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Abstract: Thailand is characterized by typical tropical monsoon climate, and is suffering serious
water related problems, including seasonal drought and flooding. These issues are highly related
to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful
to understand and cope with these problems. It is critical to study the spatiotemporal pattern of
ET in Thailand to support the local water resource management. In the current study, daily ET
was estimated over Thailand by ETMonitor, a process-based model, with mainly satellite earth
observation datasets as input. One major advantage of the ETMonitor algorithm is that it introduces
the impact of soil moisture on ET by assimilating the surface soil moisture from microwave remote
sensing, and it reduces the dependence on land surface temperature, as the thermal remote sensing is
highly sensitive to cloud, which limits the ability to achieve spatial and temporal continuity of daily
ET. The ETMonitor algorithm was further improved in current study to take advantage of thermal
remote sensing. In the improved scheme, the evaporation fraction was first obtained by land surface
temperature—vegetation index triangle method, which was used to estimate ET in the clear days.
The soil moisture stress index (SMSI) was defined to express the constrain of soil moisture on ET,
and clear sky SMSI was retrieved according to the estimated clear sky ET. Clear sky SMSI was then
interpolated to cloudy days to obtain the SMSI for all sky conditions. Finally, time-series ET at daily
resolution was achieved using the interpolated spatio-temporal continuous SMSI. Good agreements
were found between the estimated daily ET and flux tower observations with root mean square error
ranging between 1.08 and 1.58 mm d−1, which showed better accuracy than the ET product from
MODerate resolution Imaging Spectroradiometer (MODIS), especially for the forest sites. Chi and
Mun river basins, located in Northeast Thailand, were selected to analyze the spatial pattern of ET.
The results indicate that the ET had large fluctuation in seasonal variation, which is predominantly
impacted by the monsoon climate.
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1. Introduction

Under the context of climate change and rapid population development, water is increasingly
becoming a scarce resource worldwide. Coping with water scarcity and growing competition for
water among different sectors requires proper water management strategies and decision processes.
Evapotranspiration (ET), the primary process of water transfer from the land surface to the atmosphere,
is one of the most important components in hydrological cycle since it represents a loss of usable water
from the hydrological supply for agriculture and natural resource [1,2]. Hence, ET plays a crucial role in
understanding the response of water cycle to climate change and human activities ultimately emulating
the water resource management to cope with the serious water resource shortages. Plants usually open
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their stomata under wet conditions, which are favorable for plant growth, while when the soil dries
stomatal closure limits transpiration to prevent dehydration. And how to express the constrain of soil
moisture is the key to ensure the accuracy of evapotranspiration algorithms.

Northeastern Thailand is characterized by tropical monsoon climate, with the wet season from
May to October and the dry season from November to the next April. The annual mean air temperature
is 20 ◦C and the annual precipitation is approximately 1300 mm that mostly falls during the rainy
season (April to October). From the 2000s onwards, it is reported that the onset of the Asian monsoon
and the start of the wet season is delayed in the whole of Indo China Peninsula, in association with
El Nino Southern Oscillation (ENSO) events, and annual rainfall is likely to be reduced further [3].
This is followed by lowered normalized difference vegetation index (NDVI) values and higher surface
temperatures in the widespread tropical forests, which will further exert significant influences on
regional and global energy and water cycle [4]. Rain-fed paddy field, cassava and teak plantations
are widely spread in this region, and they cover large portions of land use over Chi and Mun basins.
The effects of climate change, including increasing temperatures, seasonal floods and droughts, severe
storms and sea level rise, has threatened Thailand’s agriculture for decades [5]. ET is one of the most
important variables for crop water requirement estimation to rationalize the water consumption in the
agricultural field under current and future climatic conditions. How to capture ET variation during
the dry season is one of the most challenge issues, since ET during the dry season is regulated by soil
moisture mostly rather than the meteorological variables. However, the spatiotemporal variation of ET
and its trend in the Thailand is still not well studied, most likely due to the lack of high accurate ET
dataset, which limit the local water resource management.

