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Abstract: Hyperspectral image compressive sensing reconstruction (HSI-CSR) is an important issue
in remote sensing, and has recently been investigated increasingly by the sparsity prior based
approaches. However, most of the available HSI-CSR methods consider the sparsity prior in spatial
and spectral vector domains via vectorizing hyperspectral cubes along a certain dimension. Besides,
in most previous works, little attention has been paid to exploiting the underlying nonlocal structure
in spatial domain of the HSI. In this paper, we propose a nonlocal tensor sparse and low-rank
regularization (NTSRLR) approach, which can encode essential structured sparsity of an HSI and
explore its advantages for HSI-CSR task. Specifically, we study how to utilize reasonably the l1-based
sparsity of core tensor and tensor nuclear norm function as tensor sparse and low-rank regularization,
respectively, to describe the nonlocal spatial-spectral correlation hidden in an HSI. To study the
minimization problem of the proposed algorithm, we design a fast implementation strategy based
on the alternative direction multiplier method (ADMM) technique. Experimental results on various
HSI datasets verify that the proposed HSI-CSR algorithm can significantly outperform existing
state-of-the-art CSR techniques for HSI recovery.

Keywords: hyperspectral image; compressive sensing; structured sparsity; tensor sparse decomposition;
tensor low-rank approximation

1. Introduction

Hyperspectral image (HSI) is a three-dimension data cube by simultaneously capturing the
information over two spatial and one spectral dimensions. The abundant spatial-spectral information
is able to provide more accurate and reliable signature features on distinct materials, which
contributes to various applications such as scene classification [1], object detection [2], environmental
monitoring [3], etc. However, due to the large data sizes of HSI, the storage and transmission on
limited resource platform become a challenge problem. Although various methods, mainly including
wavelet transform [4–6], TDLT + KLT [7], DPCM [8] and JPEG2000 [9,10], have been proposed to
compress HSI effectively, they treat the HSI as a collection of single band images and neglect the
spatial-spectral knowledge redundancy. Thus, how to build rational and powerful HSI compressive
reconstruction models is still a worthy research issue.
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Recently, the compressive sensing (CS) [11–13] theory offers a brand-new field for HSI acquisition
or compression, which only needs to capture a small number of incoherent measurements in the
imaging stage. Then, the acquired measurements can be employed to reconstruct the whole HSI.
For convenient application of CS on HSI, many well-known techniques [14–41] have been presented to
convert an HSI into a sparse signal. Although HSI CS can greatly reduce the resource consumption on
imaging, storage and transmission compared with those conventional compression methods, how to
reconstruct precisely the HSI from fewer measurements is still a challenging problem.

One of the main concerns to the ill-posed reconstruction problem is to convert HSI into sparse
description form via imposing some proper sparsity priors. For example, some effective sparsity
terms with l0, l1 and lp (0 < p < 1) norms [13–16] have been presented to characterize the sparsity for
signal recovery, but those methods neglect the underlying structure information. Regularization-based
approaches usually incorporate the prior knowledge into the observation model and develop a united
framework [17–20]. For those methods, one key issue is how to design a proper regularization term
to characterize the sparsity of HSI. The works in [21–23] mainly consider the sparsity of abundance
matrix by the linear unmixing of an HSI, and then HSI CS models are built using spectral unmixing
procedures. By introducing structured sparsity across spatial or spectral dimension, Zhang et al. [24–28]
extended the compression method based sparse representation/dictionary learning to HSI compression.
More recently, Meza et al. [29,30] explored the group sparsity based spatial/spectral redundancy
structure to achieve HSI compressive sensing reconstruction (HSI-CSR). The HSI CS model proposed
by Golbabaee et al. [31–34] utilized the piecewise smooth structure to explain the underlying gradient
sparsity of an HSI. However, as those techniques depict the HSI sparsity in vector space, the description
form of sparsity is treated as one vector without considering its multidimensional structure. It will
inevitably induce losses and distortions of useful structure information.

