1).



Remote Sens. 2019, 11, 121 5 of 21

2.3. S-Step

Given fixed Vm and Fm+1, get Sm+1 by solving Equation (3), i.e.,

Sm+1 = arg min
S

1
2
‖G− F− S‖2

F + λ2 ‖S‖1 . (5)

It can be shown that Equation (5) is separable and the solution is given by

ŝji = max
(
0,
∣∣gji − f ji

∣∣− λ2
) gji − f ji∣∣gji − f ji

∣∣ , (6)

which is called soft-thresholding and often is written as

Ŝm+1 = soft
(

G− Fm+1, λ2

)
. (7)

Note that soft function in Equation (7) is applied element-wise on matrix G− Fm+1.

2.4. V-Step

Given fixed Fm+1 and Sm+1, get Vm+1 by solving Equation (3), which can be rewritten as

min
V

∥∥∥Y− (Fm+1 + Sm+1)VT
∥∥∥2

F
s.t. VTV = Ir. (8)

The solution is given by a low-rank Procrustes rotation [51]

Vm+1 = PQT ,

where the matrices P and Q are given by the following truncated SVD of rank r

PΣQT = SVD(YT(Fm+1 + Sm+1)),

where Σ is a diagonal matrix which contains the first r singular values of YT(Fm+1 + Sm+1).
The resulting algorithm is summarized in Algorithm 1.

The monotonicity property of SSLRA can be observed easily since by construction the
algorithm guarantees that the cost function is non-increasing with respect to the iteration index,
i.e., J

(
F0, S0, V0) ≥ J

(
F1, S0, V0) ≥ J

(
F1, S1, V0) ≥ J

(
F1, S1, V1) ≥ . . . ≥ J (Fm, Sm, Vm) ≥

J
(
Fm+1, Sm, Vm) ≥ J

(
Fm+1, Sm+1, Vm) ≥ J

(
Fm+1, Sm+1, Vm+1) ≥ 0. Therefore, the cost function

is guaranteed to decrease or stay the same at each iteration of the algorithm. Since the cost function is
both upper bounded (by the initial value) and lower bounded (since it is greater than or equal zero),
the cost function iterations will converge to a finite value.

Note that the smooth features (F) extracted using SSLRA are used for classification purposes in
this paper. This is discussed further in Section 3.
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Algorithm 1: SSLRA
Input:
Y : Observed signal,
r: Number of features,
λ1: Smoothing tuning parameter,
λ2: Sparsity tuning parameter,
ε: Tolerance values.
Output:
F̂: Smooth features,
V̂: Subspace basis,
Ŝ: Sparse features.
Initialization; SVD(Y) = UKWT ,V0 = Wr, S0 = 0
while (Jm+1 − Jm)/J1 ≥ ε do

F-step :
G = YVm,
Fm+1 = SplitBregman(G− Sm, λ1)

S-step :
Ŝm+1 = soft

(
G− Fm+1, λ2

)
V-step :
PΣQT = SVD(YT(Fm+1 + Sm+1)),
Vm+1 = PQT ,

end

3. Experimental Results

Two HSIs, the Houston and Trento datasets, described below, were used in the experiments.
The Houston dataset investigation is presented in Sections 3.2–3.4. The Trento dataset experiment
is presented in Section 3.4. Two classifiers were used in the experiments: Random Forest (RF) and
Support Vector Machine (SVM). For the RF, we set the number of trees to 200. For the SVM, a radial
basis function (RBF) kernel was used. The penalty parameter C and spread of the RBF kernel γ were
selected by searching in the range of

[
10−2, 10−1, . . . , 104] and

[
2−3, 2−2, . . . , 24], respectively, using

five-fold cross-validation. The classification metrics used in the experiments are Average Accuracy
(AA), Overall Accuracy (OA), and Kappa Coefficient (κ) (see A.5 in [41]).