Several approaches have been developed to estimate land surface ET based on satellite earth
observation data, which has proven to be able to obtain ET information at different spatial scales
from regional to global coverage [6–15]. The widely used surface energy balance-based method is
accurate and relies on the available land surface temperature (LST) data from satellite observations,
and the basic theory is that LST could generally represent the land surface dry-wet condition. However,
its application is limited in the clear sky, and large uncertainty exists when upscaling to cloudy sky
conditions [16–18]. Thus, the process-based approach is more attractive to get the spatially and
temporally continuous ET products with the increasing earth observation dataset availability [7–10].
For example, the process-based ETMonitor model driven by satellite observation has proven to be
able to generate highly accurate ET estimation at the daily scale and 1 km spatial resolution in arid
and semi-arid land by utilizing a variety of biophysical parameters derived from microwave and
optical remote sensing observations [7]. One key process of ETMonitor is that it adopted soil moisture
from microwave remote sensing to estimate root zone soil moisture empirically, which is utilized to
estimate the canopy resistance with other climate variables, and it is crucial to ensure the estimation
accuracy. Previously, the parameters in ETMonitor were assigned to locally arid and semi-arid basin
based on related references, which should be carefully calibrated when applied to different regions.
When applying ETMonitor to the monsoon climate in Thailand, an operational method should be
developed to address the constrain of soil moisture on ET during the dry season. Considering the
complementary advantages of the LST-based method and the process-based method, we hypothesize
these two methods can be combined to take both advantages, and LST-based method can be utilized to
parameterize the constraint of soil moisture on ET in ETMonitor, to improve the ET estimation scheme
and obtain spatially and temporally continuous ET information.

In the current study, the ETMonitor algorithm was further improved to estimate ET in Thailand
based on earth observation products. An operational method was proposed to parameterize the constrain
of soil moisture on canopy resistance for ET estimation, mainly achieved based on the LST-based land
surface energy balance method. The result was further validated based on eddy covariance flux tower
observations to present the validity of current method. The spatial variation of ET was also analyzed
to improve the understanding of the local scale ET information for Northeastern Thailand.
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2. Materials and Methods

2.1. ET Estimation Scheme

The developed ET estimation scheme is a combination of process-based algorithm, ETMonitor,
and LST-based energy balance algorithm. Different from the original ETMonitor, which adopt
fixed parameters to estimate canopy resistance for ET estimation based on mainly soil moisture
retrieved from microwave remote sensing, the developed scheme in current study also assimilates
LST information retrieved by thermal remote sensing. For the clear sky, when both soil moisture and
LST data are available, LST-VI (vegetation index) method is adopted to estimate EF and ET, which is
taken to parameterize the regulation of soil moisture on the ET. This relationship between canopy
resistance and soil moisture during the clear sky is built by introducing a new parameter named soil
moisture stress index (SMSI), which is further interpolated and applied to cloudy days to estimate
canopy resistance when only soil moisture data is available. Details on SMSI will be described in
Sections 2.2 and 2.3. Hence, the canopy resistance time series is obtained and is finally applied to
estimate ET.

The ETMonitor algorithm is designed to estimate the ET as the sum of different components,
including plant transpiration (Ec), soil evaporation (Es), canopy rainfall interception loss (Ei), open
water evaporation (Ew), and snow/ice sublimation (Ess). Due to the scarcity of snow and ice
in the study region, sublimation process has been eliminated from current study. Detail on the
parameterizations in ETMonitor can be found in [7]. Briefly, the canopy rainfall interception loss is
estimated using a revised Gash analytical model, open water evaporation is estimated by the classical
Penman equation. The soil evaporation and vegetation transpiration are calculated following the
Shuttleworth–Wallace dual-source model [19]:

Ec =
∆Rnc + ρcpVPD0/rc

a

λ∆ + λγ(1 + rc
s/rc

a)
(1)

Es =
∆(Rns − G) + ρcpVPD0/rs

a

λ∆ + λγ(1 + rs
s/rs

a)
(2)

where Rns and Rnc represents the net radiation for soil and vegetation (W m−2), respectively; G is
the soil heat flux density (W m−2); rc

a and rs
a are the bulk boundary layer resistance of vegetation and

aerodynamic resistance between soil and canopy source height (s m−1), estimated according to the
canopy height; rc

s is the bulk stomatal resistance of canopy (s m−1), estimated by Jarvis-type model;
rs

s is the surface resistance of soil (s m−1); ∆ is the slope of saturation vapor pressure curve of air
temperature (kPa K−1); $ is the air density (kg m−3); cp is the specific heat of air at constant pressure
(J kg−1 K−1); λ is the latent heat of vaporization (MJ kg−1); γ is the psychrometric constant (kPa K−1);
VPD0 is the water vapor pressure deficit at canopy source height (kPa). Detail of these parameters
retrieval can be found in [7].