Tensor-based HSI-CSR approaches can improve remarkably the HSI recovery quality, since the
existing methods jointly take into account the spatial-spectral information, and reduce the losses and
distortions caused by HSI reshaping [35–44]. Karami et al. [35,36] exploited discrete wavelet transform
and Tucker decomposition (DWT-TD) to encode the spatial-spectral information of HSI. The core idea
behind those techniques is first to use DWT to effectively separate an HSI into different sub-images,
and then to apply TD on the DWT coefficients of HSI bands to compact the energy of sub-images.
Zhang et al. [37,38] compressed an HSI to the core tensor and the HSI could be reconstructed by
the multi-linear projection of the factor matrices. Those methods only consider an HSI as a whole
3D tensor while they are short of more potent constraints on spatial-spectral structure of an HSI.
Yang [39] employed nonlinear tensor sparse representation to recover an HSI from small number of
measurements, and some training examples are required. Wang [40] used the global spatial-spectral
correlation and local smoothness properties underlying in an HSI to enhance the HSI-CSR task,
in which the tensor Tucker decomposition and 3-D total variation jointly characterize the sparsity of
an HSI. Du [41] proposed a patch-based low-rank tensor decomposition for HSI-CSR algorithm that
combined the nonlocal similarity across the spatial domain and the low-rank property over spectral
domain in a united framework.

Although methods reported in [37,38,40,41] are considerably effective for HSI-CSR compared
with vector based approaches, it is difficult to estimate the accurate rank under tensor decomposition
and further acquire unique decomposition. Thus, the methods based on tensor decomposition cannot
provide an elaborate characterization on spatial-spectral information in HSI-CSR problem. In [42,43],
this reasonable usage of the global correlation across spectrum (GCS) and nonlocal self-similarity
over space (NSS) prior knowledge have led to quite powerful HSI denoising algorithms, and the
effectiveness of GCS and NSS for HSI-CSR has not been reported in the public literature. Such facts
inspire us to solve the challenging HSI-CSR problem by the structured sparsity based on GCS and NSS
in this paper, and a unified framework combining nonlocal tensor sparse representation and low-rank
regularization is proposed for HSI-CSR, as shown in Figure 1. The main contributions of this paper are
listed as follows.
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Figure 1. Flowchart of the proposed HSI-CSR algorithm, which consists of two steps: sensing and
reconstruction. First, it acquires the compressive measurement y by a random sampling matrix Φ.
Second, NTSRLR recovers an HSI from the measurements y = Φx.

1. To the best of our knowledge, we are the first to exploit GCS and NSS to construct the
nonlocal structure sparsity of HSI that is a faithfully structured sparsity representation form
for HSI-CSR task.

2. For each cube that is formed by grouping nonlocal similar cubes, the tensor representation based
on tensor sparse and low-rank approximation is introduced to encode the intrinsic spatial-spectral
correlation.

3. The HSI-CSR task is treated as an optimization problem; we resort to alternative direction
multiplier method (ADMM) [44] to solve it.

A preliminary version of this work has appeared in [45], which presents the basic approach. In [45],
we established the nonlocal structured sparsity from the perspective of the tensor low-rank property,
which adopts the two most commonly used tensor low-rank representation forms: tensor low-rank
approximation and tensor low-rank decomposition. In this paper, we depict the nonlocal structured
sparsity via the tensor low-rank approximation and sparse representation. Although the tensor
low-rank decomposition and sparse representation are derived from the Tucker decomposition model,
the former needs to preset the ranks along all dimension while the latter introduces an l1-based sparse
term on core tensor. In practical application, the latter possesses the reliable capability to represent
the high-dimension data by mitigating the tensor rank overfitting or underfitting. In addition, this
paper adds: (1) the detailed background of HSI-CSR; (2) the theoretical analysis of NTSRLR; and
(3) additional HSI-CSR experiments.

The remainder of this paper is organized as follows. Section 2 introduces the tensor notations and
operations commonly used in this paper, and background of CS. In Section 3, a novel algorithm for
HSI-CSR based on the NTSRLR model is proposed. Section 4 demonstrates the results of extensive
experiments and Section 5 draws the conclusion.

