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Abstract: Global food demand will increase over the next few decades, and sustainable agricultural
intensification on current cropland may be a preferred option to meet this demand. Mapping cropping
intensity with remote sensing data is of great importance for agricultural production, food security,
and agricultural sustainability in the context of global climate change. However, there are some
challenges in large-scale cropping intensity mapping. First, existing indicators are too coarse, and fine
indicators for measuring cropping intensity are lacking. Second, the regional, intra-class variations
detected in time-series remote sensing data across vast areas represent environment-related clusters
for each cropping intensity level. However, few existing studies have taken into account the intra-class
variations caused by varied crop patterns, crop phenology, and geographical differentiation. In this
research, we first presented a new definition, a normalized cropping intensity index (CII), to quantify
cropping intensity precisely. We then proposed a Bayesian network model fusing prior knowledge
(BNPK) to address the issue of intra-class variations when mapping CII over large areas. This method
can fuse regional differentiation factors as prior knowledge into the model to reduce the uncertainty.
Experiments on five sample areas covering the main grain-producing areas of mainland China proved
the effectiveness of the model. Our research proposes the framework of obtain a CII map with both a
finer spatial resolution and a fine temporal resolution at a national scale.

Keywords: cropping intensity index; regional differentiation; Bayesian network; prior knowledge;
MODIS time-series

1. Introduction

Agricultural production is the foundation of human survival and development, and cropland
is the main resource for agricultural production and the source of human civilization. Because
urbanization develops rapidly, a large amount of cropland has been converted into construction
lands [1–3]. At the same time, as the population continues to grow, the structure of the diet changes
and non-food consumption of agricultural products increases, the demand for agricultural products
are growing all the time [4,5]. How to alleviate this human-land conflict and improve agricultural land
use intensity (or cropping intensity) on existing cropland is the focus of the international community.
In China, due to the shortage in the agricultural labor force caused by rapid urbanization and the
impact of the market economy on the farmers’ income, the cropping frequency in some regions has
shown a downward trend. Abandonment or idleness of cropland in winter is very common. Therefore,
the cropping intensity and its spatio-temporal pattern have evoked widespread concern in academia
and industry.
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One of the major challenges in cropping intensity mapping is that definitions for fine cropping
intensity measurements are lacking [6]. Most of the existing studies have defined cropping intensity
as cropping frequency (single cropping or double cropping, etc.) [4,7–15] or MCI (multiple crop
indexes) [16–22]. Cropping frequency is a hard division of crop pattern that can lead to much information
loss. MCI, though defined in diverse ways, is essentially an aggregation of cropping frequency on a spatial
scale or a synthesis of cropping frequency on a time scale, or both. The agricultural statistics used in the
calculation of MCI lack detailed spatial information [8,23], and ignore the spatial heterogeneity of cropping
intensity within the administrative districts. Some studies have also defined the cropping intensity from
the aspect of input and (or) output, production management, and technology progress [24,25]. In general,
these definitions are also measurement based on statistical data. Overall, the existing definitions cannot
meet the requirements of fine cropping intensity mapping, and high spatial and temporal resolution
cropping intensity datasets are lacking.

The second challenge is the problem of intra-class variations that are often ignored in large-scale
cropping intensity mapping. Dominated by regional differentiation and crop phenology, the
phenomena of SODS (same object with different spectrums) and DOSS (different objects with same
spectrum) are very common in large-scale vegetation mapping [26]. Wardlow argued that vegetation
index profiles were affected by regional variations in climate and management practices, which should
be accounted for by setting-up individual profiles for each homogenous agro-region [27]. Gong
proposed that improving mapping accuracy should focus on building more effective features, rather
than optimizing the algorithm [28]. Chen believed that specialized knowledge derived from DEM,
ecological zone, and other auxiliary data is an important way to overcome the difficulty of SODS
and DOSS in remote sensing image classification [29]. However these within-class variations have
seldom been fully addressed in the existing approaches [30]. Mapping cropping intensity over large
areas is challenging, and the methods of cropping intensity mapping on a large-scale should be
further strengthened.