The total Rn (Rntot) is partitioned vertically as Rn for canopy rainfall interception loss (Rni), Rnc,
and Rns:

Rntot = Rni + Rnc + Rns (3)

where the value of Rni stays zero on days with clear sky. For rainy days, Rni is estimated according to
the interception loss by reversing the Penman-Monteith (PM) equation. Generally, Rntot is measured by
remote sensing and Rni is determined from the Penman-Monteith equation, and these are subsequently
used to determine Rnc and Rns for Equations (1) and (2). The sum of Rnc and Rns is estimated as the
residual of Rntot − Rni, and is partitioned as:

Rnc = Fc (Rntot − Rni) (4)

Rns = (1 − Fc)(Rntot − Rni) (5)
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where Fc is the fraction of vegetation cover.

2.2. Canopy Resistance

Canopy resistance is estimated as the reciprocal of the canopy conductance, which is upscaled from
the stomatal conductance of leaf. While the stomatal conductance was computed by the well-known
Jarvis type model [20], which expresses stomatal conductance as the product of constraining functions
of several environmental variables, including the solar radiation (Rd), vapor pressure deficit (VPD),
air temperature (Ta), and root zone soil moisture (θroot). These finally lead to the rc

s estimation equation
as follows:

rc
s = rs,min/

(
f (Rd) f (VPD) f (Ta) f (θroot)LAIe f f

)
(6)

where rs,min is the minimum stomatal resistance (s m-1) associated with different plant functional types;
LAIeff represents the effective leaf area index (LAI), which has been applied for upscaling from leaf to
canopy scale. LAIeff was estimated following [21]:

LAIe f f = LAI/(0.3LAI + 1.2). (7)

The constrain function of f (Rd), f (VPD), f (Ta), f (θroot), varying between 0 and 1, represent the constrains
of solar radiation, VPD, air temperature, and root zone soil moisture to the stomatal conductance,
expressed as:

f (Rd) = 1 − exp(−Rd/k1) (8)

f (VPD) = 1 − k2VPD (9)

f (Ta) =
(

Ta − Tmin
Topt − Tmin

)
(

Tmax − Tmin
Tmax − Topt

)
(Tmax−Topt)/(Topt−Tmin)

(10)

f (θroot) =


0

(θroot − θmin)/(θmax − θmin)

1

f or θroot < θmin
f or θmin < θroot < θmax

f or θroot > θmax

(11)

where k1 and k2 are fitting parameters to describe the stomatal conductance sensitivity to radiation
and VPD. θmax and θmin represents the saturating and wilting point soil moisture at which the plant
stomata were totally open and close, respectively. Tmin, Tmax, and Topt are the minimum, maximum
and optimum air temperatures, respectively.

2.3. Parameterizing the Constrain of Soil Moisture

Since satellite soil moisture data can only provide surface soil moisture (θsurf), previous study
estimated θroot according to an empirical equation (θroot∝θsurf) and applied in Equation (11) for
obtaining f (θroot) [7]. f (θroot) is directly proportional to θsurf, hence SMSI is introduced in this study to
express this relationship:

SMSI = f (θroot)/θsur f . (12)

Since θsurf usually decreases rapidly compared to θroot after rainfall events until it reaches a relatively
stable level, SMSI is supposed to show decreasing trend with the decrease of θsurf from wet to dry
period. By introducing SMSI to expresses the sensitivity of f (θroot) to θsurf compared with the original
ETMonitor, the relationship between f (θroot) and θsurf is simplified.

Generally, θsurf can be obtained directly from microwave remote sensing soil moisture products,
while θroot can be estimated either from ground observation or soil water balance model, which could
apply Equation (11) to estimate f (θroot) given that θmax and θmin are known. Unfortunately, θmax and
θmin vary largely and depend on several factors including the soil characters, plant species, growing
phases, and root development, a mathematical fitting was suggested to obtain θmin based on field
experiment [22]. Hence, we suggest to reverse Equation (6) to retrieve f (θroot), which is feasible for



Remote Sens. 2019, 11, 138 5 of 17

clear sky when ET is estimated by the LST-based method. And SMSI under cloud covered days can be
interpolated linearly according to the clear sky SMSI. Accordingly, Equation (11) is rearranged as:

f (θroot) = min
{

1, max
(

0, θsur f ∗ SMSI
)}

. (13)

2.4. Clear Sky EF and ET Estimation

Different from the original ETMonitor, current study also utilize the LST-based energy balance
to retrieve clear sky ET, which was further used to retrieve clear day SMSI. The clear sky ET and
evaporative fraction (EF) were first estimated using LST-VI feature space method. The clear sky EF is
based on reference [23]:

EF = φ
∆

∆ + γ
(14)

where φ is a combined parameter for aerodynamic resistance, and is directly derived from remotely
sensed data. The success of LST-VI triangle method for estimating EF and ET depends mainly on the
choice of dry and wet edges in the LST-VI triangle space.