3.1. Datasets

3.1.1. Trento

The first dataset is from a rural area in the south of the city of Trento, Italy. The size of the
dataset is 600 by 166 pixels. The AISA Eagle sensor acquired the HSI with a spatial resolution of 1 m.
The hyperspectral data consist of 63 bands ranging from 0.40 to 0.99 µm, where the spectral resolution
is 9.2 nm. The available ground truth consists of six classes, i.e., Building, Wood, Apple Tree, Road,
Vineyard, and Ground. Figure 1 illustrates a false color composite representation of the hyperspectral
data along with the corresponding training and test samples. Table 2 provides information on the
number of training and test samples for each class of interest.
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Figure 1. Trento (from top to bottom): A color composite representation of the hyperspectral data using
bands 40, 20, and 10, as R, G, and B, respectively; training samples; test samples; and the corresponding
color bar.

Table 2. Trento: Number of training and test samples.

Class Number of Samples

No. Name Training Test

1 Apple Tree 129 3905
2 Building 125 2778
3 Ground 105 374
4 Wood 154 8969
5 Vineyard 184 10,317
6 Road 122 3252

Total 819 29,595

3.1.2. Houston

The Compact Airborne Spectrographic Imager (CASI) captured the second HSI over the University
of Houston campus and the neighboring urban area. The data size is 349 × 1905 pixels, and the spatial
resolution is 2.5 m. The hyperspectral dataset consists of 144 spectral bands ranging from 0.38 to
1.05 µm. The 15 classes of interest are: Grass Healthy, Grass Stressed, Grass Synthetic, Tree, Soil, Water,
Residential, Commercial, Road, Highway, Railway, Parking Lot 1, Parking Lot 2, Tennis Court and
Running Track. “Parking Lot 1” includes parking garages at the ground level and also in elevated
areas, while “Parking Lot 2” corresponds to parked vehicles. Figure 2 illustrates a false color composite
representation of the hyperspectral data and the corresponding training and test samples. Table 3
provides information on the number of training and test samples.

It is important to note that we used the standard sets of training and test samples for the datasets
mentioned above to make the results entirely comparable with most of the approaches available in
the literature.
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Figure 2. Houston (from left to right): A color composite representation of the hyperspectral data using
band 70, 50, and 20 as R, G, and B, respectively; training samples; test samples; and the corresponding
color bar.

Table 3. Houston: Number of training and test samples.

Class Number of Samples

No. Name Training Test

1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059

10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

3.2. Performance of SSLRA with Respect to Tuning Parameters

The assessment of the effect of the tuning parameters (λ1 and λ2) on the performance of
the proposed algorithm was of interest. Since we were interested in the classification accuracy,
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we investigated the effect of the smoothing parameter (λ1) and the sparsity parameter (λ2) on OA.
We selected the tuning parameter value with respect to a percentage of the range of the intensity value
as follows:

λj = [max(vec(Y))−min(vec(Y))]×
Tj

100
, j = 1, 2. (9)

where 0 ≤ Tj ≤ 1.
Figure 3 shows the contour plot of the OA with respect to T1 and T2 for both the random forest

(RF) and the support vector machine (SVM) classifiers. It can be seen that along the T1 = T2 diagonal
line the OA has little variability and takes on high values. The results confirm, for this example, that,
if the tuning parameters are selected to be equal, SSLRA is less sensitive in terms of OA with respect
to T1 and T2. Tuning parameter selection is non-trivial and often a computationally-expensive task.
To save computations, we selected T1 = T2 = T. Here, we selected r = 15, which is the number of the
classes, and we assumed that it is the dimension of the subspace. Note that one can claim that the
number of classes of interests is the minimum of the dimension of the subspace.
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Figure 3. Performance of OA with respect to the tuning parameters T1 and T2 obtained by applying RF
and SVM classifiers on the extracted features from the University of Houston dataset.