2. Notations and Background of HSI-CS

2.1. Notations

Throughout the paper, we denote scalars, vectors, matrices and tensors by non-bold letters, bold
lower case letters, bold upper case letters and calligraphic upper case letters, respectively. Besides,
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we introduce some necessary notations and preliminaries about tensor as follows. A tensor of order
N, which corresponds to a N-dimensional data array, is denoted as X ∈ RI1×···×In×···×IN . Elements
of X are denoted as ai1···in ···iN , where 1 ≤ in ≤ In. Definitions of tensor terminologies in the paper
follow exactly the same description in [46]. Denote ‖X ‖F = 〈X ,X 〉 (∑i1i2,...,iN

|ai1i2,...,iN |
2)1/2, ‖X ‖1 =

∑i1i2,...,iN

∣∣ai1i2,...,iN

∣∣ and ‖X ‖0 as the F-norm, l1 norm and l0 norm of a tensor X , respectively. ‖X ‖0 ≤
K means that K is the number of non-zero entries of X . It is convenient to unfold a tensor into
a matrix during the algorithm. The “unfold" operation along the mode-n on a tensor X is defined
as unfoldn(X ) := X(n) ∈ RIn×(I1×···×In−1 In+1×···×IN), and its opposite operation “fold" is defined as
foldn(X(n)) := X . The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is a matrix of size
IK×JL, denoted by A⊗ B. The multiplication of a tensor X with a matrix Y ∈ RIk×Jk on mode-k is
denoted by X×kY = Z , which also can be defined in terms of mode-k unfolding as Zk = YXk.

Definition 1. (Tucker decomposition) [46]: The Tucker decomposition form of a tensor X is:

X = G×1U1×2 · · · ×NUN (1)

where G ∈ RJ1×J2×···×JN is the core tensor and it reflects the interaction between components along different
modes, and Un ∈ RIn×Jn is the orthogonal factor matrix in each mode. Thus, we can achieve the k-unfolding
form of Tucker decomposition in Equation (1)

X(n) = UnG(n)(UN ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1) (2)

2.2. Background of HSI-CS

For a given HSI X ∈ RW×H×S (W×H spatial resolution and S spectral bands), x ∈ RWHS denotes
the vector form of X . Let N = WHS, then the compressive measurement y ∈ RM can be obtained
from the following CS model:

y=Φx (3)

where Φ ∈ RM×N(M < N) denotes the compressive operator. The CS theory indicates that
a sufficiently sparse signal x can be exactly reconstructed from only a few observation y when the
compressive operator Φ satisfies the restricted isometry property (RIP) [11]. Under the RIP, the ill-posed
recovery problem can be formulated into following form by pursuing the sparsest signal x, i.e.,

x = min
x
‖x‖0, s.t. y=Φx (4)

where ‖ · ‖0 denotes l0 norm as a sparsity constraint. However, the l0 norm minimization in Equation (4)
is combinatorially NP-hard and unstable with the noise. For this reason, a feasible strategy is to replace
nonconvex l0 norm as a convex l1 counterpart [15,47] as follows:

x = min
x
‖x‖1, s.t. y=Φx (5)

The optimization for above l1-minimization CS problem can resort to iterative shrinkage
algorithm [48] and Bregman Split algorithm [49].

Since an HSI can be sparsely represented in a certain domain, many CS models have been
proposed for an HSI. Zhang et al. [21–23] unmixed the HSI into a spatially sparse abundance matrix
with an endmember matrix. Meza et al. [29–31] extracted the spatial/spectral redundancy structure
and then applied the group sparsity constraint. Golbabaee [34] used a wavelet basis to transform
the HSI into a sparse matrix, and then adopted the low-rankness and l1 norm to jointly encode
sparsity of the matrix. Zhang et al. [37,38] depicted the sparsity of an HSI in the core tensor domain,
instead of reshaped vector domain. Further works [39–41] employ the sparse tensor decomposition to
characterize sparsity of an HSI. However, those sparsity constraint terms are incapable of capturing
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the underlying structure in an HSI or handling the unwanted noise and artifacts in the CSR procedure.
In our method, we try to cope with those problems by introducing more refined prior knowledge of
an HSI to perfectly promote HSI-CSR performance.

3. The Proposed HSI-CSR via NTSRLR

Structured sparsity is of great importance to the HSI-CSR model that often reveals the rich
self-repetitive structures over spatial domain and the highly correlated bands across the spectral
domain. Several previous works exploiting nonlocal prior have indicated that the structured sparsity
based on nonlocal self-similarity is fairly effective for image restoration [18,19]. However, the
research works in HSI-CSR fields have not been documented. In this paper, we present a unified
framework for HSI-CSR using the structured sparsity via nonlocal tensor sparse representation and
low-rank approximation.