The objective of this study was to develop methods to map cropping intensity on a national scale
at a sub-pixel level. The work includes: (1) the development of a normalized index, the cropping
intensity index (CII), to quantify cropping intensity precisely; (2) the development of a Bayesian
network model fusing prior knowledge (BNPK) to fuse time-series MODIS (moderate resolution
imaging spectroradiometer) data and regional differential information properly. The methods were
calibrated and validated in five sample areas covering the main grain-producing areas of mainland
China. The novelty of the research is that we presented a new indicator, CII, and a new method of
estimating CII spanning vast geographical environments. The BNPK model can fuse prior knowledge
about cropping intensity into the model, where the variations of vegetation index profiles over large
areas can be accounted for.

2. Study Area and Data

2.1. The Study Area

Concentrated cropland areas in mainland China were chosen as the study areas. According
to the distribution of croplands and its cropping intensity, climatic and topographic conditions, the
whole country can be subdivided into 38 regions [31]. Five sample areas covered by complete Landsat
scenes were selected, which span vast areas from the Songliao Plain, North China Plain, Middle-Upper
Hanjiang River Valley, and the Middle-Lower Yangtze River Valley and have significant geographic
gradients (Figure 1). For simplicity, we named these five samples areas as SP1, SP2, NCP, HRV, and
YRV. Double cropping and single cropping coexist on the North China Plain, Middle-Upper Hanjiang
River Valley, and the Middle-Lower Yangtze River Valley, while on the Songliao Plain, single cropping
is the only crop pattern. There are no tri-season crops in the research area.
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Figure 1. The research area, the sample areas (covered by five Landsat scenes), and the cropping 
frequency distribution in 2015 (Resource and Environment Data Cloud Platform, 
(http://www.resdc.cn/DOI, 2017. DOI:10.12078/2017122201). Regions A-D represent the Songliao 
Plain, North China Plain, Middle–Upper Hanjiang River Valley, and the Middle–Lower Yangtze 
River Valley, respectively. 

2.2. The Data and Preprocessing 

The data used in this study were the MOD13Q1 v006 data, consisting of MODIS products 
recorded by the EOS/Terra Satellite. The products include 250 m resolution NDVI (normalized 
difference vegetation index) and EVI (enhanced vegetation index) data, reflectance data, and quality 
control data, which were synthesized over 16 days based on the maximum value composite (MVC) 
method. EVI data layers were extracted as the vegetation indices datasets in this research. The EVI 
time-series was composed of 23 EVI composites covering a natural year. The products were 
corrected geometrically and atmospherically. The MODIS image sequence numbers of the tiles 
covering the research area were h26v04, h27v04, h27v05, h27v06, h28v05, and h28v06 (h: horizontal, 
v: vertical). In addition, a data pixel reliability layer was extracted from the MOD13Q1 v006 
products, the spatial and temporal resolutions of which were consistent with the EVI dataset. 
MOD13Q1 was acquired from the National Aeronautics and Space Administration (NASA) website 
(http://modis-land.gsfc.nasa.gov) and covered 2015. Landsat 8 OLI images in 2015 with cloud cover 
less than 20% were obtained to generate the calibration and validation samples. The paths/rows of 
the Landsat scenes were 124–039, 124–037, 123–034, 120–031, and 118–027 (Figure 1 and Table 1). To 
facilitate the process of preparing the cropping frequency sample data through classification, the 
acquisition date was carefully selected to cover the phenology stage of the crops. 
  

Figure 1. The research area, the sample areas (covered by five Landsat scenes), and the cropping
frequency distribution in 2015 (Resource and Environment Data Cloud Platform, (http://www.resdc.
cn/DOI, 2017. DOI:10.12078/2017122201). Regions A-D represent the Songliao Plain, North China
Plain, Middle-Upper Hanjiang River Valley, and the Middle–Lower Yangtze River Valley, respectively.