3.3. Performance of SSLRA Compared to OTVCA

OTVCA is a recent FE technique whose advantages have already been confirmed compared to
the state-of-the-art techniques [1,42]. For example, in [1], the performances of several FE approaches
are compared using several USFE approaches (i.e., OTVCA [42], PCA [16], and LPP [52]), an SFE
approach (i.e., NWFE [8]), and several semi-supervised FE approaches (i.e., SELF [53], SELD [54], and
SEGL [55]). As shown in [1], OTVCA considerably outperforms the aforementioned approaches in
terms of classification accuracy. Therefore, first we compare the performance of SSLRA with OTVCA.

3.3.1. Comparisons with Respect to the Tuning Parameter

The tuning parameter T controls the amount of smoothness of F, and therefore it can affect the
classification accuracies. Hence, it is of interest to compare the performances of OTVCA and SSLRA
with respect to T. Figure 4 shows that SSLRA and OTVCA give similar OA with respect to T for
RF, but SSLRA give higher overall accuracies for SVM except when T = 0.8. Note that increasing T
causes oversmoothing of the extracted feature, which might lead to the loss of information in the final
classification map. We selected T = 0.2 and T = 0.4 to avoid oversmoothing of the features.
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Figure 4. Performance of OA with respect to the tuning parameters T obtained by applying RF and
SVM classifiers on the extracted features from the University of Houston dataset.

3.3.2. Comparisons with Respect to the Number of Features

A major advantage of FE techniques is their DR capability. In HSI classification, DR is of great
interest since the spectral redundancy makes HSI classification computationally expensive and also DR
can improve the classification task since it can address the Hughes effect or the curse of dimensionality
to a large extent [2]. As a result, we investigated the performance of SSLRA in terms of OA with
respect to r.

Figure 5 depicts the DR performance of SSLRA in terms of OA with respect to feature number
r for both RF and SVM classifiers. For both SVM and RF and for both T = 0.2 and T = 0.4 when
r = 15, SSLRA provides high OAs (close to 90%), which confirms the good performance of SSLRA
concerning DR. Additionally, Figure 5 compares SSLRA with OTVCA in terms of OA with respect to r
for both RF and SVM classifiers. The figure shows that SSLRA outperforms OTVCA in terms of OA
and demonstrates better DR for the SVM classifier. For the RF, SSLRA and OTVCA perform similarly.
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Figure 5. Performance of OA with respect to r obtained by applying RF and SVM classifiers on the
extracted features from the University of Houston dataset.

3.3.3. Comparisons with Respect to the Number of Training Samples

A major problem in classification applications is to collect reliable ground truth. The number of
labeled samples per class is usually limited compared to the number of pixels. Hence, it is of interest to
evaluate the performance of the proposed technique with respect to the number of samples selected per
class. Figure 6 compares the performance of SSLRA with OTVCA in terms of OA obtained by applying
SVM and RF on the extracted components. The experiments were performed by selecting different
numbers of training samples per class (5, 10, 25, and 50) for the classification task. The reported results
are the mean values over ten simulations each time using SVM and RF on the Houston features and
selecting the training samples randomly (the error bars show standard deviations.). The results for
both SSLRA and OTVCA are shown for T = 0.2 and T = 0.4.

Both OTVCA and SSLRA show a similar trend in terms of OA with respect to the number of
training samples. We see that SSLRA provides high accuracy by using only few training samples (5
and 10) for both classifiers, which is of great interest in the remote sensing community. It can also be
observed that, by increasing the number of training samples up to only 50 samples per class, the OA
reaches over 97% in all cases shown for SSLRA. We note that, only in the experiments presented in
this subsection, we did not use the standard sets of test and training samples. We instead selected the
samples randomly to be able to show the performance of the techniques with respect to the number of
training samples.
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Figure 6. Performance of OA with respect to the number of training samples obtained by applying RF
and SVM classifiers on the extracted features from the University of Houston dataset.