3.1. Non-Local Tensor Formula for Structure Sparsity

The proposed regularization model for structured sparsity consists of two steps: cube grouping
for characterizing GCS and NSS and tensor formulation for sparsity enforcement.

3.1.1. Non-Local Structure Sparsity Analysis

Concerning the GCS and NNS underlying an HSI, we provide an analysis for nonlocal tensor
sparsity and low-rankness, as illustrated in Figure 2. To begin with, for an initial third-order tensor
HSI X ∈ RW×H×S (e.g., PaviaU dataset), we divide the HSI into a group of 3D full-band cubes (FBC)
{Pi,j}1≤i≤W−w+1,1≤j≤H−h+1 ∈ Rw×h×S(w < W, h < H) with overlaps. For the exemplar cube Pi,j
of size 8 × 8 × 60 located at spatial position (i, j) in Figure 2a marked in red, we first search K-1
(here, we set K = 80) similar cubes by k-NN within a local window (e.g., 70 × 70), shown as k-NN
clustering in Figure 2b. Then, to avoid destroying the high spectral correlation, we unfold a series
of 3D cubes into corresponding 2D matrices along the spectral modes (Figure 2c), and obtain a new
third-order tensor Yp of size 64 × 80 × 60 by stacking a series of similar items (Figure 2d), where
p = 1, . . . P, and P denotes the group number. Such constructed third-order tensor simultaneously
employ the spatial local sparsity (mode-1), the non-local similarity between cubes (mode-2) and strong
spectral correlation (mode-3). The outcome of such arrangement maximizes the benefit from nonlocal
tensor representation form. Next, we give a visual interpretation for the nonlocal tensor sparsity and
low-rank property.

First, by Tucker decomposition for a nonlocal similar cube group from PaviaU dataset, Figure 2e
shows the location of singular values in the core tensor, where redder and bluer colors of elements
represent large values and smaller values, respectively. To further understand the sparsity of tensor
core, Figure 2(e2)–(e4) present three typical slices of core tensor. It is easy to find that the core
tensor satisfies sparse property, with 82.59% of its elements being zeroes. Second, the low-rank
analysis is performed along its local spatial, nonlocal spatial, and global spectral modes, as shown
in Figure 2f. Evidently, the decaying trends of singular values on three curves (pink, blue and green
curves correspond to local spatial, nonlocal spatial, and global spectral modes, respectively) indicate
there are strong correlations in the three modes. Comparatively, the decaying trend of the curve in
mode-2 is most drastic, which is consistent with the nonlocal spatial low-rank theory of an HSI given
in [50]. According to the definition of the accumulation energy ratio (Aer) of top k singular values
in [50], we calculate Top 10 singular values of three modes and attain the Aers of 0.8029, 0.9031 and
0.8186. The quantitative values (i.e., Aers) also indicate that each cube by grouping nonlocal similar
cubes can possess strong low-rank correlation along the mode-2.
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Figure 2. Nonlocal tensor sparsity and low-rank property analysis in HSI.

3.1.2. Non-Local Structure Sparsity Modeling

In Figure 2f, we can observe that the formed FBCs possess the low-rank property, and
a tractable strategy is to use the mode-n rank(r1, . . . , rn) to estimate tensor rank by Tucker
decomposition [46]. For an Nth-order tensor X , the Tucker rank is defined as rank(X ): =

[rank(X(1)), rank(X(2)), . . . , rank(X(N))], where X(i) is the mode-i unfolding of X [51]. Motivated
by the practical applications that the nuclear norm is the convex envelope of the matrix rank within
the unit ball of the spectral norm, further tensor nuclear norm, ‖X ‖∗ = ∑N

n=1 αn

∥∥∥X(n)

∥∥∥
∗

is defined
as weighting the unfolding matrix nuclear norm along each mode. Thus, we resort to the following
relaxation form for each Xp to characterize the low-rank property based on GCS and NSS:

L(Xp) = ∑3
i αi‖Xp(i)‖∗ (6)

where ‖Xp(i)‖∗ = ∑
min(m,n)
k=1 σk(Xp(i)) denotes the nuclear norm of matrix Xp(i) of size m× n.