2.2. The Data and Preprocessing

The data used in this study were the MOD13Q1 v006 data, consisting of MODIS products
recorded by the EOS/Terra Satellite. The products include 250 m resolution NDVI (normalized
difference vegetation index) and EVI (enhanced vegetation index) data, reflectance data, and quality
control data, which were synthesized over 16 days based on the maximum value composite (MVC)
method. EVI data layers were extracted as the vegetation indices datasets in this research. The EVI
time-series was composed of 23 EVI composites covering a natural year. The products were corrected
geometrically and atmospherically. The MODIS image sequence numbers of the tiles covering the
research area were h26v04, h27v04, h27v05, h27v06, h28v05, and h28v06 (h: horizontal, v: vertical).
In addition, a data pixel reliability layer was extracted from the MOD13Q1 v006 products, the spatial
and temporal resolutions of which were consistent with the EVI dataset. MOD13Q1 was acquired from
the National Aeronautics and Space Administration (NASA) website (http://modis-land.gsfc.nasa.
gov) and covered 2015. Landsat 8 OLI images in 2015 with cloud cover less than 20% were obtained to
generate the calibration and validation samples. The paths/rows of the Landsat scenes were 124–039,
124–037, 123–034, 120–031, and 118–027 (Figure 1 and Table 1). To facilitate the process of preparing
the cropping frequency sample data through classification, the acquisition date was carefully selected
to cover the phenology stage of the crops.

Geographical geometric correction, image clipping, and resampling were performed on the
dataset. The method adopted for sampling was the nearest neighbor. The projection system was the
Albers equal-area conic projection; the spheroid is the Clarke 1866 system, with a central meridian of
110◦E and two standard parallels of 25◦N and 47◦N.

http://www.resdc.cn/DOI
http://www.resdc.cn/DOI
http://modis-land.gsfc.nasa.gov
http://modis-land.gsfc.nasa.gov
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Table 1. Landsat 8 images used in the research.

Paths/Rows Acquisition Date Cloud Cover (%)

118/027 16/06/2015 1.76

120/031 10/03/2015 3.47
26/03/2015 3.48
13/05/2015 0.02

123/034 15/03/2015 9.02
18/05/2015 0.26

124/037 17/01/2015 0.04
09/05/2015 19.94

124/039 01/012015 12.51
22/03/2015 19.19
09/05/2015 6.69

3. Method

The proposed method for mapping cropping intensity from the time-series MODIS data consists
of two components: (1) the definition of the cropping intensity index, and (2) the Bayesian network
modeling and cropping intensity inference. Bayesian networks were used to model the nonlinear
relationship between cropping intensity and multi-source data. The software packages used in our
research for Bayesian network modeling and the subsequent corresponding model validation were
Netica 5.02 and MATLAB.

3.1. Bayesian Network

The Bayesian network (BN) is a powerful mathematical model for reasoning about uncertainty,
which combines probability theory and graph theory to express mutual relationships between variables.
A Bayesian network is a DAG (directed acyclic graph) combined with a CPT (conditional probability
table), where each node represents a random variable and the arcs linking the nodes represent the
relationships between variables. The NB (naïve Bayesian network) is the simplest Bayesian network
in terms of both structure and parameter learning and has been widely studied in many cases as a
benchmark for comparison with new methods.

Assume that X1, X2, . . . , Xn are the random variables, C is the class node, and n is the number of
random variables, then the following formula can be derived according to the Bayes formula and the
chain rule:

P(C|X1, X2, . . . , Xn) =
P(X1, X2, . . . , Xn|C)P(C)

P(X1, X2, . . . , Xn)
=

P(X1, X2, . . . , Xn, C)
P(X1, X2, . . . , Xn)

(1)

The key step of calculating P(C|X1, X2, . . . , Xn) is to figure out the joint probability distribution
on all nodes. In a NB, features are assumed to be mutually independent of each other within a given
class, therefore a NB is fully defined by the conditional probabilities of each feature given the class.
The class node is the parent of all feature nodes in a NB, and therefore the joint probability of all nodes
can be written as follows according to the hypothesis of conditional independence between child
nodes [32]:

P(X1, X2, . . . , Xn, C) = P(C)
n

∑
i=1

P(Xi|C) (2)

According to Equations (1) and (2), we can obtain a simple way of calculating the posterior
probability given the sample information and prior probability of the class node:
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P(C|X1, X2, . . . , Xn) = P(C)
n

∏
i=1

P(Xi|C)
P(Xi)

(3)

where P(C) and P(Xi) are the prior probabilities of class node and features node, respectively.
P(Xi|C) is the conditional probability of feature Xi given a class, usually obtained through training.
P(C|X1, X2, . . . , Xn) is the posterior probability of the class node given the feature nodes.

