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Abstract: The objective of this study was to develop a decision-based methodology, focused
on data fusion for wetland classification based on surface water hydroperiod and associated
riparian (transitional area between aquatic and upland zones) vegetation community attributes.
Multi-temporal, multi-mode data were examined from airborne Lidar (Teledyne Optech, Inc., Toronto,
ON, Canada, Titan), synthetic aperture radar (Radarsat-2, single and quad polarization), and
optical (SPOT) sensors with near-coincident acquisition dates. Results were compared with 31 field
measurement points for six wetlands at riparian transition zones and surface water extents in the
Utikuma Regional Study Area (URSA). The methodology was repeated in the Peace-Athabasca Delta
(PAD) to determine the transferability of the methods to other boreal environments. Water mask
frequency analysis showed accuracies of 93% to 97%, and kappa values of 0.8–0.9 when compared to
optical data. Concordance results comparing the semi-permanent/permanent hydroperiod between
2015 and 2016 were found to be 98% similar, suggesting little change in wetland surface water extent
between these two years. The results illustrate that the decision-based methodology and data fusion
could be applied to a wide range of boreal wetland types and, so far, is not geographically limited.
This provides a platform for land use permitting, reclamation monitoring, and wetland regulation in
a region of rapid development and uncertainty due to climate change. The methodology offers an
innovative time series-based boreal wetland classification approach using data fusion of multiple
remote sensing data sources.
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1. Introduction

1.1. Boreal Wetlands and Remote Sensing

Wetlands in Canadian boreal regions come in many sizes and forms. These wetlands typically
develop where the water table is at or near the surface, allowing water to settle, promoting development
of soil conditions for hydrophytic vegetation [1]. The majority of Canada’s 150 million hectares of
wetlands are found in the boreal region, where rates of forest disturbance in 2008 were found to be
approximately 78%, among the highest in the world [2]. Natural resources development, agricultural
land cover change, and drying from warmer climate conditions are all contributing to disturbances in
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the boreal zone. With increasing disturbance and changes to local hydrology, accurate, high resolution
spatiotemporal classification of these boreal wetlands is required for understanding rates of boreal
wetland change, many of which have yet to be accurately identified or mapped. Moreover, drying
trends in many northern regions of Canada and the United States have been observed in recent
decades, where changes in ground and surface water hydrology have been observed. In addition,
natural cycles, vegetation type, and flooding lack comprehensive understanding through ineffective
monitoring and/or documentation. Lowering of the water table results in increasing shrub succession
into wetlands in some years, and altering of the carbon balance [3–6]. Wetland succession has been
observed within localized plots and sampling areas, however, it is logistically difficult to measure these
processes across broad regions.

Due to these changes, there is a need to develop remote sensing classification procedures that
provide a high-resolution baseline of contemporary wetland characteristics and the potential for
automated mapping of temporal changes. Remote sensing offers the potential to continuously map
wetland and water extents [7,8] inundated vegetation, and associated water permanencies at regional
scales. For boreal wetland studies, early remote sensing applications commonly utilized passive
multispectral optical imagery as a foundational data source from which identify and map wetland
features and extents. The capture of optical information across multiple wavelengths provides the
spectral separation of distinguishing features common in wetland ecosystems, such as water and
different vegetation conditions and species [9,10]. However, the passive nature of such systems (i.e.,
detection of (typically solar) radiation reflected from the target) make them ineffective during cloudy
conditions and/or under low-light conditions [11].

More recently, active sensors such as light detection and ranging (Lidar) and synthetic aperture
radar (SAR) have been recognized as valuable tools for wetland mapping by remote sensing. Lidar
is commonly employed for high resolution three-dimensional mapping of terrain and terrestrial
ecosystems. Lidar has been commonly utilized for the identification of terrain depressions,
to identify probabilistic wetland locations (given gravitational gradients remain unaffected by external
mechanisms). Moreover, Lidar data have recently been applied in wetland classification techniques
with reasonable success [7]. Lidar’s active nature enables penetration into, and through, vegetation
canopies, and thus allows the measurement of within canopy structure and terrain features below—key
for distinguishing different wetland classes. However, Lidar typically acquires data in a single
wavelength (most commonly 1064 nm), although state-of-the-art systems allow the simultaneous
acquisition of up to 3 bands (Optech Titan). The 1064 nm waveband is often absorbed by water and
can provide analytical challenges in open water environments. Conversely, SAR is useful for surface
water and flooded vegetation mapping, due to the contrast and reflectivity between land and water
associated with the high dielectric constant of water [12–14]. Multi-temporal SAR data series are
comparable to (cloud-free acquisitions from) optical sensor for wetland detection, largely because
SAR is unaffected by cloud cover and other atmospheric effects [15]. Like Lidar, SAR can penetrate
vegetation canopies to provide information on beneath canopy flooding. This is achieved, in part,
from multi-polarized SAR data, which present the opportunity to decompose imagery backscatter
information into scattering mechanisms, allowing a better understanding of wetland flood extent [14].

Whilst individual remote sensing data have demonstrated success for wetland mapping, it is
comprehensively recognized that data fusion methods using multiple remote sensing sources provide
improved information on wetland hydrological, vegetation, and topographic attributes that are
important identifiers of wetland characteristics [16,17]. For example, Irwin et al. [18] noted the
use of high-resolution WorldView-2 data, combined with Lidar and SAR, reduced water surface
extent uncertainties by 11% on average. Millard et al. [19] noted improved accuracy of wetland
extent mapping and wetland type classification when combining Lidar and SAR data over individual
data source analysis. As imaging sensors become increasingly advanced and data sharing trends
are moving toward more open source distribution, there are opportunities for combining multiple
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data types through data fusion, to monitor and characterize unique environments that remain to be
fully understood.

The objective of this study is to examine remote sensing decision-based approaches to enhance
the ability to classify and quantify important boreal wetlands and attributes, including (a) wetland
extent and type; (b) water extent and change through time; and (c) extent of flooded vegetation so
that the methods can be repeated within a long-term monitoring framework. This is performed using
data fusion of (1) topographic attributes from Lidar, (2) surface water hydroperiod from SAR, and
(3) vegetation structural attributes from Lidar and optical remote sensing data. Results are compared
with field validation data, allowing error of omission, and to also be investigated using data fusion to
increase overall accuracies and enable complex quantification of boreal wetland attributes.

1.2. Study Area

The research focuses on two subareas in Alberta (Figure 1a): a ~20 km × 20 km subset of the
Utikuma Regional Study Area (URSA) region (Figure 1b), including only areas of heterogeneous
wetland and till moraine uplands (excluding the clay plains region); and a ~25 km × 25 km area of the
Peace-Athabasca Delta (PAD) (Figure 1c). The subarea found within the PAD was identified to test the
applicability of remote sensing fusion classification conducted at URSA. It should be noted the shrub
(Salix sp.) and graminoid dominant vegetation composition at PAD is different from that at URSA,
which is more heavily treed and subject to less extreme surface water fluctuations. The difference in
canopy density at each site is also an important consideration with respect to determining Lidar and
SAR signal penetration and canopy height metrics.

1.2.1. Utikuma Regional Study Area

URSA is a boreal forest region located approximately 100 km north of Slave Lake in the
Central Mixedwood Natural Subregion [20]. The URSA series of study sites covers an area of
1062 km2 surrounding Utikuma Lake [21], established in 1998 as a long-term monitoring site to
quantify key hydrological processes associated with disturbance and regeneration, nutrient cycles,
and hydro-ecological changes over time in a sub-humid environment. URSA moraine complexes
are comprised of a heterogeneous mixture of locally topographic low-lying wetlands and peatlands
separated by upland till moraine with predominantly Populus tremuloides across the northwest side of
the ~60 km × 20 km transect. The southeast half of the transect is underlain by clay plains with large
coverage of peatlands and greater development. Wetland ecosystems are predominantly comprised
of shallow ponds with submergent macrophyte vegetation that may float on open water during
summer [22]. Treed fens and bogs are found on poorly drained organic rich soils comprised of mainly
black spruce (Picea mariana) and are commonly underlain with Sphagnum spp. mosses, fibric peat,
grasses up to 0.5 m height, and gyttja hummocks and hollows [22].