3.3.4. Visual Comparisons of Extracted Features

Figure 7 visually compares the components extracted by using OTVCA and the smooth
components (F) extracted by SSLRA from the Houston dataset. As can be seen, the shadow removal
areas are apparent in components 4, 8, 10, and 15. The comparisons show that the sparse structures in
the components extracted by OTVCA are not present in the smooth components extracted by SSLRA.
The features extracted using SSLRA contain more homogeneous regions compared to the ones extracted
by OTVCA. Figure 8 demonstrates this better. It shows a portion of feature 2 extracted by SSLRA
compared with the corresponding OTVCA component. Figure 8 depicts the sparse structures extracted
by SSLRA. The sparse structures in the sparse components decrease the classification accuracies
since they are not frequently included in the region of interests, and, therefore, the class labels are
not available for these sparse structures. SSLRA separates the sparse structures from the smooth
ones which increases the classification accuracy and provides homogeneous class regions in the final
classification map.

Figure 7. Cont.



Remote Sens. 2019, 11, 121 13 of 21

OTVCA SSLRA

Figure 7. Houston components extracted by using OTVCA and SSLRA (the smooth components
(F))—From top to bottom: components 1, 2, 4, 8, 10 and 15.
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TABLE V: Classification accuracies obtained by applying SVM on the features extracted from the Trento hyperspectral dataset.
The highest accuracy in each row is shown bold.

Cl. # HSI PCA MNF DAFE NWFE SELD OTVCAT=0.2 OTVCAT=0.4 SSLRAT=0.2 SSLRAT=0.4

1 0.8809 0.9004 0.9465 0.7982 0.9286 0.8866 0.8863 0.9106 0.9782 0.9944
2 0.8197 0.8535 0.9068 0.7412 0.8967 0.8179 0.8726 0.8769 0.9312 0.9230
3 0.9733 0.9786 0.9733 0.9492 0.9572 0.9332 0.9679 0.9813 0.9439 0.9733
4 0.9691 0.9604 0.9709 0.8956 0.9699 0.9679 0.9652 0.9611 0.9803 0.9871
5 0.7697 0.7518 0.7863 0.7087 0.7552 0.6571 0.8000 0.8558 0.8539 0.8082
6 0.6701 0.6461 0.7333 0.6946 0.6737 0.6016 0.6638 0.6628 0.6225 0.6252

AA 0.8471 0.8485 0.8862 0.7979 0.8635 0.8107 0.8593 0.8748 0.8850 0.8852
OA 0.8423 0.8367 0.8722 0.7823 0.8512 0.7953 0.8567 0.8788 0.8934 0.8814
κ 0.7916 0.7847 0.8315 0.7136 0.8038 0.7300 0.8098 0.8386 0.8595 0.8442

TABLE VI: Classification accuracies obtained by applying RF on the features extracted from the Trento hyperspectral dataset.
The highest accuracy in each row is shown bold.

Cl. # HSI PCA MNF DAFE NWFE SELD OTVCAT=0.2 OTVCAT=0.4 SSLRAT=0.2 SSLRAT=0.4

1 0.8576 0.8318 0.9088 0.7588 0.8522 0.8615 0.7218 0.8878 0.9496 0.9785
2 0.8542 0.8884 0.8913 0.7135 0.9237 0.8762 0.7218 0.9068 0.9456 0.9190
3 0.9652 0.9305 0.9599 0.9545 0.9652 0.9652 0.7899 0.9786 0.9920 0.9893
4 0.9566 0.9189 0.9687 0.8845 0.9427 0.9478 0.7484 0.9404 0.9783 0.9881
5 0.8001 0.7596 0.7456 0.7323 0.8111 0.7553 0.7054 0.6676 0.9824 0.9737
6 0.6396 0.6065 0.7054 0.7307 0.6216 0.6209 0.7866 0.5672 0.6599 0.6281