3.2. Cropping Intensity Index

‘Cropping intensity’ can be defined in a number of ways and is usually defined as the cropping
frequency. Cropping frequency was obtained by simply counting the peaks within the EVI time-series.
This method can bring in bias because we do not know how to discriminate when it is not an obvious
peak caused by mixed pixels and (or) diverse planting structure. Since the intensity and variability
of the EVI time-series within a natural year can reflect the fragmentation of fields and areal coverage
of a given crop pattern, we defined cropping intensity as sub-pixel level cropping frequency that is
indirectly measured by the EVI time-series.

Here, we propose a normalized cropping intensity index (CII) to quantify cropping intensity:

CII = P(CI|EVI1, EVI2, . . . , EVI23) = P(CI)
23

∏
i=1

P(EVIi|CI)
P(EVIi)

(4)

where CI is the cropping intensity from sample data. EVI1, EVI2, . . . , EVI23 is the MODIS EVI
time-series. P(CI) and P(EVIi) are prior information and are constants. P(EVIi|CI) is the
conditional probability of EVIi given the cropping intensity, usually obtained through training.
P(CI|EVI1, EVI2, . . . , EVI23) is the posterior probability of cropping intensity given the EVI time-series.
The calculation of posterior probability is the same as Equation (3).

The calculation of the MODIS-like sample CI is based on the cropping frequency data from the
Landsat classification result. dcrop is the number of double cropping pixels within a MODIS pixel; scrop

is the number of single cropping pixels (Figure 2); and n is the total number of Landsat pixels within
a MODIS pixel. This equation gives a mean value of cropping frequency based on Landsat images
within a MODIS pixel, with a data range from 0 to 1, indicating the ‘intensity’ of cropping.

CI =
dcrop ∗ 2 + scrop

2n
(5)
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Figure 2. Schematic diagram for calculating sample CI.

It is assumed that there are pure double cropping pixels on the MODIS image, which is an ideal
state. The CI of those pixels with homogeneous double cropping is close to 1; the CI of those pixels
with homogeneous single cropping is approximately 0.5; the CI of non-cropland is 0.
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The self-organizing data analysis technique (ISODATA), along with visual interpretation using
Google Earth satellite images were utilized to classify the Landsat images. The classification maps
were simply reclassified to a nominal single cropping/double cropping/non-cropland classification
scheme to obtain the cropping frequency samples.

3.3. BNPK Model

We present the steps of building the BNPK model including fusing multi-source data using a
Bayesian network (Figure 3), and the details of adding regional differentiation factor as prior knowledge
into the model. As a spatial determinant of CII, zonal information was included in our model.
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3.3.1. Fusing Time-Series MODIS Data

When applying the Bayesian network to remote sensing applications, the parameters and the
observed data are all regarded as random variables. We used the term variable to indicate any features.
A Bayesian network was built to model the relationships between CII and time-series MODIS data,
where the aforementioned EVI data were taken as independent variables and CII was taken as the
dependent variable. Model construction included three stages: structure learning, parameter learning,
and inference.

Since EVI profiles reflect the CII as a whole, we added the link manually to construct the DAG.
The initial Bayesian network was composed of 23 child nodes defining the independent variables of
interest (Figure 4).

All continuous variables must be converted to discrete quantities before the parameter learning
because all probabilistic inference in Netica is done with discrete tables [30]. The Jenks natural breaks
method [33] was used to discretize all the variables. The number of states for all child nodes was
chosen based on a set of tests (10–30 states) to improve overall accuracy, and 13 states were finally
selected. The CPT was estimated using the EM (expectation-maximization) algorithm that updates
initial parameter estimation by iteratively refitting the data to the updated model until convergence.
When the CPTs of each node have been defined (Table 2, using child node L1 as an example), the
network is able to be ‘solved’ [33], and the CPTs and their changes can then easily be examined by
each individual case. The BN provides a simple way to test a case, allowing the user to input evidence
by assigning a value at a node. The effect of the case can then be examined by its assignment on other
nodes through the propagation of probabilities. The rapid propagation of information through the
network is one of the major advantages of the BN, which can be used to quickly view how observation
at one node will affect the system as a whole [33].
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In the parameter learning stage, all variables were set to observed values, and the model was
built at this level (forward). In the inference stage, however, the CII was set to unobserved, and the
results of the inference were then taken as the estimated CII values (backward). For a given case, the
posterior probability distributions of CII were calculated according to Equation (4):