1.2.2. Peace-Athabasca Delta

The Peace-Athabasca Delta (PAD) formed at the western end of Lake Athabasca after the retreat of
the Laurentide ice sheet ~10,000 BP. Isostatic rebound and sedimentation by the major Peace, Athabasca,
and Birch Rivers formed deltas approximately 1680, 1970, and 170 km2, respectively [23]. The deltas
contain more than 1000 small basins (wetlands and lakes) with varying degrees of surface hydraulic
connection to the main flow system, depending on location and elevation [24]. Three delta basin water
level regimes are present within the PAD: (i) an open or active hydraulic connection with the main
flow system; (ii) a restricted connection, such as a perched channel or levee entry, to an adjacent lake or
river; and (iii) isolated farther inland. The water level fluctuation of the latter two types is independent
of the main flow system, except when connected during high water events, and are referred to as
perched basins.
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Figure 1. Study site location and study area subsets with field photos: (a) the study sites within Alberta,
Canada; (b) regional location (blue) of the ~20 km × 20 km area of interest (AOI) subset in the Utikuma
Regional Study Area (URSA); (c) 25 km × 25 km subset (red) of the Peace-Athabasca Delta (PAD) study
area; (d) vegetation conditions during the growing season for URSA; and (e) PAD.
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Basins typically have low relief (<2 m, referred to as shallow open water wetlands, a standard
Canadian national wetland class) with maximum depths ranging from 0.06 to 12.1 m (mean of
1.5 ± 1.4 m), and surface areas ranging from 0.1 to ~20 km2. Basins in the main portion of the delta
are generally enclosed by narrow, abrupt levees that comprise a small fraction of the total area [25].
Topographic relief within the delta is low, and reconnection of abandoned channels and overland flow
to inland basins occurs during overtopping of levees as a result of ice jams, large runoff, and/or the
expansion of the central lakes beyond the shoreline. Vegetation cover is important in limiting surface
runoff and influencing evaporation rates, while bedrock outcrop in the northeastern areas enhance
surface runoff contribution to the ponded area [26,27].

2. Data and Methods

This study employed multi-temporal, multi-mode SAR (RADARSAT-2, single and quad
polarization), Lidar, and optical (SPOT) data with similar acquisition dates. The data were acquired,
and their intended purpose is summarized in Table 1.

Table 1. Data layers used in the classification and associated information.

Data Derived from Purpose of Layer

SAR open water HH-SAR Mask of open surface water
SAR FDD decomposition Quad-Pol SAR Identifies flooded vegetation

Topographic position index Lidar DEM Local terrain attributes
Optical open water SPOT Validation for SAR open water mask

Vegetation height layer Lidar CHM Vegetation height
Road layer SPOT/Manual Quality control layer

Definitions: SAR = Synthetic Aperture Radar; FDD = Freeman Durden Decomposition; DEM = Digital Elevation
Model; SPOT = Satellite Pour l’Observation de la Terre, Centre national d’études spatiales; CHM = Canopy
Height Model.

2.1. Data

2.1.1. Airborne Lidar

Two airborne Lidar datasets were available at URSA. The first was acquired during August 2008 by
Airborne Imaging Inc. (Calgary, AB, Canada) using a Teledyne Optech ALTM 3100. These data were
acquired as part of Alberta’s provincial dataset. The second was a multispectral acquisition captured on
6 August 2016 by use of a Teledyne Optech Titan ALTM, geo-referenced using a locally situated global
navigation satellite system (GNSS) unit. Both airborne Lidar datasets exhibit coincidence between all
SAR acquisitions and field validation locations.

An additional multispectral Titan Lidar survey was flown over the PAD in August 2016 in a
similar configuration as noted at URSA. No supplementary local geo-referencing information were
acquired to support this dataset due to logistical and financial constraints.

2.1.2. Optical Data

SPOT-6 (Satellite Pour l’Observation de la Terre, Centre national d’études spatiales) multispectral
optical imagery was acquired on 17 September 2015, which was cloud-free and delivered with an
atmospheric correction applied. Each image captured 4 spectral bands, red (625–695 nm), green
(530–590 nm), blue (450–524 nm), and near-infrared (NIR) (760–890 nm); at a 5 m × 5 m pixel resolution.
Data were acquired near coincident days to SAR acquisitions, for validation purposes.

2.1.3. SAR

RADARSAT-2 images of URSA were acquired during 2015 and 2016 ice-off conditions in single
polarization (HH) Wide Ultra-Fine U24W2 (incidence angle 46.3◦ to 48.2◦) and U13W2 (incidence
angle 38.7◦ to 41.2◦) descending orbit, and Wide Fine-Quad FQ10/5W (incidence angle 22.5◦ to 26.0◦)



Remote Sens. 2019, 11, 161 6 of 24

beam modes (Table 2). Wide Ultra-Fine U2W2 (incidence angle 29.6◦ to 33.0◦) and Wide Fine-Quad
(FQ10/5W) ascending orbit data were acquired over the PAD in 2014 and 2015 (Table 3). Wide Ultra
Fine has a nominal resolution of 2.5 m × 2.5 m, and Wide-Fine Quad has a nominal resolution of 5 m ×
5 m. Wide Ultra-Fine data were resampled to a 3 m resolution for consistency across all images.

Table 2. SAR acquisition dates of Wide Ultra-Fine (U13W2 and U24W2) and Wide Fine-Quad (FQ10/5W)
beam modes over URSA for 2015 and 2016.

2015 2016

July 20 (U24W2) May 3 (U24W2) July 27 (FQ10/5W)
August 13 (U24W2) May 24 (U13W2) August 4 (U13W2)

September 3 (U13W2) May 27 (U24W2) August 8 (FQ10/5W)
September 6 (U24W2) June 17 (U13W2) August 28 (U13W2)

September 27 (U13W2) June 20 (U24W2) August 31 (U24W2)
October 21 (U13W2) July 11 (U13W2) September 21 (U13W2)
August 13 (U24W2) July 14 (U24W2) September 24 (U24W2)

Table 3. SAR acquisition dates of Wide Ultra-Fine (U2W2) and Wide Fine-Quad (FQ10/5W) beam
modes over PAD for 2014 and 2015.

2014 2015

April 8 (FQ10/5W) May 12 (U2W2) April 27 (FQ10/5W) May 7 (U2W2)
May 2 (FQ10/5W) June 5 (U2W2) May 21 (FQ10/5W) May 31 (U2W2)
May 26 (FQ10/5W) June 29 (U2W2) June 14 (FQ10/5W) June 24 (U2W2)
June 19 (FQ10/5W) July 23 (U2W2) July 8 (FQ10/5W) July 8 (U2W2)

August 6 (FQ10/5W) August 16 (U2W2) August 1 (FQ10/5W) August 11 (U2W2)
August 30 (FQ10/5W) October 2 (U2W2) August 25 (FQ10/5W) September 4 (U2W2)
October 17 (FQ10/5W) September 18 (FQ10/5W)

Canopy penetration of the microwaves in the SAR system allows for mapping and classification of
flooded vegetation due to enhanced backscatter from the double-bounce scattering mechanism [28,29].
This results in enhanced HH backscattering with less increase seen in VV, therefore, quad-polarized (HH,
HV, VH, VV) datasets can be used to identify flooded vegetation using polarimetric decomposition
techniques [29–31]. Steeper incidence angle gives better penetration into the canopy of flooded
vegetation, but the steeper the angle, the more that the range is limited in Fine-Quad modes.

2.1.4. Ground Validation

A total of 6 wetlands within the study region were surveyed between 25 July and 4 August
2015. Positional information was acquired to determine surface water extent (i.e., location where
water touches the edge of the pond) and riparian habitat boundary transects (i.e., location where
the frequency of shrubs was less than ~1 shrub per 10 m radius). Cross-sectional transects were
established, extending perpendicularly away from the water’s edge and upwards from the wetlands to
adjacent upland, to reflect vegetation zones and changes in vegetation community composition where
prominent vegetation species were identified [8]. Positions were occupied using a Topcon HiPer SR
GNSS (Livermore, CA, USA) following standard kinematic survey techniques, and were differentially
corrected to a static base station using precise point positioning (PPP), yielding centimeter accuracy.