2.5. Data Collection

Table 1 lists the remote sensing dataset collected for ET estimation. For MOD11A1 and MYD11A1
daily LST data, only those under the clear sky were collected. The 8-day composites of LAI and
albedo data were interpolated temporally to obtain daily 1 km LAI and albedo datasets. The 0.25◦

resolution precipitation and soil moisture products were spatially interpolated to a fine resolution of
1 km. The 500 m resolution MCD12Q1 land cover type data was resampled to 1 km.

Table 1. Main input remote sensing dataset for evapotranspiration (ET) estimation.

Input Variables Products Name Temporal Resolution Spatial Resolution

Land Cover Types MCD12Q1 Yearly 500 m
LST MOD11A1 & MYD11A1 Daily 1 km

NDVI MOD13A2 & MYD13A2 8 days 1 km
Albedo GLASS 8 days 1 km

LAI GLASS 8 days 1 km
Precipitation CMORPH Daily 0.25◦

Soil Moisture ESA CCI Daily 0.25◦

The gridded near-surface meteorological forcing data, including air temperature, air pressure,
dew point temperature, wind speed, downward short-wave and long-wave radiation fluxes were
retrieved from the ERA-Interim dataset (http://apps.ecmwf.int/datasets/). The meteorological forcing
data with 0.25◦ resolution was downscaled to 1 km using statistical downscaling approaches [7,24,25].

To validate the estimated ET, flux observation data from 6 eddy covariance sites were collected
(Table 2). The 30 min flux tower observed latent heat flux (LE) was summed to daily ET after careful
quality check.

Table 2. Flux observation sites information.

Site ID Description Lat (◦N) Lon (◦E) Period Reference

ctt007 Cassava field at Tak 16.90 99.43 2012–2015 [26]
dtt030 Diverse land surface at Tak 16.94 99.43 2003–2015 [26]
prt007 Paddy at Rachaburi 13.58 99.51 2011–2013 [26]
pst007 Paddy at Sukhothai 17.06 99.70 2004–2009 [26]
MKL Forest at Sakaerat 14.59 98.84 2003–2004 [4]
SKR Forest at Mae Klong 14.49 101.92 2001–2003 [4]

http://apps.ecmwf.int/datasets/
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2.6. Application of ET Estimation in Thailand

The ET estimation flowchart in current study is shown in Figure 1, and ET from 2001 to 2015 are
obtained for the study area.

For bare soil or water pixels, simple PM equation or classical Penman equation is applied to
estimate bare soil evaporation and open water evaporation. For the vegetation-soil pixels, detail steps
for ET estimation includes:

(1) The canopy rainfall interception loss during the rainy days estimated according a revised Gash
model [27–29];

(2) The net radiation is partitioned according to Equations (3)–(5), while during the rainy days in the
wet season Rni is estimated by reversing PM equation.

(3) Scatterplot of clear sky LST and NDVI is prepared, and triangle method is applied to retrieve clear
sky EF during the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)
pass time according to Equation (15) in the dry season. The daily EF is assumed to be equal to the
EF during the satellite pass time, and daily ET is estimated according to the daily EF and daily
available energy;

(4) Daily rc
s and f (θroot) of clear days are obtained by reversing Equations (1) and (6), and SMSI is

estimated using Equation (12) during these clear days;
(5) SMSI time series is reconstructed by linear interpolation of the SMSI during clear days, hence

daily f (θroot) is obtained according to Equation (13) in the dry season; while in the wet season
SMSI is taken as constant;

(6) f (θroot) time series is then applied in Equation (6) to estimate daily canopy stomatal resistance,
and applied to Equations (1) and (2) to estimate plant transpiration and soil evaporation for all
sky conditions.

Finally, these ET components (plant transpiration, soil evaporation, canopy rainfall interception
loss, open water evaporation) are summed to total ET. And daily ET in Northeastern Thailand from
2001 to 2015 is achieved in current study.
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3. Results

3.1. The Constriant of Soil Moisture on Canopy Resistance and ET

The interpolated daily SMSI for estimating daily canopy resistance was validated over MKL and
SKR sites at the dry season. For each site, soil moisture at 10 cm (θ10cm) and 50 cm (θ50cm) depths were
available, and surrogated for surface soil moisture and root zone soil moisture. θ50cm is applied in
Equation (11) to obtain the constrain of root zone soil moisture on the canopy resistance (f (θ50cm)),
which is taken as reference to further compare with f (θroot) by reversing Equations (1) and (6) further,
while f (θ50cm)/θ10cm (SMSI50cm) is considered as reference to compare with SMSI.