In practice, {Yp}P
p=1 may contain some noise, the data Yp can be modeled as: Yp = Xp +Wp,

where Xp andWp denote the low-rank component and the noise component, respectively. Hence, we
can estimate the low-rank tensor Xp via the following optimization problem:

Xp = min
Xp
L(Xp), s.t.

∥∥Yp −Xp
∥∥2

F ≤ ε (7)

where ε is associated with the noise level. The model in Equation (7) is similar to the matrix cases
in [18], the difference primarily reflected in that we consider the combination with the correlations
along local-nonlocal spatial modes and spectral mode, and measure the low-rankness of a third-order
tensor Xp by a weighted sum of the rank along each unfolding. Besides, considering the strong
nonlocal spatial low-rankness along mode-2 than two other modes, we set a larger weight for mode-2
in our experiments.

In addition, as shown in Figure 2e, we give a detailed analysis for another notable representation
form for the sparsity prior based on tensor sparse decomposition, which suggests that we can depict
the structured sparsity of an HSI from the perspective of core tensor. Some pioneering works are
presented in [42,43,52–54]. Here, we draw attention to the structured sparsity formulation of an HSI
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under tensor sparse representation framework, thus each third-order tensor Xp can be approximated
by following problem:

min
Gp ,U1p ,U2p ,U3p

S(Gp), s.t.Xp = Gp×1U1p×2U2p×3U3p, UT
ipUip = I(i = 1, 2, 3) (8)

where U1p, U2p, and U3p are factor matrices and S(Gp) is sparse constraint term, and we assume
S(Gp) =

∥∥Gp
∥∥

0 as suggested in [42,43,52]. However, the optimization problem based on l0 constraint
deduced by Equation (8) is non-convex, the research in [53,54] further relaxes the l0-based core sparsity
to l1 case as S(Gp) =

∥∥Gp
∥∥

1. The convex optimization problem corresponding to l1 case can be
represented in Lagrangian form as following:

min
Gp ,U1p ,U2p ,U3p

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1, s.t. UT

ipUip = I(i = 1, 2, 3) (9)

where λ1 and λ2 are the trade-off parameters. Essentially, all factor matrices are orthogonal
dictionaries along local–nonlocal spatial modes and spectral mode. It can be seen that the tensor
sparse representation model explores the GCS and NSS of HSIs in different dimensions by adaptive
multi-dictionaries learning. Compared with the matrix sparse representation technique [19,20],
the advantage of tensor modeling is that it not only characterizes the spatial-spectral correlation
but also the correlation over nonlocal similar cubes in an HSI.

3.2. Proposed Model

Based on the previous analysis, we now derive the following model for solving the
HSI-CSR problem:

min
x,Gp ,U1p ,U2p ,U3p

∑P
p=1

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2S(Gp) + λ3L(Xp),

s.t.y = Φx, UT
ipUip = I(i = 1, 2, 3)

(10)

where λ3 is the regularization parameter. It is worth noting that the proposed model can fully exploit
the underlying prior over spatial-spectral domain in an HSI, and thus is expected to have a strong
ability to enhance HSI-CRS task.

3.3. Optimization Algorithm

For the proposed HSI-CSR model, we apply the ADMM [44], an effective strategy for solving
large scale optimization problems, to solve Equation (10). Firstly, we replace S(Gp) and L(Xp) with
the

∥∥Gp
∥∥

1 and
∥∥Xp

∥∥
∗, respectively, and introduce P auxiliary tensors {Mp}P

p=1 and equivalently
reformulate Equation (10) as follows:

min
x,Mp ,Gp ,U1p ,U2p ,U3p

∑P
p=1

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1 + λ3

∥∥Mp
∥∥
∗,

s.t. y = Φx,Mp = Gp×1U1p×2U2p×3U3p, UT
ipUip = I(i = 1, 2, 3)

(11)

Then, its augmented Lagrangian function is:

L(Xp,Mp,Gp, U1p, U2p, U3p,Zp, Λ) = ∑P
p=1

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1

+ λ3
∥∥Mp

∥∥
∗ + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉+

λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F

+ 〈Λ, y−Φx〉+ 1
2
‖y−Φx‖2

F

(12)
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where {Zp}P
p=1 and Λ are the Lagrange multipliers, λ4 is the positive scalars. We shall break

Equation (12) into five sub-problems and iteratively update each variable via fixing the other ones.