In situ field data, collected within days of remote sensing data acquisitions, were utilized for
spatially validating riparian vegetation species, composition, and open water extent over time, and/or
pond/lake “hydroperiod”.
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2.2. Methods

2.2.1. Airborne Lidar Processing

The 2016 Titan Lidar point cloud was pre-processed using Teledyne Optech’s Lidar Mapping Suite,
where Terrascan (Terrasolid, Helsinki, Finland) and LAStools [32] were utilized for post-processing. The
raw (pre-processed) point cloud was tiled to a 1 km grid, with a 20 m buffer to mitigate potential edge
effects. Each tile was ground-classified and, subsequently, height normalized to calculate the height of
each non-ground point above the identified ground surface. Non-ground points were classified as low,
medium, and tall vegetation, in accordance with ASPRS 2011 guidelines [33]. Vegetation-classified
points were interrogated using a 1 m search radius to determine the 99th percentile height (P99), where
only points >2 m above the ground were considered, in order to negate contributions of understory
vegetation; i.e., P99 is the height at which 99% of vegetation-classified points >2 m above the ground
occur. These heights were rasterized to a 1 m grid to yield a canopy height model (CHM). The removal
of understory vegetation by use of a minimum height cut-off is common practice in the analysis
of Lidar data acquired over forest environments [34]. TerraScan (TerraSolid, Helsinki Finland) and
Surfer (Golden Software, Golden, CO, USA) were employed to filter ground classified points and
produce a 1 m × 1 m digital elevation model (DEM), created using inverse distance weighting (IDW)
interpolation, with a 10 m search radius.

A common derivative from high resolution DEM data is topographic position index (TPI). TPI is a
measure of the difference between the elevation value of a cell and the average elevation of nearby
(neighboring) cells (within a defined radius) [34–37]. A positive value indicates higher elevation than
its surrounding, whereas negative indicates it is lower. TPI results provide the means for estimating
the probability of a wetland occurring in a certain area by separating locally high and low areas,
assuming gravitational drainage of surface water. For example, the probability or landscape suitability
of a wetland occurring in a topographic high (upland) may be low (for broad wetland areas and
excluding local topographic depressions, e.g., forested swamps). A low TPI suggests high suitability
for a wetland because surface water may flow towards depressions, therefore propagating the potential
for wetland development.

At URSA, SAR and optical data were orthorectified to the 2008 Lidar DEM as it had more reliable
geo-referencing information. Due to the lack of local geo-referencing information, Lidar data acquired
at the PAD exhibited small positional discrepancies, which amassed themselves as relatively large
errors due to the flat nature of the region. This resulted in the PAD Lidar dataset exhibiting too many
uncertainties to produce a robust analysis with respect to inferring Lidar-based corrections; therefore,
corrections with Lidar were only conducted over URSA.

2.2.2. Surface Water Extraction and Hydroperiod

SAR-derived surface water masks were created using an intensity (dB) thresholding technique
developed by White et al. [14] using PCI Model Builder (PCI Geomatics). The methodology was
modified to extract surface water using input threshold intensity/decibel (dB) range values [8].
Employed SAR filters (software specific naming) in the PCI Model Builder include FGAMMA (gamma
maximum-a-posteriori (MAP)) adaptive filter to preserve edges, important for surface water extent
analysis [37–39]; FAV (averaging mean filter) to reduce speckle [40]; and FMO (mode filtering of
gray-level values) to further reduce noise of the SAR images [40]. SPOT 6 data were employed for
the validation of SAR water masks (all bands were used to inform on water versus land pixels),
where surface water was classified using K-means unsupervised classification [41–43]. Binary surface
water extents (i.e., 0 as non-water, 1 as water) were produced in raster format for each available SAR
acquisition using HH backscatter.

A measure of water permanence or hydroperiod throughout the growing season is determined
using an “equals frequency” routine on the binary surface water rasters for each year, calculating
the number of times a pixel is identified as water in the same geographic location. The output
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“pixel frequency” corresponds to the number of SAR images/months analyzed within each year.
This is reclassified from frequency to hydroperiod classes based on Stewart and Kantrud [44] and
Cowardin et al. [45]; where water present for 1–2 months represents “temporary” (S&K Class II),
3–4 months is “seasonal” (S&K Class III), and 5–6 months is “semi-permanent/permanent” (S&K
Classes IV and V).

2.2.3. SAR Polarimetric Decompositions for Flooded Vegetation

The Freeman–Durden decomposition (FDD) [46] was used to create a three-channel composite
raster that estimates the contribution of surface (water or rough surface), double-bounce (flooded), and
volume (tall/forested vegetation) scattering response to the total backscatter from each pixel in an image.
The double-bounce (flooded vegetation) band was isolated, and null values removed to represent only
positive values in the double-bounce backscatter [31,40,47]. To remove speckle, a 5 × 5 boxcar filter
(PCI Geomatica) was applied, based on local pixel averaging [29].

2.2.4. Topographic Position Index

TPI is scale dependent based on the topographic morphology of the land surface (defined by
surface geology), therefore, the user needs to select parameters (e.g., window search radius) appropriate
for the study area. In order to determine the optimal search radius, multiple iterations ranging from
50 m to 500 m were tested. Optimal radii was selected based on (1) the high resolution of the data,
(2) topography criteria outlined by Jenness [48], and (3) circular moving polynomial windows based
on the round shape and width of upland till moraines between the wetlands in the area [7]. The range
of window sizes, selected to test TPI suitability to the landscape, were based on where the “normal”
maximum occurs in the surface water. Isolated outlier wetland pixels from the hydroperiod analysis,
located on plateaus, were manually identified and masked out, creating an adjusted hydroperiod from
the TPI.

2.2.5. Decision-Based Workflow

A decision-based methodology was developed to derive wetland ecosystem attributes that expands
upon an earlier method developed by Chasmer et al. [7,16] who based classification on topographic
position and vegetation canopy attributes from Lidar and WorldView-2 spectra [16], and Lidar-based
intensity and structure [7]. Variation in hydroperiod and impact on wetland aquatic transitional
vegetation was performed using SAR. Water permanence and presence of flooded vegetation integration,
in fusion with Lidar, follows findings by White et al. [40], and Brisco et al. [49] regarding the spatial
distribution of wetland attributes. The decision-based methodology includes deriving SAR (single
pol) water masks, associated hydroperiod classified according to Stewart and Kantrud [44], and the
Government of Alberta [50], flooded vegetation from SAR (quad pol) FDD decomposition and, lastly,
Lidar-derived topographic index and canopy cover attributes.

The methodology is broken into four different stages: (1) surface water extraction using intensity
thresholding [14], and hydroperiod analysis [8]; (2) flooded vegetation using FDD decomposition [31];
(3) Lidar topographic attributes [7], and TPI [48]; and (4) data fusion of all attributes, enabling
quality-controlled wetland ecosystem products. The combination of each dataset acts as a quality
control measure, high resolution wetland classification system, and creates an integrated, dynamic
wetland product with potential monitoring implications. Figure 2 provides an overall schematic
of the methodology. A combination of statistical analyses (overall accuracy and kappa coefficient)
and ground validation of the output classes were used to evaluate the best data fusion approach for
mapping the riparian ecology and surface water extent of wetlands.
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Figure 2. Decision-based data fusion workflow of four primary products (SAR surface water masks,
SAR flooded vegetation layer, topographic position index from DEM, and vegetation from CHM).

2.2.6. Validation of Remote Sensing Products

A direct comparison between field measure and remote sensing-derived water edge was conducted,
with ecological boundaries identified based on the remote sensing data fusion product. The distance
of these boundaries from the water’s edge were then compared to the ground validation data (i.e.,
distance from water’s edge). Standard statistical measures include coefficient of determination (R2),
and root mean square error (RMSE).