For the site scale application, when daily latent and sensible heat flux observation is available,
mainly in the clear sky, f (θroot) was first retrieved by reversing Equations (1) and (6) (f (θroot)clear day),
and SMSI was estimated (SMSIclear day) according to Equation (12). SMSIclear day was interpolated
linearly to obtain the daily SMSI (SMSIdaily), and applied in Equation (13) to obtain the estimated
f (θroot) (f (θroot)daily). Note that SMSIclear day and f (θroot)clear day are only for the days with valid latent and
sensible heat flux observations, while SMSIdaily and f (θroot)daily are temporal continuous during the dry
season (Figure 2).

Generally, in the beginning of wet-to-dry episode, the surface soil moisture drops down faster
compared to the root zone soil moisture (Figure 2). Several days (e.g., roughly 20 days) from the
beginning of dry season in 2003 for MKL site, θroot drop to the level below θmax, and f (θroot) start to
decrease, and the decreasing rate is linearly related to the decreasing trend of surface soil moisture.
This also lead the uneven decreasing rate of surface soil moisture and f (θroot). However, linear
relationship was found between surface soil moisture and f (θroot) during a wet-dry episode, which was
defined as the period between two rainy days (Figure 3). Hence, both SMSIdaily and f (θroot)daily could
match the temporal variation during the dry season (Figure 2), and both showed low root mean square
error (RMSE) and bias with the reference values (Figure 4), indicating the method to parameterize the
constrain of soil moisture on canopy resistance based on EF in current study is reasonable.

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 17 

 

heat flux observations, while SMSIdaily and f(θroot)daily are temporal continuous during the dry season 
(Figure 2). 

Generally, in the beginning of wet-to-dry episode, the surface soil moisture drops down faster 
compared to the root zone soil moisture (Figure 2). Several days (e.g., roughly 20 days) from the 
beginning of dry season in 2003 for MKL site, θroot drop to the level below θmax, and f(θroot) start to 
decrease, and the decreasing rate is linearly related to the decreasing trend of surface soil moisture. 
This also lead the uneven decreasing rate of surface soil moisture and f(θroot). However, linear 
relationship was found between surface soil moisture and f(θroot) during a wet-dry episode, which 
was defined as the period between two rainy days (Figure 3). Hence, both SMSIdaily and f(θroot)daily could 
match the temporal variation during the dry season (Figure 2), and both showed low root mean 
square error (RMSE) and bias with the reference values (Figure 4), indicating the method to 
parameterize the constrain of soil moisture on canopy resistance based on EF in current study is 
reasonable. 

(A) 

 

(B) 

Figure 2. Time series of soil moisture stress index (SMSI) and f(θroot) at (A) MKL site and (B) SKR site. 
Soil moisture at 10 cm (θ10cm) and 50 cm (θ50cm) depths are also shown. 

 
(A) 

 
(B) 

Figure 3. The relationship between soil moisture at 10 cm (θ10cm) and f(θ50cm) at (A) MKL site and (B) 
SKR site at a wet-dry episode. Linear equations are used for fitting(y = 3.42 x − 0.28 with R2 = 0.99 from 
27 October 2003 to 5 February 2004 and y = 0.12 x − 0.31 with R2 = 0.20 from 7 February 2004 to 14 

Figure 2. Time series of soil moisture stress index (SMSI) and f (θroot) at (A) MKL site and (B) SKR site.
Soil moisture at 10 cm (θ10cm) and 50 cm (θ50cm) depths are also shown.

The uncertainty of SMSI illustrated in Figure 4A will contribute to f (θroot) in Figure 4B. As we
can see in the Figure 4, RMSE of 0.31 in SMSI will result in RMSE of 0.09 in f (θroot), mostly because
f (θroot) is also regulated by surface soil moisture. This is also shown in Figure 2 that f (θroot)daily is very



Remote Sens. 2019, 11, 138 8 of 17

close to f(θroot), while SMSIdaily bias relative large with SMSIroot. Hence, this interpolation method is
considered valid and can be applied to estimate ET in the current study.
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Figure 3. The relationship between soil moisture at 10 cm (θ10cm) and f (θ50cm) at (A) MKL site and
(B) SKR site at a wet-dry episode. Linear equations are used for fitting(y = 3.42 x − 0.28 with R2 = 0.99
from 27 October 2003 to 5 February 2004 and y = 0.12 x − 0.31 with R2 = 0.20 from 7 February 2004 to
14 March 2004 in MKL, y = 17.87 x − 1.87 with R2 = 0.96 from 3 November 2002 to 8 December 2002
and y = 4.80 x − 0.15 with R2 = 0.97 from 24 December 2002 to 24 February 2003 in SKR).
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3.2. Validating Clear Sky EF by MODIS