CII = P(CI|EVI1, EVI2, . . . , EVI23) =
23

∏
i=1

CPTi(j) (6)

where CPTi is the CPT of child node i, i ∈ (1, 2, . . . , 23). j denotes the sequence number of a column in
CPTi, j ∈ (1, 2, . . . , 13), and its value was determined according the EVI range of the corresponding
child node.

CII values with maximum posterior probabilities were selected as the estimated values. The Bayesian
network model was constructed and compiled and then run on the cases of the validation samples.

3.3.2. Adding Zone Information as Prior Knowledge

We introduced a zone node into the model, which represented the regional differentiation
information. Here, the prior knowledge indicates the information about the CII available in addition
to the training data from the MODIS data. The basis is that simply determining a model from a finite
set of spatial proxies without prior knowledge is an ill-posed problem.

Unlike MODIS EVI data with interval measurements, zone data are a kind of data with nominal
measurement, which cannot be modeled as a natural node in BN. We used codes 1, 2, 3, 4, and 5 to
label the five sample areas in the Songliao Plain, North China Plain, Middle-Upper Hanjiang River
Valley, and the Middle–Lower Yangtze River Valley respectively, so for each zone there is a separate
CPT, which is locally trained. The zone node was added into the original BN model as the parent node
of feature nodes. In this way, the zone information was fused into the initial model as prior knowledge
to generate the final BNPK model (Figure 5).
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Table 2. Conditional probability table of child node L1.

CII
EVI −3000~−2000 −2000~−1000 −1000~0 0~1000 1000~2000 2000~3000 3000~4000 4000~5000 5000~6000 6000~7000 7000~8000 8000~9000 9000~10000

0–0.1 0.0 0.0 0.0 0.0 0.0 27.6 67.3 5.1 0.0 0.0 0.0 0.0 0.0
0.1–0.2 0.0 0.0 0.0 0.0 8.3 80.5 11.2 0.0 0.0 0.0 0.0 0.0 0.0
0.2–0.3 0.0 0.0 0.0 0.0 15.0 83.1 1.9 0.0 0.0 0.0 0.0 0.0 0.0
0.3–0.4 0.0 0.0 0.0 0.8 82.0 17.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4–0.5 0.0 0.0 0.0 0.0 0.0 0.0 14.9 53.9 24.9 4.2 1.0 1.0 0.0
0.5–0.6 0.0 0.0 0.0 0.0 8.3 42.0 34.7 12.9 2.1 0.0 0.0 0.0 0.0
0.6–0.7 0.0 0.0 34.1 42.0 18.6 1.3 3.9 0.0 0.0 0.0 0.0 0.0 0.0
0.7–0.8 0.0 0.0 0.0 0.0 0.0 26.1 47.6 23.2 2.5 0.6 0.0 0.0 0.0
0.8–0.9 0.0 0.0 0.0 0.0 65.5 34.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9–1.0 0.0 0.0 0.0 0.0 0.0 7.6 46.6 44.1 1.7 0.0 0.0 0.0 0.0
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Figure 5. The BNPK model (Bayesian network fusing zone data as prior knowledge). SP1, SP2, NCP,
HRV, and YRV represent the five sample areas. L1, L2, etc., represent the EVI time-series. (a) CPT when
adding a zone node as prior knowledge. We simply assigned codes 1–5 to the five sample areas. After
adding this node, all the CPTs in other nodes updated automatically. The intra-class variations on CII
could be observed, which were consistent with the fact of regional differentiation. (b) CPT when giving
evidence of zone information. If we provide evidence of zone type as NCP at 100% probability, all the
child nodes update the CPT through the propagation of probabilities. This CPT is locally trained and
exclusively for NCP.
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3.4. Validation of the Model

The model was calibrated, and the accuracy of the modeled CII was validated against the sample
data (derived from Landsat images).