3. Results

3.1. SAR Surface Water Masks

Intensity threshold (dB) surface water masks of boreal wetlands at the URSA region are shown in
2015 (Figure 3). The threshold range was similar in all images, with the average upper limit of −18 dB,
and the lower limit of −30 dB. Decibel limits, ranging from −13 dB to −14 dB upper limit and −30 dB
lower limit, were observed in the PAD, consistent with ranges found by White et al. [14].
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Figure 3. Intensity threshold (dB) SAR-derived surface water masks over the URSA region in the
growing season of 2015. Images show relatively consistent surface water extent.

Optical Validation

Optical satellite open water classification is a well-established method, and is therefore useful
for validation with water masks derived from other sensors [51,52]. Peiman et al. (submitted to
CJRS) [53] compared both ascending and descending SAR texture and intensity thresholding with
a SPOT-6-derived mask from 17 September 2015 over the same study area. Despite slight temporal
offset, overall accuracies were >90% (kappa = 0.8–0.95) (Table 4). Greater accuracy is expected without
the temporal offset and with the removal of roadways and infrastructure (dark targets that appear as
errors of commission in SAR data).

Table 4. Confusion matrix results of near-coincident SAR intensity (dB) threshold-derived surface
water masks compared to a single clear sky optical SPOT scene from 17 September 2015. Note: results
do not represent absolute accuracies, as the optical water masks contain some uncertainty and the
comparison results represent acquisitions from different days.

SAR Acquisition Overall Accuracy Kappa (%)

3 September 2015 98.5 0.95
6 September 2015 98.6 0.89
27 September 2015 92.3 0.8
30 September 2015 98.3 0.87

3.2. Surface Water Hydroperiod

Surface water hydroperiod classes are presented for URSA in 2015 (Figure 4a) and 2016 (Figure 4b).
Concordance results showing the proportion of pixels that are the same class in both 2015 and 2016 are
detailed in Table 5. Overall similarity of hydroperiods on a pixel by pixel basis is 79%, attributed to the
low similarity of temporary and seasonal hydroperiod compared to the very high similarity between
semi-permanent/permanent. It should be noted there have been periods in the URSA area when many
ponds dried out, but precipitation between 2015 and 2016 were about the same (2 years cu m departure
from the long term mean between 0 and −120 mm). Additionally, wetting events in 2016 occurred in
the fall of 2016, therefore, little difference would be expected.
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Figure 4. Surface water hydroperiod results, 2015 (a) and 2016 (b), over an URSA subset AOI.
Yellow hydroperiod indicates temporary (1–2 months), green for seasonal (3–4 months), and blue
for semi-permanent/permanent (5–6 months). 2016 Titan Lidar DEM illustrates topography and
canopy cover.

Table 5. Hydroperiod class concordance and hectares (ha) area comparison between 2015 and
2016 for URSA.

Hydroperiod (S&K) Concordance Hectares (ha)

Temporary (I) 53.0 43.6
Seasonal (II) 49.0 30.48

Semi-permanent (III) 98.3 744.7

Note that 2015 includes only six image acquisitions, compared to 14 acquisitions in 2016, where
more scenes over the growing season increase the chance to capture additional temporary or seasonal
surface water hydroperiod events. Therefore, it is expected that a comparable number of acquisitions
from each year would change the comparative hydroperiod results.

Hydroperiods in the PAD are less defined and have regions of significant change in surface water
permanence (Figure 5). When comparing the difference between 2014 and 2015 hydroperiod along
waterways, there are no notable areas where open surface water is changed. Some areas have greater
permanence in 2015 (e.g., seen in green in the southwest quadrant of the AOI), whereas other areas
have lower permanence (e.g., Baril lake located in the west of the AOI, and many wetland areas in the
north of the AOI). Open water wetland and lake area permanence is far more variable. Approximately
18%–25% of the landscape is permanent in both years. The proportion of low permanence (yellow)
is most changed along riparian areas of the larger water bodies, whereas the proportion of low to
medium (green) is the most changed overall.
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Figure 5. Peace-Athabasca Delta hydroperiod results for 2014 and 2015 showing notable change in
surface water permanence over wetlands, with little change in watercourse surface water.

3.3. Flooded Vegetation

FDD results for each acquisition/month in the growing season and associated yearly flooded
vegetation occurrence for the PAD, created using pixel frequency analysis, are shown in Figure 6. Ice is
notably present in some areas of the waterbodies (bright purple-blue) in the early spring months (i.e.,
8 April 2014), and fall months (i.e., 18 September 2015) around the margins of the wetlands. This may
have an impact on the amount of true open surface water in the images but should not be removed
from the analysis unless it is outside the growing season to reduce error associated with freezing and
thawing of surface water that can change daily. Overall there is significantly more area of flooded
vegetation in 2014, but the duration of flooded vegetation, notably around larger wetlands, is longer in
2015 (indicated by darker red areas).

Table 6 shows the difference in area between 2014 and 2015 at the PAD. The total flooded area is
significantly different between the two years, most notably, the total hectares of temporarily flooded
areas in 2014 (25,954 ha in 2014 compared to 10,263 ha in 2015). While there is significantly more
flooded area in 2014, the proportion of more permanently flooded areas in 2015 (21%) is much higher
than 2014 (11.2%).

Table 6. Comparison of flooded vegetation area and duration in months for 2014 and 2015.

Year Flooded Veg. (ha) % of AOI Flooded Areas Flooded
1–3 Months (ha)

Areas Flooded 4+
Months (ha)

2014 25,954 36.5 23,046 (88.8%) 2907 (11.2%)
2015 10,263 14.4 8104 (79%) 2159 (21%)
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Figure 6. Freeman–Durden decomposition results for 2014 and 2015 and frequency maps indicating
duration of flooding for each respective year, where darker red indicates areas with flooded or emergent
vegetation for a longer duration throughout the growing season. In the composite images, the power
contribution of each scattering mechanism is shown as follows: double-bounce (red), volume (green),
and rough (blue) scattering.

3.4. Data Fusion Results

The results of the data fusion of both riparian vegetation and flooded vegetation from
quad-polarized SAR are shown in Figure 7a. Flooded vegetation can be found in improbable
areas such as roadways, and appear isolated from vegetation (<2 m) normally associated with flooded
vegetation (circled in Figure 7a,b), but this effect is mitigated by intersecting the vegetation height
layer from the CHM and the flooded vegetation mask, creating a corrected mask of flooded vegetation
around wetlands (Figure 7b). This methodology also prohibits commission errors from areas of
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flooded vegetation where no vegetation height is recorded [54]. The combination of the riparian
canopy height model derived from Lidar data and flooded vegetation double-bounce returns from
SAR reduces commission errors from areas located in topographic uplands where positive values are
found. This leaves only low areas where wetlands can form. Lastly, the corrected flooded vegetation
and corrected hydroperiod products are overlain as complimentary products, creating a dynamic
wetland attribute product.
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Figure 7. (a) Wetland with flooded vegetation commission errors outside of wetland riparian area and
within surface water, (b) corrected flooded vegetation raster mask.

The comprehensive wetland attribute product is shown in Figure 8. Attributes include roadways
derived from SPOT optical imagery, areas of high and low topography from the Lidar DEM topographic
position index (where a search radius of 200 m was found to be most suitable for the landscape)
indicating where wetlands are most and least likely to occur; vegetation height from Lidar CHM;
flooded vegetation from quad-polarized SAR FDD; surface water hydroperiod from single polarization
SAR data extracted from dB thresholding; and pixel frequency analysis in accordance with Stewart
& Kantrud [44] surface water classification. Flooded vegetation is found to be located on the edges
of the wetlands, either connected to the open surface water or adjacent, but still within the basin of
the wetland. This is expected and typical of these wetlands, where a higher proportion of flooded
vegetation, and one species in particular, Typha latifolia or common cattail, is commonly found within
close proximity to larger ponds. These ponds are predominantly in areas that are part of larger
hydrological complexes within or adjacent to peatlands.

In areas with cattail, little open water is observed in these areas of flooded vegetation, but flooded
vegetation and topographic attributes suggest there is a high probability these areas are inundated,
due to the saturated soil requirements of cattail. Flooded vegetation combined with hydroperiod is
shown in Figure 9 in the PAD, and areas that have both open surface water and flooded vegetation
for at least one month of the year are shown in dark pink in Figure 10, along with hydroperiod and
flooded vegetation for each year for comparison.
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Figure 10. Visualization for areas in 2014 and 2015, where both open surface water and flooded
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vegetation are also shown for reference.