The clear sky EF was first derived by LST-VI triangle method, and Figure 5 shows an example of
the LST-VI scatter plot and the spatial variation of estimated EF for 20th January, of 2009. Generally,
the dry edge and wet edge are well estimated both by Terra and Aqua MODIS. Furthermore, the Terra
MODIS-based EF estimates is very close to that of the Aqua MODIS estimates (Figure 6), and both
were applied for ET estimation.

To further validate the estimated EF, the estimated EF values over the 6 flux observation sites
were extracted to compare with the ground observation, as shown in Figure 7. The observed EF at the
satellite pass time is obtained by interpolating the ratio of observed half-hour LE to half-hour available
energy to the Terra and Aqua MODIS pass time, while the daily EF is obtained as the ratio between
daily LE and available energy. Generally the estimated clear sky EF agree well with observed half-hour
and daily EF. Slight difference could be found in terms of RMSE and correlation coefficient, indicating
the reasonability of constant EF assumption.
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of EF based on Terra and Aqua MODIS data; (B) spatial variation of EF difference (EF based on Terra
minus that of the Aqua MODIS data).

3.3. Comparison of Estimated ET with Flux Tower Observations

The estimated daily ET agree well with the ground observations, with mean bias range from
−0.44 to 0.89 mm d−1 and root mean square error (RMSE) range from 1.08 to 1.58 mm d−1 (Figure 8).
The estimated ET could also catch the seasonal variations of ET (Figure 8). These indicate that the
estimated ET has relatively good accuracy. Generally, better agreement could be found in the cropland
sites than in the forest sites, most likely because significant seasonal variation of ET could be found in
cropland while ET in the forest sites showed much less seasonal variation.
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Current estimation is compared with the results by original ETMonitor by Hu and Jia (2015) at
daily time-step (Table 3). When original ETMonitor by Hu and Jia (2015) was applied, relatively large
bias and RMSE could be found, especially for the forest sites. The accuracy is improved by parameter
adapting for the forest area, resulting in reduction of RMSE from 1.92–2.12 mm d−1 to 1.16–1.39 mm d−1.
It also suggests the necessity to adapt model parameters regionally in the original ETMonitor when
applying to different regions to achieve accurate ET estimation. The method developed in current
study showed comparable accuracy with the regional adapted ETMonitor, indicating the developed
method could be adopted to obtain ET with higher accuracy. This method is operational, and it could
reduce the dependence of ground flux observation to calibrate the model parameters.

Table 3. Comparison of estimated daily ET by current improved ETMonitor and original ETMonitor by
Hu and Jia (2015) with ground observed ET. Values in the baskets represent the results after adapting
the parameters by Hu and Jia (2015) to the humid climate in Northeast Thailand.

Site ID

ETMonitor by Hu and Jia (2015) Current Study Estimation

R Bias
(mm d−1)

RMSE
(mm d−1) R Bias

(mm d−1)
RMSE

(mm d−1)

ctt007 0.48 0.02 1.06 0.37 0.43 1.27
dtt030 0.62 (0.45) −1.70 (−0.77) 1.95 (1.25) 0.47 −0.3 1.12
prt007 0.45 −0.37 1.21 0.46 −0.44 1.16
pst007 0.51 −0.33 1.12 0.53 −0.26 1.08
MKL −0.02 (0.00) 1.59 (0.68) 1.92 (1.16) −0.06 0.65 1.16
SKR 0.14 (0.07) 1.67 (0.44) 2.12 (1.39) 0.13 0.89 1.58

Current estimation is also compared with the MOD16 ET product at 8-days resolution (Table 4 and
Figure 9). Overall, the RMSE of estimated ET (RMSE = 0.97 mm d−1) is much lower than MOD16 ET
(RMSE = 1.54 mm d−1) when compared with ground observation. Significant improvement is observed
over forest sites (MKL and SKR) where the RMSE are reduced from 2.69 mm d−1 and 1.99 mm d−1 to
1.04 mm d−1 and 1.20 mm d−1.
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Table 4. Comparison of ETMonitor estimated 8 days ET and MOD16 8 days ET with ground
observed ET.