AA 0.8456 0.8226 0.8633 0.7957 0.8528 0.8378 0.7453 0.8247 0.9179 0.9128
OA 0.8461 0.8163 0.8477 0.7831 0.8496 0.8283 0.8923 0.7962 0.9399 0.9379
κ 0.7955 0.7567 0.7985 0.7136 0.8002 0.7731 0.9245 0.7292 0.9190 0.9168

OTVCA Feature 2

SSLRA Smooth Feature 2

SSLRA Sparse Feature 2

Fig. 7: A portion of feature 2 of Houston extracted by using
OTVCA and SSLRA.
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Figure 8. A portion of feature 2 of Houston extracted by using OTVCA and SSLRA.

3.4. Performance of SSLRA with Respect to the State-of-the-Art

Here, we compared the performance of SSLRA with PCA, MNF [17], DAFE [6], NWFE [8], and
SELD [54] as competitive FE approaches applied to Houston and Trento. The number of features
was set to the number of classes of interests (i.e., 15 for Houston and 6 for Trento) except for DAFE
that extracts maximum one feature fewer than the number of classes. In the tables, HSI shows the
classification results applied on the spectral bands.

Tables 4 and 5 show the classification accuracies obtained by applying SVM and RF, respectively,
on Houston’s components extracted using different FE techniques. Similarly, Tables 6 and 7 show
the classification accuracies for Trento. In general, SSLRA outperforms the other FE approaches.
For Houston, SSLRA improves OA over 13% using RF and 6% using SVM compared to HSI. For Trento,
SSLRA improves OA over 9% using RF and 5% using SVM compared to HSI. OTVCA achieves the
second best performance in terms of classification accuracy followed by MNF. As can be seen, DAFE
gives the lowest OAs. Figures 9 and 10 show the classifications maps for Houston and Trento datasets,
respectively. These figures show that the maps obtained by SSLRA contain homogeneous class regions
which is of interest in the classification applications.

Table 8 compares the CPU processing time (in seconds) spent by different feature extraction
techniques applied on the Trento and Houston datasets. All methods were implemented in Matlab
on a computer having Intel(R) Core(TM) i7-6700 processor (3.40 GHz), 32 GB of memory and 64-bit
Operating System. It can be seen that SSLRA and OTVCA are computationally expensive compared
to the other techniques used in the experiments. That is mainly due to the iterative nature of those
algorithms and the inner TV-regularization loop and the SVD step. It is worth noting that the CPU
time for the supervised techniques (NWFE and LDA) is affected considerably by the number of labeled
(training) samples used and the semi-supervised technique (SELD) is affected by both labeled and
unlabeled samples used. In the case of unsupervised techniques, the CPU time is affected by the total
size of the data.
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Figure 11 depicts the values of the cost function J and the values of the stopping criterion
((Jm+1 − Jm)/J1) when SSLRA was applied on the Houston and Trento datasets. It can be seen that the
cost functions are strictly descending, as stated in Section 2, for both datasets. The stopping criterion
values are less than 0.001 after 62 and 48 iterations for Houston and Trento, respectively. Therefore, in
the experiments, we set the number of iterations to 100.

Figure 12 compares the values of the cost function (J) with respect to the number of iterations for
two different initialization of SSLRA. It can be seen that random orthogonal matrix initialization gives
higher cost function values for all iterations shown compared to the spectral eigenvectors initialization.
Therefore, in this paper, spectral eigenvectors were used to initialize SSLRA, i.e., W = V0. Note that
the proposed cost function is nonconvex and therefore different initializations might give different
optimum values.

Table 4. Classification accuracies obtained by applying SVM on the features extracted from the Houston
hyperspectral dataset. The highest accuracy in each row is shown bold.