3.5. Surface Water Extent and Riparian Vegetation Validation

For clarity and display purposes, two of the six ponds are compared with field validation at URSA
Pond 42 (Figure 11a) and Pond 48 (Figure 11b), as they are the most rigorously field validated and
have an appropriate spatial scale for display purposes. Distinct riparian and upland vegetation zones
were observed during 2015 field data collection. Transition zones are notably abrupt (vegetation zones
are distinct) in most transects (Figure 11a,b), except for areas where there is encroachment of woody
vegetation such as willow, alder, and birch, into grass- and forb-dominated wetland riparian areas,
where patches of young woody vegetation have largely replaced tall grasses and sedge.

From the six wetlands surveyed, the RMSE of the riparian transects and water edge observed in
field validation data and those predicted from the model was 4.6 m, with an R2 value of 0.90 (Figure 12).

Most of the error is attributed to some notable surface water extent discrepancies within fen ponds
with mud flats separating surface water and riparian vegetation. Vegetation species composition by
transect for Pond 42 and Pond 48 are detailed in Table 7 (Pond 42), and Table 8 (Pond 48). Species
composition was found to be relatively consistent at each transect (T) for the wetlands, which can
be divided into 3 distinct habitats (Hab.), with occasional pockets of unique vegetation communities
(habitat 4, Figure 11a).

Table 7. Riparian vegetation species composition for Pond 42 (refer to Figure 11a for transect and
derived habitat locations).

Pond 42

T Hab. Vegetation Species

T1 H1 Paper birch/Alaska birch (6–8 m), young birch, rose, graminoids
H2 Young birch (1–3 m), buckbrush, snowberry, graminoids
H3 Cattail, water sedge, Buttercup sp., bur-reed, water parsnip

T2 H1 Paper birch (6–8 m), green alder, young trembling aspen, rose, mosses
H2 Tamarack, Labrador tea, willow, white spruce, young birch, graminoids
H3 Cattail, water sedge, reed grass, Buttercup sp.
H4 Cattail, Water cup sp. (float), Sedge sp., Buttercup sp., Goosefoot sp.

T3 H1 Paper/Alaska birch (6–8 m), rose, black currant
H2 Young birch (1–3 m), buckbrush, snowberry, green alder, reed grass
H3 Cattail, water sedge, Goosefoot sp., water parsnip
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Hiper SR global navigation satellite system (GNSS)), a series of SPOT optical imagery, and DEM data, 

Figure 11. Field validation of surface water extent and riparian boundaries for late July 2015. (a) Pond
42, (b) Pond 48. Riparian habitats are extrapolated from highly accurate field data points (Topcon
Hiper SR global navigation satellite system (GNSS)), a series of SPOT optical imagery, and DEM data,
then tested against canopy height cover. Field waypoints represent boundaries observed between
riparian areas.
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Figure 12. Regression of measured and model riparian and surface water edge accuracies (n = 31) for
six wetlands in the URSA region in 2015.

Table 8. Riparian vegetation species composition for Pond 48 (refer to Figure 11b for transect and
derived habitat locations).

Pond 48

T Hab. Vegetation Species

T1 H1 Paper birch (6–8 m), raspberry, Wheat grass sp., Rye grass sp.
H2 Young willow, young birch (<2 m), water sedge, rice grass
H3 Water parsnip, water sedge, bog birch, Dock sp., mosses, cattail, bog birch

T2 H1 Paper birch (6–8 m), raspberry
H2 Willow, water sedge, rice grass
H3 Sedge sp., young paper birch, water sedge
H4 Common cattail, water sedge, Goosefoot sp., mosses

T3 H1 Paper birch (6–8 m), willows, bog birch, mosses
H2 Green alder, willow, bog birch, graminoids, Sedge sp.
H3 Cattail, water parsnip

Vegetation communities observed at Pond 42 and Pond 48 were diverse at the time of data
collection, with many wetland indicator species present (cattail, sedges), showing minimal to no
anthropogenic disturbance. Vegetation growth was only observed to be limited in areas where woody
vegetation, such as young willows and birch, was growing into the riparian area (e.g., Habitat 2 in all
transects at Pond 48), potentially prohibiting succession of some riparian grasses.

4. Discussion

4.1. Subjectivity Associated with Manual Riparian Digitization

The results in Figure 11 and the associated accuracies in Figure 12 are accurate within ~10% of
the area, but the manual classification shows some obvious discrepancies and associated subjectivity
of the boundaries observed in the validation dataset and model. While optical data can be trained
and classified to provide some measure of interpreted accuracy, the process is still largely determined
by delineation conducted by the operator. Boundary delineation of vegetation and water extent
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in some wetlands are also subjective. Crasto et al. [55] discuss how criteria outlined by Jahn and
Dunne [56] influence remote sensing feature detection, due to bias during digitization that is often
influenced by experience and interpretations that are subjective [57]. All validation data were collected
by the same individual in the field and areas were digitized by the same operator. Manual surveys
of flooded vegetation boundaries were not conducted due to access and time limitations. Therefore,
these areas could not be validated to the same degree as less saturated riparian areas, but the
decomposition methodology has been well documented and studied for quality control in a variety of
environments [31,46,58,59]. Any combination of uncertainties may contribute to discrepancies in the
overall accuracy of the classification, and this highlights the importance of reliable ground validation
data when working in logistically challenging regions.

4.2. Implications for Wetland Classification

While many studies focus on mapping known permanent waterbodies, this study differs by
utilizing high spatial and temporal resolution information to create dynamic surface water and
riparian vegetation thematic maps. Data availability is the most important aspect when attempting to
characterize non-permanent wetlands, requiring increased temporal resolution and field measurements
that represent the natural ranges in hydrological conditions. The results of this study suggest that
these criteria can be met by products of the decision-based methodology presented (Figures 8–10).

The methodology presented should also be useful for the identification of marsh and swamp
wetlands with associated open water areas, while wet areas within fens can be identified using
laser return intensity and other spectral indices that are related to the absorption of electromagnetic
wavelengths by water [7,16], especially within peatland (treed fen/bog) environments. For example,
Boolean statements can be implemented to determine if an area is a swamp: e.g., (1) “if” trees are
present and topography is low-lying (TPI) then high potential for a swamp; (2) “if” the surface water
level is above the DEM then high potential for a swamp; (3) “if” no open water is present and flooded
vegetation is present then more likely a swamp or fen. However, “if” statements require calibration,
which is locally dependent. Absence of these statements in the current methodology is a limitation,
but they should be explored and integrated in further studies to provide a more complete classification
system for boreal wetlands. Future work may also investigate scattering returns from volume scattering
that intersect with areas of surface water at certain times of the year to provide an indication of species
type. For example, some emergent hydrophytic vegetation, such as cattail and bulrush, tend to
grow later in the growing season (July–August) in areas where soil was saturated in earlier months.
Therefore, identifying the areas with transition from open water to double-bounce flooded vegetation
and, lastly, volume scattering, could be an excellent indicator of these larger, slow growing species.

4.3. Data Limitations and Potential Sources of Error

A limitation of the study relates to temporal image frequency of both SAR and Lidar data. Increased
temporal resolution will better represent short-term variations. The Canadian C-Band RADARSAT
Constellation Mission (RCM), expected to launch in February 2019, will offer advanced capabilities for
monitoring surface water with high spatial resolution modes such as Spotlight, providing enhanced
monitoring of smaller wetlands [60]. As the provincial Lidar database and coverage in Alberta expands
and is updated, there is a growing opportunity to integrate temporal Lidar datasets into wetland
monitoring and enhance the understanding of precipitation variation influences, anthropogenic and
climate change on surface water and wetland vegetation change.