Site ID

ETMonitor 8-Days ET MOD16 8-Days ET

R Bias
(mm d−1)

RMSE
(mm d−1) R Bias

(mm d−1)
RMSE

(mm d−1)

ctt007 0.59 0.44 0.94 0.30 0.36 1.19
dtt030 0.59 −0.31 0.92 0.50 −0.09 0.98
prt007 0.65 −0.37 0.82 0.23 −0.03 0.99
pst007 0.63 −0.45 0.97 0.59 −0.55 1.12
MKL 0.07 0.75 1.04 0.48 2.58 2.69
SKR 0.30 0.78 1.20 0.42 1.82 1.99

3.4. Spatial Variation of ET in Northeastern Thailand

Figure 10 shows the spatial variation of estimated annual mean ET, as well as the main ET
components including plant transpiration, soil evaporation, and canopy rainfall interception in
Northeastern Thailand from 2001 to 2015. The multi-annual mean ET in two largest river basins
in this area, Chi and Mun river basins, are 938.8 mm yr−1 and 1023.7 mm yr−1, respectively (Table 5).
These two basins are mainly dominant by cropland, which account for 82.16% and 87.45% respectively
according MCD12Q1 land cover classification data. Overall, annual precipitation and ET in the Mun
river basin is higher than the Chi river basin (Table 5).
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Table 5. Statistic information of Chi and Mun river basins.

Basin Area
(× 103 km2)

Annual Precipitation
(mm yr−1)

Annual ET
(mm yr−1)

Cropland
Coverage (%)

Forest
Coverage (%)

Chi river basin 40.58 1269.52 938.80 82.16 5.56
Mun river

basin 71.06 1374.50 1023.70 87.45 6.56



Remote Sens. 2019, 11, 138 13 of 17

Plant transpiration and soil evaporation account for 43.32% and 51.48% of the total ET respectively.
The canopy rainfall interception only account for 4.70% of total ET, since this region is mostly covered
by low canopy crop, and the area of cropland account for over 80% of the total area, while 80% of
the crop is paddy field. The forest only cover roughly 6% of the two basins, mostly located in the
Northwest of Chi river basin and Southwest of Mun river basin, where relative high transpiration and
interception could be found (Figure 10).

Figure 11 presents the spatial variation of wet season (April to October) and dry season (November
to next March) ET in Northeastern Thailand from 2001 to 2015. The wet season ET in Chi and Mun
river basins account for 62.30% and 61.27% of annual total ET, while dry season ET in Chi and Mun
river basins account for the rest 37.70% and 38.73%.
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4. Discussion

The spatially and temporally continuous ET information will advance our knowledge on the
mean state and spatial and temporal variability of this significant component of the water cycle,
and is highly needed for understanding the interactions between land surface and atmosphere and
subsequently improving the water resource management [30]. The LST based surface energy balance
method has been proved to provide accurate ET information, but inefficient to produce time series ET
due to the cloud [31]. The process-based approach is better for obtaining the spatially and temporally
continuous ET products, e.g., the MOD16 ET algorithm. The procedure provided by current study
generally combines the advantage of LST-based energy balance method to improve the ET estimation
accuracy and the advantage of process model to achieve the spatially and temporally continuous ET
estimation, thus it can provide accurate ET estimation, as we showed that the RMSE of estimated ET is
low (Figures 8 and 9, Table 3).

It is generally accepted that the RMSE of estimated daily ET range from 1–2 mm d−1 based
on satellite forcing, and RMSE of about 50 W m−2 is common reported for latent heat flux (equal
to 1.75 mm d−1 ET) [7,10,32]. The RMSE of estimated daily ET in current study range from 1.08
to 1.58 mm d−1, with an averaged RMSE of 1.22 mm d−1, which is less compared to original
ETMonitor by Hu and Jia (2015) and MOD16 ET. Generally, MOD16 tend to overestimate forest
ET and underestimate cropland ET, which is consistent with several past studies [33–35], though
not to the same extent as found in this study. Several factors contribute to MOD16 ET uncertainties,
e.g., parameterizing soil moisture constrain by meteorological factors (not soil moisture or LST),
overestimating environmental stresses on canopy conductance, empirical parameter setting in
complementary relationship hypothesis [35,36]. ETMonitor first presented by Hu and Jia (2015)
is superior mostly because it is physical robustness, and it considers the impact of soil moisture on ET
by introducing the microwave remote sensing-based surface soil moisture and has been demonstrated
to be suitable to estimate ET at both regional and global scale [7,37,38]. Although the behavior of
original ETMonitor does not meet the expectation in current study, it could be improved by simply
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adapting its regional parameter to local condition for achieving accurate ET estimation, and is clearly
presented by the low RMSE of regional parameter adapted ETMonitor in Table 3. This also highlight the
necessity to calibrate parameters to obtain accurate ET estimation when applying locally. Previously,
empirical method or soil water balance model was adopted to estimate the root soil moisture based
on surface soil moisture, which was further applied to estimate the constrain of soil moisture (f (θroot))
based on fixed soil moisture sensitive parameter. Different from original ETMonitor presented by
Hu and Jia (2015), who adopted empirical method to express the constrain of soil moisture on ET,
the framework developed in current study provides an operational method to calibrate the algorithm
regionally by parameterizing the constrain of soil moisture. The developed framework utilized the
LST-VI triangle method to estimate the clear sky EF, which was further applied to estimate SMSI by
reversing the canopy resistance equation. It is an operational approach to obtain the canopy resistance
parameter for ETMonitor, and it could also be adopted by other ET algorithms.