Cl. # HSI PCA MNF DAFE NWFE SELD OTVCAT=0.2 OTVCAT=0.4 SSLRAT=0.2 SSLRAT=0.4

1 0.8348 0.8158 0.8167 0.8224 0.8243 0.8338 0.8367 0.8367 0.8262 0.8243
2 0.9643 0.9445 0.9511 0.9699 0.9690 0.9765 0.9699 0.9727 0.9868 0.9868
3 0.9980 0.9980 0.9980 1.0000 0.9980 1.0000 0.9980 0.9980 1.0000 1.0000
4 0.9877 0.9716 0.9830 0.9782 0.9678 0.9934 0.9820 0.9877 0.9744 0.9413
5 0.9811 0.9839 0.9848 0.9792 0.9867 0.9659 0.9839 0.9877 1.0000 1.0000
6 0.9510 0.9510 0.9650 0.9930 0.9860 0.9930 0.9720 0.9650 0.9510 0.9510
7 0.8909 0.8582 0.8405 0.8200 0.8591 0.8843 0.8284 0.8741 0.8563 0.8330
8 0.4587 0.6144 0.5556 0.4311 0.5508 0.4701 0.5878 0.5176 0.8015 0.8642
9 0.8253 0.7753 0.7885 0.5826 0.8225 0.6922 0.7762 0.7941 0.8555 0.8612
10 0.8320 0.7008 0.8678 0.7500 0.7905 0.7017 0.6728 0.7915 0.9431 0.9681
11 0.8387 0.8416 0.8121 0.7135 0.9127 0.8425 0.8330 0.8463 0.9753 0.9099
12 0.7099 0.7320 0.7810 0.5437 0.7992 0.6667 0.8415 0.8357 0.9001 0.8146
13 0.7053 0.7018 0.6842 0.5895 0.7018 0.6807 0.7228 0.7298 0.7930 0.8105
14 1.0000 1.0000 1.0000 0.9919 0.9960 0.9960 0.9960 1.0000 1.0000 1.0000
15 0.9746 0.9641 0.9619 0.9852 0.9810 0.9767 0.9683 0.9683 0.9979 1.0000

AA 0.8635 0.8569 0.8660 0.8100 0.8764 0.8449 0.8646 0.8737 0.9241 0.9177
OA 0.8469 0.8391 0.8509 0.7818 0.8611 0.8215 0.8463 0.8578 0.9183 0.9088

κ 0.8340 0.8253 0.8382 0.7632 0.8492 0.8063 0.8332 0.8457 0.9113 0.9010

Table 5. Classification accuracies obtained by applying RF on the features extracted from the Houston
hyperspectral dataset. The highest accuracy in each row is shown bold.

Cl. # HSI PCA MNF DAFE NWFE SELD OTVCAT=0.2 OTVCAT=0.4 SSLRAT=0.2 SSLRAT=0.4

1 0.8338 0.8395 0.8566 0.8291 0.8215 0.8215 0.8367 0.8443 0.7683 0.8091
2 0.9840 0.9840 0.9859 0.9746 0.9774 0.9831 0.9915 0.9699 1.0000 1.0000
3 0.9802 0.9960 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9960 0.9980
4 0.9754 0.9593 0.9659 0.9555 0.9706 0.9688 0.9915 0.9025 0.9924 0.9669
5 0.9640 0.9839 0.9811 0.9508 0.9839 0.9754 1.0000 0.9991 0.9972 1.0000
6 0.9720 0.9930 0.9930 0.9231 0.9930 0.9930 1.0000 0.9580 1.0000 0.9580
7 0.8209 0.8909 0.9123 0.8004 0.9151 0.8806 0.9104 0.8881 0.9188 0.9198
8 0.4065 0.6068 0.6610 0.8196 0.6296 0.7816 0.7018 0.8110 0.8015 0.8338
9 0.6969 0.8499 0.8121 0.6081 0.8546 0.7460 0.8791 0.9216 0.8971 0.9330
10 0.5763 0.6766 0.7017 0.4672 0.8185 0.6274 0.6921 0.9266 0.5512 0.8050
11 0.7609 0.9127 0.9393 0.7078 0.9194 0.8577 0.8340 0.7590 0.9592 0.8700
12 0.4938 0.7099 0.8482 0.6321 0.8386 0.6052 0.9222 0.8703 0.9366 0.9107
13 0.6140 0.7754 0.7930 0.6526 0.7895 0.6667 0.8386 0.8281 0.6491 0.6526
14 0.9960 0.9919 0.9960 0.9879 1.0000 0.9879 1.0000 1.0000 1.0000 1.0000
15 0.9767 0.9767 0.9746 0.9831 0.9767 0.9767 0.9789 0.9746 0.9937 0.9894