Working over broad regions and in relatively remote areas like the URSA region makes it
logistically difficult to collect ground validation across all wetland environments. Since classifiers or
ranges for SAR-derived surface water masks are variable between images and acquisition, there is a
need to calibrate the intensity threshold (dB) for each image to consistently extract all true open water
returns from an image [14], as well as instrument calibration and ground conditions [61].
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Another limitation of this approach is found in the fine resolution used in the large spatial area.
Subtle changes in riparian vegetation on the order of <2 m are difficult to extract with certainty, due to
homogeneity of many of the riparian vegetation communities. While it is easy to determine high and
low topographical areas, and high, medium, and low vegetation canopy, it is difficult to discriminate
between species. For example, while it may be important to examine species encroachment or
succession, the difference between a patch of 2 m tall willow trees and 2 m tall birch trees is challenging
due to similarities in structure, therefore, it was found to be more convenient to group these similar
canopy environments. This is detailed in Figure 7a,b and Figure 8, where both elevation and canopy
height are somewhat ambiguous, likely as a result of the general flatness of topography and sporadic
woody vegetation regeneration in clearings and meadows.

Shadow effects in the SAR ascending and descending images can cause classification errors along
some forested boundaries, but quality control data were not available within this study, so the extent (if
at all) of such shadow-induced errors in low-lying riparian areas of the URSA study area is unknown.
See Kropatsch [62] for details and methods to reduce error associated with shadowing.

When using SAR to derive surface water compared to other sensors, occasional omission of surface
water bodies that are narrow or have mixed pixels (such as watercourses and fen pond boundaries),
has been documented in shallow riparian areas [13]. This may be a potential source of error in many
boreal wetlands, where these boundary areas are mostly classified as land due to the unique scattering
properties. Hydrological connectivity of wetlands is of key interest to hydrologists and multi-temporal
SAR imagery may provide an indication of hydrological connectivity due to periodic saturation and the
growth of certain species. This may not be topographically related as the water can move underground
in peat. It has implications for contaminant transport, downstream flooding, and ecosystem change.
Surface water modeling would also be enhanced by delineating water extent and elevation from Lidar,
which can also provide further high-resolution comparative data to both optical and SAR-derived
surface water masks, adding utility to the wetland classification [55,63].

5. Conclusions

The presented methodology offers a new time series-based boreal wetland classification approach
using data fusion of multiple remote sensing data sources, based on hydroperiod, topography and
vegetation attributes. The results of this study indicate water mask frequency analysis can be used to
determine hydroperiod and permanence in boreal environments, similarly to prairie environments,
with overall accuracies of 93% to 97.2% and kappa values of 0.8–0.9% when compared to optical
data. Concordance results comparing semi-permanent/permanent hydroperiod between 2015 and
2016 was found to be 98.3% correlated, suggesting there is very little change in open water extent in
these wetlands between the two years. A longer time series would need to be used to determine if
this is a consistent relationship given the climate cycles [20]. Regression analysis of field and model
riparian and surface water extents from six wetlands also yielded high accuracies (R2 = 0.9), suggesting
the decision-based methodology could be applied to similar open water boreal wetlands with some
certainty. The time-intensive and potential limiting factor of the methodology is the expertise required
in data preparation for multiple types of data (Lidar, SAR, optical). However, once the data preparation
and foundation for data fusion has been conducted, additional data can readily be integrated and
processed in the workflow. While there are limitations associated with data availability and frequency,
the strength of the study is the ability to construct and examine meaningful comprehensive wetland
characterization products conforming to provincial guidelines set forth by the American Wetland
Classification System and the Canadian Wetland Classification System.

Future research using a logic-based decision-based methodology would benefit from identifying
additional topographic and vegetative attributes at a higher resolution to increase class reliability. SAR
and optical data to compliment Lidar data describing riparian vegetation communities would further
enhance the hydroperiod analysis for a more comprehensive wetland classification and monitoring
framework. This framework could be largely automated through machine learning algorithms and
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would provide a platform for land use permitting, reclamation monitoring, and wetland regulation in
remote boreal regions of Alberta.

Author Contributions: Conceptualization, J.M., B.B., C.H.; methodology J.M., C.H., L.C.; software: C.H.;
validation, J.M.; formal analysis, J.M.; investigation, K.D.; resources, B.B., C.H.; data curation, J.M., B.B.;
writing—original draft preparation, J.M., C.H.; writing—review and editing, J.M, C.H., B.B., L.C.; visualization,
J.M.; supervision, C.H., B.B., D.C., K.D.; project administration, B.B., C.H.; funding acquisition, C.H., B.B.

Funding: Hopkinson acknowledges: Alberta Economic Development and Trade, Canada Centre for Mapping
and Earth Observation (CCMEO); Canada Foundation for Innovation and the Campus Alberta Innovates Program
(project 32436); Project-related lab personnel, research and data funding to support SAR time series wetland
classification and wetland ecosystem monitoring from Government of Alberta (Economic Development and Trade,
Environment and Parks), Alberta Sustainable Resource Development (now Alberta Environment and Parks);
and Discovery Grant funding from the Natural Sciences and Engineering Research Council (RGPIN-2017-04362).
Funding is also provided by the Government of Alberta Oil Sands Monitoring Program, Wetland Ecosystem
Monitoring; and Natural Resources Canada, Canada Centre for Mapping and Earth Observation (CCMEO).

Acknowledgments: We acknowledge support and field assistance from Craig Mahoney, Maxim Okhrimenko and
Reed Parsons, Stephanie Connor. RADARSAT-2 imagery was obtained and licensed from the Canada Centre
for Mapping and Earth Observation, Earth Sciences Sector (Ottawa) and MDA with the assistance of Kevin
Murnhagen (CCRS). Archive Lidar data were provided by Alberta Environment and Parks, while new Lidar were
obtained via support from Teledyne Optech Inc., Airborne Imaging Inc. Kalus Aviation Inc. Accommodations at
the URSA camp.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. National Wetlands Working Group. Wetlands of Canada; Ecological Land Classification Series, No. 24;
Environment Canada and Polyscience Publications Inc.: Ottawa, ON, Canada, 1988; p. 452.

2. Komers, P.E.; Stanojevic, Z. Rates of disturbance vary by data resolution: Implications for conservation
schedules using the Alberta Boreal Forest as a case study. Glob. Chang. Biol. 2013, 19, 2916–2928. [CrossRef]
[PubMed]

3. Devito, K.J.; Mendoza, C.; Petorone, R.M.; Kettridge, N.; Waddington, J. Utikuma Region Study Area
(URSA)—Part 1: Hydrogeological and ecohydrological studies (HEAD). For. Chron. 2016, 92, 57–61.
[CrossRef]

4. Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.;
Tape, K. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens.
Environ. 2004, 89, 281–308. [CrossRef]

5. Riordan, B.; Verbyla, D.; McGuire, A.D. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely
sensed images. J. Geophys. Res. 2006, 111, G04002. [CrossRef]

6. Kettridge, N.; Waddington, J.M. Towards quantifying the negative feedback regulation of peatland
evaporation to drought. Hydrol. Process. 2013, 28, 3728–3740. [CrossRef]

7. Chasmer, L.; Hopkinson, C.; Montgomery, J.; Petrone, R. A physically based terrain morphology and
vegetation structural classification for wetlands of the boreal plains, Alberta, Canada. Can. J. Remote Sens.
2016, 42, 521–540. [CrossRef]

8. Montgomery, J.; Hopkinson, C.; Brisco, B.; Patterson, S.; Rood, S. Wetland hydroperiod classification in
the western prairies using multi-temporal synthetic aperture radar. Hydrol. Process. 2018, 31, 1476–1490.
[CrossRef]

9. Houhoulis, P.F.; Michener, W. Detecting wetland change: A rule-based approach using NWI and SPOT-XS
data. Photogramm. Eng. Remote Sens. 2000, 66, 205–211.