In the model calibration, the performance of the BN models with or without prior knowledge
(named BN and BNPK, respectively) was compared. To test the prediction success rate of the model,
using the sample CII values that served as input to the Bayesian network model as reference values,
the logarithmic loss, quadratic loss and spherical payoff measures [34] were calculated to compare the
prediction abilities of the proposed BN model. The logarithmic loss is a cross entropy estimate with
scores between 0 and 1, and values closer to 0 indicate a lower penalty. The quadratic loss is similar to
the logarithmic loss score but varies in the interval [0, 2], with 0 being the best. The spherical payoff
varies in the interval [0, 1], with 1 representing the best classifier performance [35]. These results are
calculated in the standard way for scoring rules, and their respective equations are:

Logarithmic loss = M(−ln S) (7)

Quadratic loss = M

(
1− 2S +

n

∑
j=1

P2
j

)
(8)

Spherical payoff = M

(
S

∑n
j=1 P2

j

)
(9)

where M is the mean probability value of a given state averaged over all cases; S is the probability
predicted for the correct state of class; Pj is the probability predicted for class j; and n is the number of
states for which the training data provides a value for the classification variable.

When validating the accuracy of the modeled CII, both the modeled result and the sample data
from the Landsat 8 images were aggregated to 2000 m fractural images by averaging the values within
each block to facilitate analysis. The accuracy of the model outputs was tested using the coefficient of
determination R2, root mean square error (RMSE), intercept a and slope b of the simple linear regression
with respect to the validation samples. After the validation tests, the BN model was complete and
could then be applied to the mapping of CII in the study area.

4. Results and Analysis

4.1. Model Calibration

We used 30% of the sample data as training data and the rest as validation data. The accuracy
of the model outputs was tested using the relative error rate with respect to the validation samples.
The relative error rates were 47.75% and 27.68% for the two models, respectively (Table 3).

Table 3. Overall accuracy measures of the models.

Relative Error (%) Logarithmic Loss Quadratic Loss Spherical Payoff

BN 47.75 0.46 0.51 0.72
BNPK 27.68 0.17 0.22 0.93

The scatter diagrams of the result predicted by the two models versus the sample data are plotted
in Figure 6. The test samples in the five areas were put together to draw these figures. We used the
method of least absolute residuals (LAR) when fitting the data. The LAR method finds a curve that
minimizes the absolute difference of the residuals, rather than the squared differences. The fitting
output with the R2 of 0.44 and 0.79 and the p-value of 0.59 and 0.14 for the two models was obtained
at the 95% confidence level. The BN model had poor prediction because it ignored the intra-class
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variations in the MODIS time-series. The BNPK model predicted CII better than BN with a R2 of 0.79
because of its full consideration of prior knowledge.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 
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Figure 6. Trend line of the modeled and the referenced CII at pixel level, (a) BN model, and (b) BNPK model.

The coefficients of the simple linear regression for the five sample areas are given in Table 4.
The BNPK model clearly provides more accurate estimate than the traditional BN model. At pixel
level, the highest R2 for the BNPK model approached 0.84, while the BN reached a R2 maxima of 0.679
in HRV. Overall, the BNPK based estimates were better than that of BN in all of the sample areas.

Table 4. Coefficient of determination R2, intercept a and slope b of the simple linear regression for test
samples at the pixel level.

BN BNPK

R2 RMSE a b R2 RMSE a b

SP1 0.424 0.081 0.280 0.405 0.501 0.094 0.144 0.553
SP2 0.269 0.131 0.300 0.455 0.484 0.136 0.180 0.589
NCP 0.440 0.148 0.159 0.495 0.541 0.154 0.168 0.623
HRV 0.679 0.147 0.139 0.655 0.836 0.117 0.089 0.810
YRV 0.450 0.151 0.137 0.506 0.620 0.138 0.152 0.670

4.2. Accuracy Validation

First, we compared the modeled CII with the sample CII through visual interpretation. Five patches
from the sample areas were selected to draw these figures (Figure 7). We found that the CII samples were
well consistent with the modeled result and showed the detailed cropping frequency information.
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The modeled CII were analyzed and compared with the referenced data at a 2 km block level
(Figure 8). The sample data from Landsat were used as the reference to evaluate the accuracies of the
modeled CII. The maximum CII value for SP1 and SP2 was 0.5 because single cropping was the only
crop pattern on the Songliao Plain.
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Figure 8. Trend line of the modeled and the referenced data at block level. (a) SP1, (b) SP2, (c) NCP,
(d) HRV, and (e) YRV.