It has been long recognized that the important variables to determine canopy resistance (or canopy
stomatal conductance) include air temperature, humidity, solar radiation, and soil moisture [39,40].
Plants usually open their stomata under wet conditions, which are favorable for plant growth,
while when the soil dries stomatal closure limits transpiration to prevent dehydration. Method
obtained to express the constrain of soil moisture and climate factors on canopy resistance and
evapotranspiration is the key to ensure the accuracy of evapotranspiration algorithms [8,41,42].
The accuracy of ETMonitor estimated ET is also sensitive to the canopy resistance parameter [7].
Different from the traditional calibration method, the developed approach utilized the clear sky EF
maps obtained by LST-VI triangle method to retrieve the canopy resistance parameter. One advantage
is that it can provide the pixel-to-pixel parameter. The traditional method usually relied on the
heavy field work to retrieve the plot scale canopy resistance parameter, which was further applied to
regional or global scale according to the land cover map [10]. Thus, traditionally a fixed parameter
was usually adopted for a land cover type. However, there exist strong variability in drought tolerance
across different plant species, sites, and environmental conditions, which limit the accuracy of global
land surface model to simulate the ecosystem response to the decreasing soil moisture, hence much
comprehensive calibration method should be addressed [42,43]. The SMSI retrieved by clear sky EF
maps obtained by LST-VI triangle method is based on satellite remote sensing image, and can capture
the spatial and temporal variation.

LST-VI method is chosen in this study mostly because of its simplicity and accuracy, making it
acceptable in the current study (Figure 7). It is also noted that LST-VI method may suffer from domain
dependence, and it may impact the accuracy of wet and dry boundary derivation [44]. This spatial-scale
effect is common in other anchor-based ET algorithm, e.g., surface energy balance algorithm for land
(SEBAL), and caution should be paid when applied to different images in extreme large regions [45,46].

For large regional application, e.g., continents scale, algorithm that is independent of domain
size is suggested as alternative. The uncertainty in the input data also contribute to the error of
estimated ET in current study. Former study already presented that remote sensing ET algorithms
are very sensitive to input variables, e.g., LST, Rn, NDVI, and meteorological variables, depending on
which algorithms are adopted [16,32,44,45]. The impact of land cover on ET estimation should also be
addressed in ETMonitor, since some sensitive parameters like the minimum stomatal resistance are set
according to land cover types. Hence, the uncertainty of land cover classification also contribute to the
error in estimated ET.

The linear interpolation of SMSI works well during a wet-dry episode since SMSI generally
presents monotonic deceasing trend. However caution should be paid when applying to the frequent
rainfall period when the monotonic trend will be disturbed by rainfall. Meanwhile, it is not suitable for
those regions where root-zone soil moisture and surface soil moisture are decoupled since the surface
soil moisture by satellite remote sensing generally cannot represent the surface wetness condition.
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5. Conclusions

ET in Northeastern Thailand was estimated by process-based ETMonitor algorithm based on
mainly satellite earth observation datasets. Meanwhile, a new scheme was developed and applied
in ETMonitor to take the advantage of LST-based energy balance method. In this scheme, the soil
moisture stress index (SMSI) was defined to express the sensitivity of canopy resistance to surface
soil moisture, and it was estimated by reversing the canopy resistance equation during the clear sky
when EF could be achieved by LST-based energy balance method. The clear sky SMSI was further
interpolated to the cloudy days to estimate canopy resistance based on temporal-continuous surface
soil moisture data for continuous ET estimation. The estimated daily ET generally agreed well with
the flux tower observation with RMSE ranging between 1.08 and 1.58 mm d−1. The RMSE values over
the forest sites are considerably lower compared to MOD16 products, indicating its better accuracy.
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