10. Davranche, A.; Lefebvre, G.; Poulin, B. Wetland monitoring using classification trees and SPOT-5 seasonal
time series. Remote Sens. Environ. 2000, 114, 552–562. [CrossRef]

11. Wang, K.; Franklin, S.; Guo, X.; He, Y.; McDermid, G. Problems in remote sensing of landscapes and habitats.
Prog. Phys. Geogr. 2009, 33, 1–22. [CrossRef]

12. Brisco, B.; Short, N.; van der Sanden, J.; Landry, R.; Raymond, D. A semi-automated tool for surface water
mapping with Radarsat-1. Can. J. Remote Sens. 2009, 35, 336–344. [CrossRef]

13. Santoro, M.; Wegmüller, U. Multi-temporal synthetic aperture radar metrics applied to map open water
bodies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3225–3238. [CrossRef]

http://dx.doi.org/10.1111/gcb.12266
http://www.ncbi.nlm.nih.gov/pubmed/23703708
http://dx.doi.org/10.5558/tfc2016-017
http://dx.doi.org/10.1016/j.rse.2003.10.018
http://dx.doi.org/10.1029/2005JG000150
http://dx.doi.org/10.1002/hyp.9898
http://dx.doi.org/10.1080/07038992.2016.1196583
http://dx.doi.org/10.1002/hyp.11506
http://dx.doi.org/10.1016/j.rse.2009.10.009
http://dx.doi.org/10.1177/0309133309350121
http://dx.doi.org/10.5589/m09-025
http://dx.doi.org/10.1109/JSTARS.2013.2289301


Remote Sens. 2019, 11, 161 22 of 24

14. White, L.; Brisco, B.; Pregitzer, M.; Tedford, B.; Boychuck, L. RADARSAT-2 beam mode selection for surface
water and flooded vegetation mapping. Can. J. Remote Sens. 2014, 40, 135–151.

15. Wang, J.; Shang, J.; Brisco, B.; Brown, R. Comparison of multidate radar and multispectral optical satellite
data for wetland detection in the Great Lakes Region. In Proceedings of the International Symposium,
Geomatics in the Era of RADARSAT (GER’97), Ottawa, ON, Canada, 25–30 May 1997.

16. Chasmer, L.; Hopkinson, C.; Quinton, W.; Veness, T.; Baltzer, J. A decision-tree classification for low-lying
complex land cover types within the zone of discontinuous permafrost. Remote Sens. Environ. 2014, 143,
73–84. [CrossRef]

17. Ameli, A.; Creed, I. Quantifying hydrologic connectivity of wetlands to surface water systems. Hydrol. Earth
Syst. Sci. 2017, 21, 1791–1808. [CrossRef]

18. Irwin, K.; Beaulne, D.; Braun, A.; Fotopoulos, G. Fusion of SAR, optical and airborne lidar for surface water
detection. Remote Sens. 2017, 9, 890. [CrossRef]

19. Millard, L.; Richardson, M. Wetland mapping with Lidar derivatives, SAR polarimentric decompositions,
and Lidar/SAR fusion using a random forest classifier. Can. J. Remote Sens. 2013, 39, 290–307. [CrossRef]

20. Devito, K.; Mendoza, C.; Qualizza, C. Conceptualizing Water Movement in the Boreal Plains. Implications for
Watershed Reconstruction; Synthesis Report; The Canadian Oil Sands Network for Research and Development,
Environmental and Reclamation Research Group: Edmonton, AB, Canada, 2012; p. 164. [CrossRef]

21. Devito, K.J.; Creed, I.; Gan, T.; Mendoza, C.; Petrone, R.; Silins, U.; Smerdon, B. A framework for broad scale
classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider?
Hydrol. Process. 2005, 19, 1705–1714. [CrossRef]

22. Downing, D.J.; Pettapiece, W.W.; Natural Regions Committee. Natural Regions and Subregions of Alberta;
Pub #T/852; Government of Alberta: Edmonton, AB, Canada, 2006.

23. Peace-Athabasca Project Group. The Peace-Athabasca Delta Project Technical Report (1 Volume) + Technical
Appendices (3 Volumes): Technical Report—A Report on Low Water Levels in Lake Athabasca and Their Effects on
the Peace-Athabasca Delta. V.1 Appendices—Hydrologic Investigations; V.2 Appendices—Ecological Investigations;
V.3 Appendices—Supporting Studies; Peace-Athabasca Delta Project Group: Delta, BC, Canada, 1973.

24. Jaques, D.R. Topographic Mapping and Drying Trends in the Peace-Athabasca Delta, Alberta Using LANDSAT MSS
Imagery; Report for Wood Buffalo National Park; Ecostat Geobotanical Surveys Inc.: Fort Smith, NT, Canada,
1989; p. 36.

25. Wolfe, B.B.; Hall, R.; Last, W.M.; Edwards, T.W.D.; English, M.; Karst-Riddoch, T.L.; Paterson, A.M.;
Palmini, R. Reconstruction of Multi-Century Flood Histories from Oxbox Lake Sediments, Peace Athabasca
Delta, Alberta, Canada. Hydrol Proces. 2006, 20, 4131–4153. [CrossRef]

26. Peters, D.L.; Prowse, T.D.; Marsh, P.; Lafleur, P.M.; Buttle, J.M. Persistence of water within Perched Basins of
the Peace-Athabasca Delta, Northern Canada. Wetl. Ecol. Manag. 2006, 14, 221–243. [CrossRef]

27. Peters, D.L.; Prowse, T.D.; Pietroniro, A.; Leconte, R. Flood hydrology of the Peace Athabasca Delta, northern
Canada. Hydrol. Process. 2006, 20, 4073–4096. [CrossRef]

28. Pope, K.O.; Rejmankova, E.; Paris, J.F.; Woodruff, R. Detecting seasonal flooding cycles in marshes of the
Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sens. Environ. 1997, 59, 157–166. [CrossRef]

29. Townsend, P.A. Relationship between forest structure and the detection of flood inundation in forested
wetlands using C-band SAR. Int. J. Remote Sens. 2002, 23, 443–460. [CrossRef]

30. Brisco, B.; Kapfer, M.; Hirose, T.; Tedford, B.; Liu, J. Evaluation of C-band polarisation diversity and
polarimetrey for wetland mapping. Can. J. Remote Sens. 2011, 37, 82–92. [CrossRef]

31. Brisco, B. Mapping and monitoring surface water and wetlands with synthetic aperture radar. In Remote
Sensing of Wetlands, Applications and Advances; Tiner, R.W., Lang, M.W., Klemas, V.V., Eds.; CRC Press:
Boca Raton, FL, USA, 2015; Chapter 6; pp. 119–136.

32. Isenburg, M. LAStools—Efficient LiDAR Processing Software (Version 141017, Academic). 2017. Available
online: http://rapidlasso.com/LAStools (accessed on 11 May 2018).

33. American Society for Photogrammetry and Remote Sensing (ASPRS). LAS Specification, Version 1.4-R6.
2011. Available online: www.asprs.org (accessed on 19 September 2018).

34. Mahoney, C.; Hall, R.; Hopkinson, C.; Filiatrault, M.; Beaudoin, A.; Chen, Q. A forest attribute mapping
framework: a pilot study in a northern boreal forest, Northwest Territories, Canada. Remote Sens. 2018, 10,
1338. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2013.12.016
http://dx.doi.org/10.5194/hess-21-1791-2017
http://dx.doi.org/10.3390/rs9090890
http://dx.doi.org/10.5589/m13-038
http://dx.doi.org/10.7939/R32J4H
http://dx.doi.org/10.1002/hyp.5881
http://dx.doi.org/10.1002/hyp.6423
http://dx.doi.org/10.1007/s11273-005-1114-1
http://dx.doi.org/10.1002/hyp.6420
http://dx.doi.org/10.1016/S0034-4257(96)00151-4
http://dx.doi.org/10.1080/01431160010014738
http://dx.doi.org/10.5589/m11-017
http://rapidlasso.com/LAStools
www.asprs.org
http://dx.doi.org/10.3390/rs10091338


Remote Sens. 2019, 11, 161 23 of 24

35. Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Kluwer
Academic Publishers. Plant Ecol. 1999, 143, 107–122. [CrossRef]

36. Jones, K.B.; Heggem, D.T.; Wade, T.G.; Neale, A.C.; Ebert, D.; Nash, M.S.; Mehaffey, M.H.; Goodman, I.A.;
Hermann, K.A.; Selle, A.R.; et al. Assessing landscape conditions relative to water resources in the western
United States: A strategic approach. Environ. Monit. Assess. 2000, 64, 227–245. [CrossRef]

37. Weiss, A. Topographic Position and Landforms Analysis. Presented at ESRI User Conference, San Diego,
CA, USA, 9–13 July 2001.