The initial pixel-based accuracies increased drastically when the 250 m estimates were aggregated to
2 km levels. At a pixel level, the BNPK model gave acceptable results. However, if the pixel-estimates
averaged over more relevant spatial units, then the precision increased essentially and the bias decreased.

The coefficients of the simple linear regression between the referenced and the modeled CII at the
block level are given in Table 5. For unbiased estimation, the regression line should approach the 1:1
diagonal line (intercept a ≈ 0 and slope b ≈ 1). Slope b was close to 1 and intercept a was relatively
small, demonstrating the good fit of the regression.

Table 5. Coefficient of determination R2, RMSE, intercept a and slope b, p-value of the simple linear
regression between the referenced, and the modeled CII at the 95% confidence level at the block level.

R2 RMSE a b p-Value

SP1 0.87 0.044 0.029 0.941 0
SP2 0.823 0.049 0.051 0.973 0.04
NCP 0.82 0.082 −0.074 1.08 0
HRV 0.97 0.046 0.030 0.945 0
YRV 0.89 0.067 −0.034 1.036 0

5. Discussion

Machine-learning-based interpretation of remotely sensed data typically involves models and
algorithms that can combine evidence from what is being sensed (for example, the MODIS time-series in
this research) with prior knowledge. Mapping cropping intensity index (CII) from MODIS time-series on a
large-scale is an example of such a task. Most existing studies have been carried out either on a small-scale
or a large-scale, but without considering the regional differentiation factors [27,36–40]. The experiments
clearly demonstrated the regional variations within the EVI time-series including the EVI amplitude and
phenological stage of the crops (Figure 9). The existing studies have dealt with regional differentiation
either through using phenological information to modify the EVI profiles [41,42], or by dividing the study
area into independent zones and then mapping each zone separately [43,44].
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Figure 9. EVI profiles of the cropland pixels in three sample areas. About 100 representative pixels
with a CII value of 0.7 were selected randomly for each sample area (using NCP, HRV, and YRV as
examples), and the mean values of the EVI time-series were calculated to plot this figure.

The BNPK model (Bayesian network model fusing prior knowledge) provides a unique way of
combining the MODIS time-series and regional differentiation factors and can be applied to large-scale
CII mapping. The BNPK model was constructed with the simplest network structure while still
maintaining the ability to model CII with an acceptable error rate. The model was very simple because
the only modification to a conventional BN model was to add a node into the model to label where the
case came from. The model was then locally trained and at the same time globally optimal. Bayesian
networks provide a useful way of dealing with such problems because they combine the robustness of
probabilistic methods with the expressiveness of graphs that encode relationships between variables,
offering a framework for handling uncertainty and complexity in the estimation of CII within a
single model.

The proposed CII is a new indicator which can be use to map cropping intensity at a finer scale
compared with the existing researches [10,12–14]. The modeled CII is a fractional image at the sub-pixel
level, which is a kind of interval measurement. CII map provides detailed spatial information of
cropping intensity, where the spatial heterogeneity of cropping intensity within a MODIS pixel can
be accounted for. Compared with cropping frequency, which is a kind of ordinal measurement, CII
has numeric scales where we know not only the order, but also the exact differences between the
cropping intensity levels. Therefore high spatial and temporal resolution CII datasets can meet the
requirements of fine cropping intensity mapping. The increments of cropping intensity are known,
consistent, and measurable.

The predicted CII map had high accuracies considering the study area spanned a vast territory.
The pixel-based results were less than ideal, however the 2 km block aggregation results were
satisfactory. Considering that the resolution of 2 km is sufficient in large-scale estimation, the CII
was superior to cropping frequency and MCI. Our research presented a framework to obtain a CII
map with both a finer spatial resolution and a fine temporal resolution at a national scale (label C in
Figure 10). The conventional methods only provided cropping intensity data with either coarse spatial
resolution (label A), or coarse temporal resolution (label B).