AA 0.8034 0.8764 0.8947 0.8194 0.8992 0.8581 0.9051 0.9102 0.8974 0.9098
OA 0.7747 0.8569 0.8790 0.7959 0.8846 0.8402 0.8886 0.8988 0.8902 0.9089

κ 0.7563 0.8449 0.8688 0.7785 0.8749 0.8266 0.8792 0.8904 0.8808 0.9011
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Figure 9. Classification maps obtained by applying SVM and RF classifiers on the features extracted
from the Houston hyperspectral dataset.
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Figure 10. Classification maps obtained by applying SVM and RF classifiers on the features extracted
from the Trento hyperspectral dataset.
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Table 6. Classification accuracies obtained by applying SVM on the features extracted from the Trento
hyperspectral dataset. The highest accuracy in each row is shown bold.

Cl. # HSI PCA MNF DAFE NWFE SELD OTVCAT=0.2 OTVCAT=0.4 SSLRAT=0.2 SSLRAT=0.4

1 0.8809 0.9004 0.9465 0.7982 0.9286 0.8866 0.8863 0.9106 0.9782 0.9944
2 0.8197 0.8535 0.9068 0.7412 0.8967 0.8179 0.8726 0.8769 0.9312 0.9230
3 0.9733 0.9786 0.9733 0.9492 0.9572 0.9332 0.9679 0.9813 0.9439 0.9733
4 0.9691 0.9604 0.9709 0.8956 0.9699 0.9679 0.9652 0.9611 0.9803 0.9871
5 0.7697 0.7518 0.7863 0.7087 0.7552 0.6571 0.8000 0.8558 0.8539 0.8082
6 0.6701 0.6461 0.7333 0.6946 0.6737 0.6016 0.6638 0.6628 0.6225 0.6252

AA 0.8471 0.8485 0.8862 0.7979 0.8635 0.8107 0.8593 0.8748 0.8850 0.8852
OA 0.8423 0.8367 0.8722 0.7823 0.8512 0.7953 0.8567 0.8788 0.8934 0.8814

κ 0.7916 0.7847 0.8315 0.7136 0.8038 0.7300 0.8098 0.8386 0.8595 0.8442

Table 7. Classification accuracies obtained by applying RF on the features extracted from the Trento
hyperspectral dataset. The highest accuracy in each row is shown in bold.

Cl. # HSI PCA MNF DAFE NWFE SELD OTVCAT=0.2 OTVCAT=0.4 SSLRAT=0.2 SSLRAT=0.4

1 0.8576 0.8318 0.9088 0.7588 0.8522 0.8615 0.7218 0.8878 0.9496 0.9785
2 0.8542 0.8884 0.8913 0.7135 0.9237 0.8762 0.7218 0.9068 0.9456 0.9190
3 0.9652 0.9305 0.9599 0.9545 0.9652 0.9652 0.7899 0.9786 0.9920 0.9893
4 0.9566 0.9189 0.9687 0.8845 0.9427 0.9478 0.7484 0.9404 0.9783 0.9881
5 0.8001 0.7596 0.7456 0.7323 0.8111 0.7553 0.7054 0.6676 0.9824 0.9737
6 0.6396 0.6065 0.7054 0.7307 0.6216 0.6209 0.7866 0.5672 0.6599 0.6281