38. Toutin, T. Corrigendum to the paper State-of-the-art of geometric correction of remote sensing data: A data
fusion perspective. Int. J. Image Data Fusion 2011, 2, 283–286. [CrossRef]

39. Zhang, F.; Xie, C.; Li, K.; Xu, M.; Wang, X.; Xia, Z. Forest and deforestation identification based on
multi-temporal polarimetric RADARSAT-2 images in Southwestern China. J. Appl. Remote Sens. 2012, 6,
063527. [CrossRef]

40. White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A collection of SAR methodologies for monitoring
wetlands. Remote Sens. 2015, 7, 7615–7645. [CrossRef]

41. Burrough, P.A.; Gaans, P.F.M.; MacMillan, R.A. High-resolution landform classification using fuzzy k-means.
Fuzzy Sets Syst. 2000, 113, 37–52. [CrossRef]

42. Burrough, P.A.; Wilson, J.P.; van Gaans, P.F. Fuzzy K-means classification of topo-climatic data as an aid to
forest mapping in the Greater Yellowstone Area, USA. Landsc. Ecol. 2001, 16, 523. [CrossRef]

43. Lane, C.; Liu, H.; Autrey, B.C.; Anenkhonov, O.; Chepinoga, V.; Wu, Q. Improved wetland classification
using eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 2014, 6, 12187–12216.
[CrossRef]

44. Stewart, R.E.; Kantrud, H.A. Classification of Natural Ponds and Lakes in the Glaciated Prairie Region; Resource
Publication 92; Bureau of Sport Fisheries and Wildlife, U.S. Fish and Wildlife Service: Washington, DC, USA,
1971; p. 57.

45. Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T. Classification of Wetlands and Deepwater Habitats of the
United States; FWS/OBS-79/31; U.S. Department of the Interior, Fish and Wildlife Service. Office of Biological
Services: Washington, DC, USA, 1979; p. 131.

46. Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci.
Remote Sens. 1998, 36, 963–973. [CrossRef]

47. Touzi, R.; Boerner, W.M.; Lee, J.S.; Luenberg, E. A review of polarimetry in the context of synthetic aperture
radar: Concepts and information extraction. Can J. Remote Sens. 2004, 30, 380–407. [CrossRef]

48. Jenness, J. Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v. 1.2. Jenness Enterprises,
2006. Available online: http://www.jennessent.com/arcview/tpi.htm (accessed on 14 March 2018).

49. Brisco, B.; Ahren, F.; Murnaghan, K.; White, L.; Canisus, F.; Lancaster, P. Seasonal Change in Wetland
Coherence as an Aid to Wetland Monitoring. Remote Sens. 2017, 9, 158. [CrossRef]

50. Alberta Environment and Sustainable Resource Development (ESRD). Alberta Wetland Classification System;
Water Policy Branch, Policy and Planning Division: Edmonton, AB, Canada, 2015.

51. Frazier, P.S.; Page, K.J. Water body detection and delineation with Landsat TM data. Photogramm. Eng.
Remote Sens. 2000, 66, 1461–1468.

52. Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending satellite remote sensing to
local scales: Land and water resource monitoring using high-resolution imagery. Remote Sens. Environ. 2003,
88, 144–156. [CrossRef]

53. Peiman, R.; Ali, H.; Brisco, B.; Hopkinson, C. An automated open-source Python-based processing engine for
SAR water body extraction: SARWATPy. Can. J. Remote Sens. 2018. submitted.

54. Hopkinson, C.; Chasmer, L.E.; Zsigovics, G.; Creed, I.; Sitar, M.; Kalbfleisch, W.; Treitz, P. Vegetation class
dependent errors in LiDAR ground elevation and canopy height estimates in a Boreal wetland environment.
Can. J. Remote Sens. 2005, 31, 191–206. [CrossRef]

55. Crasto, N.; Hopkinson, C.; Forbes, D.L.; Lesack, L.; Marsh, P.; Spooner, I.; Van Der Sanden, J.J. A LiDAR-based
decision-tree classification of open water surfaces in an Arctic delta. Remote Sens. Environ. 2015, 164, 90–102.
[CrossRef]

56. Jahn, R.G.; Dunne, B.J. Science of the subjective. J. Sci. Explor. 1997, 11, 201–224. [CrossRef] [PubMed]
57. Goodchild, M.F. Metrics of scale in remote sensing and GIS. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 114–120.

[CrossRef]

http://dx.doi.org/10.1023/A:1009841519580
http://dx.doi.org/10.1023/A:1006448400047
http://dx.doi.org/10.1080/19479832.2011.605834
http://dx.doi.org/10.1117/1.JRS.6.063527
http://dx.doi.org/10.3390/rs70607615
http://dx.doi.org/10.1016/S0165-0114(99)00011-1
http://dx.doi.org/10.1023/A:1013167712622
http://dx.doi.org/10.3390/rs61212187
http://dx.doi.org/10.1109/36.673687
http://dx.doi.org/10.5589/m04-013
http://www.jennessent.com/arcview/tpi.htm
http://dx.doi.org/10.3390/rs9020158
http://dx.doi.org/10.1016/j.rse.2003.04.006
http://dx.doi.org/10.5589/m05-007
http://dx.doi.org/10.1016/j.rse.2015.04.011
http://dx.doi.org/10.1016/j.explore.2007.03.014
http://www.ncbi.nlm.nih.gov/pubmed/17560358
http://dx.doi.org/10.1016/S0303-2434(01)85002-9


Remote Sens. 2019, 11, 161 24 of 24

58. Singh, G.; Yamaguchi, Y.; Park, S.-E. 4-Component Scattering Power Decomposition with Phase Rotation
of Coherency Matrix. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing
Symposium, Vancouver, BC, Canada, 25–29 July 2011.

59. Cui, Y.; Yamaguchi, Y.; Yang, J.; Park, S.; Kobayashi, H.; Singh, G. Three-component power decomposition
for polarimetric SAR data based on adaptive scatter modeling. Remote Sens. 2012, 4, 1559–1572. [CrossRef]

60. Canadian Space Agency. RADARSAT Constellation. Available online: http://www.asc-csa.gc.ca/eng/

satellites/radarsat (accessed on 23 June 2018).
61. Hopkinson, C.; Pietroniro, A.; Pomeroy, J. (Eds.) HYDROSCAN: Airborne Laser Mapping of Hydrological

Features and Resources; Canadian Water Resources Association: Saskatoon, SK, Canada, 2008.
62. Kropatsch, W.G.; Strobl, D. The generation of SAR layover and shadow maps from digital elevation models.

IEEE Trans. Geosci. Remote Sens 1990, 28, 98–107. [CrossRef]
63. Hopkinson, C.; Crasto, N.; Marsh, P.; Forbes, D.L.; Lesack, L.F.W. Investigating the spatial distribution of

water levels in the Mackenzie Delta using airborne LiDAR. Hydrol. Process. 2011, 25, 2995–3011. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs4061559
http://www.asc-csa.gc.ca/eng/satellites/radarsat
http://www.asc-csa.gc.ca/eng/satellites/radarsat
http://dx.doi.org/10.1109/36.45752
http://dx.doi.org/10.1002/hyp.8167
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Boreal Wetlands and Remote Sensing 
	Study Area 
	Utikuma Regional Study Area 
	Peace-Athabasca Delta 


	Data and Methods 
	Data 
	Airborne Lidar 
	Optical Data 
	SAR 
	Ground Validation 

	Methods 
	Airborne Lidar Processing 
	Surface Water Extraction and Hydroperiod 
	SAR Polarimetric Decompositions for Flooded Vegetation 
	Topographic Position Index 
	Decision-Based Workflow 
	Validation of Remote Sensing Products 


	Results 
	SAR Surface Water Masks 
	Surface Water Hydroperiod 
	Flooded Vegetation 
	Data Fusion Results 
	Surface Water Extent and Riparian Vegetation Validation 

	Discussion 
	Subjectivity Associated with Manual Riparian Digitization 
	Implications for Wetland Classification 
	Data Limitations and Potential Sources of Error 

	Conclusions 
	References