Remote Sens. 2019, 11, 168 16 of 18

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 18 

 

 
Figure 10. Temporal and spatial scale of cropping intensity. 

The BNPK model can be applied to any large-scale land surface parameter mapping, provided 
zonal layer data are available. The delineation of zonal data is then a key issue for extending the 
applications of the model. For precise mapping, using latitude data together with zonal data instead 
of only zonal data requires more attention in the future. This model is also applicable for any given 
year with MODIS data coverage, provided that cropping frequency sample data from 
high-resolution cloud-free data are available.  

6. Conclusions 

The cropping intensity index (CII) is not only the basic data for agricultural remote sensing but 
also an important input variable for ecosystem modeling and global change research. This paper 
reports our work on estimating CII in mainland China from time-series MODIS data. A CII was 
designed and a BNPK model (Bayesian network model fusing prior knowledge) fusing regional 
differentiation factor as prior knowledge was built and applied to the estimation of CII. The novelty 
and contributions of our work are summarized as follows. First, the proposed model had the 
superiority of fusing prior knowledge into the BN model, greatly decreasing the uncertainty in 
large-scale CII mapping. The model has the advantages of considering both the EVI profiles and 
regional differentiation when estimating the CII over large-scale areas. Second, the proposed CII is 
an interval measurement and can map cropping intensity with both a finer spatial resolution and a 
fine temporal resolution at a national scale. Conventional approaches for national scale crop 
mapping have certain difficulties in their application. The proposed CII and BNPK model can 
therefore be a good solution to obtain a more accurate cropping intensity map. 

The pixel-based results were not satisfactory, partly because of the data quality and the coarse 
resolution of the MODIS data. Diverse crop patterns within even one sample area can also lead to 
uncertainty of the model. Future work will involve more precise delineation of zonal data according 
to crop patterns and the analysis of spatial and temporal dynamics of CII. 

Author Contributions: Conceptualization, J.T. and W.W.; methodology, J.T.; validation, J.T. and M.X.; formal 
analysis, J.T.; investigation, M.X.; resources, J.T.; data curation, M.X.; writing—original draft preparation, J.T.; 
writing—review and editing, J.T. and W.W.; supervision, J.T.; project administration, J.T.; funding acquisition, 
W.W. 

Funding: This research was funded by the National Natural Science Foundation of China (grant number 
41871356), and the Natural Science Foundation of Hubei Province (grant number 2017CFB434). 

Acknowledgements: The authors would like to thank the anonymous reviewers for their comments and 
suggestions regarding this paper. 

Conflicts of Interest: The authors declare no conflict of interest. 
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The BNPK model can be applied to any large-scale land surface parameter mapping, provided
zonal layer data are available. The delineation of zonal data is then a key issue for extending the
applications of the model. For precise mapping, using latitude data together with zonal data instead
of only zonal data requires more attention in the future. This model is also applicable for any given
year with MODIS data coverage, provided that cropping frequency sample data from high-resolution
cloud-free data are available.

6. Conclusions

The cropping intensity index (CII) is not only the basic data for agricultural remote sensing but also
an important input variable for ecosystem modeling and global change research. This paper reports
our work on estimating CII in mainland China from time-series MODIS data. A CII was designed
and a BNPK model (Bayesian network model fusing prior knowledge) fusing regional differentiation
factor as prior knowledge was built and applied to the estimation of CII. The novelty and contributions
of our work are summarized as follows. First, the proposed model had the superiority of fusing
prior knowledge into the BN model, greatly decreasing the uncertainty in large-scale CII mapping.
The model has the advantages of considering both the EVI profiles and regional differentiation when
estimating the CII over large-scale areas. Second, the proposed CII is an interval measurement and
can map cropping intensity with both a finer spatial resolution and a fine temporal resolution at a
national scale. Conventional approaches for national scale crop mapping have certain difficulties in
their application. The proposed CII and BNPK model can therefore be a good solution to obtain a
more accurate cropping intensity map.

The pixel-based results were not satisfactory, partly because of the data quality and the coarse
resolution of the MODIS data. Diverse crop patterns within even one sample area can also lead to
uncertainty of the model. Future work will involve more precise delineation of zonal data according to
crop patterns and the analysis of spatial and temporal dynamics of CII.
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