AA 0.8456 0.8226 0.8633 0.7957 0.8528 0.8378 0.7453 0.8247 0.9179 0.9128
OA 0.8461 0.8163 0.8477 0.7831 0.8496 0.8283 0.8923 0.7962 0.9399 0.9379

κ 0.7955 0.7567 0.7985 0.7136 0.8002 0.7731 0.9245 0.7292 0.9190 0.9168

Table 8. CPU processing times in seconds consumed by different techniques applied on the Trento and
the Houston datasets.

PCA MNF DAFE NWFE SELD OTVCA SSLRA

Trento 0.10 0.37 0.07 6.53 1.17 19.93 22.43

Houston 0.63 7.53 0.04 253.86 2.64 360.44 376.92
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Figure 11. The cost function and the stopping criterion values of SSLRA applied on Houston and Trento.
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Figure 12. The cost function values using spectral eigenvectors and random orthogonal matrix for the
Initialization of SSLRA applied on Houston and Trento.

3.5. Discussion

The conventional FE methods used in the experiments, i.e., PCA, MNF, DAFE, and NWFE,
do not take into account spatial correlation of the HSI that can considerably improve the classification
results [1,42]. SELD incorporates the spatial correlation by using unlabeled samples. However, the
number of unlabeled samples highly affects the complexity of the algorithm and having few samples
does not provide satisfactory spatial information [54]. That drawback has been considerably improved
in OTVCA. OTVCA captures both spectral and spatial redundancies while extracting informative
components. The spectral redundancy of HSI is captured by the low-rank representation of HSI in the
OTVCA model. TV regularization not only captures the spatial redundancy of HSI but also induces
the piece-wise smoothness on HSI features that helps to extract spatial information and reduce the
salt and pepper noise. However, there are sparse structures in the components extracted by OTVCA
that are mostly assumed to be outliers in the classification task. SSLRA improves the classification
accuracies by separating the sparse structures and providing smoother components. As a result, the
classification map obtained contains less salt and pepper noise effect and more homogeneous class
regions. On the other hand, SSLRA is computationally more expensive than the other methods.

4. Conclusions

Sparse and smooth low-rank analysis was proposed for hyperspectral image feature extraction.
First, a low-rank model was proposed where the HSI was modeled as a combination of smooth and
sparse components. A constrained penalized cost function minimization was proposed to estimate the
smooth and sparse components that use the TV penalty and the `1 penalty to promote smoothness
and sparsity, respectively, while the orthogonality constraint was applied on the subspace basis. Then,
an iterative algorithm was derived from solving the proposed non-convex minimization problem.
In the experiments, it was shown that SSLRA outperforms other FE methods in terms of classification
accuracy for urban and rural HSIs. It was also demonstrated that components extracted by SSLRA
provide relatively high classification accuracies when only a limited number of training samples is
available. Additionally, the experiments confirmed that SSLRA reduces the salt and pepper noise effect
and produces homogeneous class regions in the classification maps by separating the sparse features
from the smooth ones. On the other hand, SSLRA is more complicated and computationally expensive
compared to the techniques used in the experiments.
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Appendix A. Total Variation Norm

The isotropic total variation of a (vectorized) two-dimensional image f of size n1n2 × 1 is given by

‖f‖TV =

∥∥∥∥√(Dhf)2 + (Dvf)2
∥∥∥∥

1

where Dh and Dv are the matrix operators for calculating the first order vertical and horizontal
differences, respectively, given by Dh = R ⊗ In1 and Dv = In2 ⊗ R. R is the first order difference
matrix given by

R =


−1 1 0 . . . 0 0
0 −1 1 0 · · · 0
...

...
. . . . . .

...
...

0 0 0 . . . −1 1

 . (A1)
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