(a) U1p, U2p, U3p problem:

min
U1p ,U2p ,U3p

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉

+
λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F , s.t. UT
ipUip = I(i = 1, 2, 3)

(13)

which is equivalent to the following sub-problem:

min
U1p ,U2p ,U3p

∑P
p=1

∥∥G×1U1p×2U2p×3U3p −Op
∥∥2

F, s.t. UT
ipUip = I(i = 1, 2, 3) (14)

where Op =
λ1X p+∑3

i=1 (λ4Mi−Zi)

λ1+3λ4
can be easily solved by the method as suggested in [53,54].

(b) Gp sub-problem:

min
Gp

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉

+
λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F + λ2
∥∥Gp

∥∥
1

(15)

It can be rewritten as

min
Gp

1
2

∥∥Op − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1 (16)

It can be solved by the Tensor-based Iterative Shrinkage Thresholding Algorithm (TISTA) in [53,54].
(c) Mp sub-problem:

min
Mp

λ3
∥∥Mp

∥∥
∗ + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉+

λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F ,

(17)

It can be briefly reformulated as:

min
Mp

∑3
i=1

λ3αi
λ4

∥∥∥Mp(i)

∥∥∥
∗
+

1
2
‖Bp +

Zp

λ4
−Mp‖2

F, (18)

where Bp = Gp×1U1p×2U2p×3U3p, its equivalent form is

min
Mp

∑3
i=1

λ3αi
λ4

∥∥∥Mp(i)

∥∥∥
∗
+

1
2
‖Bp(i) +

Zp(i)

λ4
−Mp(i)‖2

F, (19)

As suggested in [51], its close-form solution is expressed as:

Mp(i) = foldi[Sαiλ3/λ4
(Bp(i) +

Zp(i)

λ4
)], (20)

For a given matrix X, the singular value shrinkage operator Sτ(X) is defined as Sτ(X): =

UXDτ(ΣX)VT
X , and where X = UXσXVT

X is the SVD of X and Dτ(A) = sgn(Aij)(
∣∣Aij

∣∣− τ)+.
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(d) x sub-problem:

min
X ∑P

p=1
λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + 〈Λ, y−Φx〉+ 1
2
‖y−Φx‖2

F , (21)

It is easy to observe that optimizing L with respect to x can be treated as solving the following
linear system:

λ1x + Φ∗(Φx) = Φ∗(y−Λ) + λ1vec(X − G×1U1×2U2×3U3), (22)

where G×1U1×2U2×3U3 = ∑P
p=1 Gp×1U1p×2U2p×3U3p, vec(·) denotes the vectorization operator

for a matrix or tensor, and Φ∗ indicates the adjoint of Φ. Obviously, this linear system can be
solved by well-known preconditioned conjugate gradient technique.

(e) Update the multipliers {
Zp = Zp + ρλ4(Bp −Mp)

Λ = Λ + ρ(y−Φx)
(23)

where ρ is a parameter associated with the convergence rate at values of, e.g., [1.05–1.1]. The whole
optimization procedure for the proposed HSI-CSR model can be summarized as Algorithm 1, and
we abbreviate the proposed method as NTSRLR.

Algorithm 1. HSI-CSR based NTSRLR.

Input: The compressive measurements y, measurement operator Φ, and the parameters of the algorithm.
1: Initialization: Initializing an HSI x(0) via a standard CSR method (e.g., DCT based CSR).
2: For l = 1 : L do
3: Extract the set of tensor {Xp}P

p=1 from x(0) via k-NN search the each exemplar cube;

4: For p = 1 : P do
5: Solve the problem (12) by ADMM;
6: Updating U1p, U2p, U3p by via Equation (14);
7: Updating Gp via Equation (16);
8: UpdatingMp via Equation (20);
9: Updating the multipliers Zp via Equation (23);
10: End for
11: Updating x(l) via Equation (22);
12: Updating the multiplier Λ via Equation (23);
13: End for
Output: CS Reconstructed HSI x(L).

4. Experimential Results and Analysis

In this section, various experiments on real HSI datasets are executed to assess the performance
of the proposed NTSRLR method. We chose eight popular methods for comparisons, namely the
three classic CS methods including StOMP [55], BCS [56] and multidimensional signal based KCS [57];
total variation based methods with LRTV [34] and TVAL3 [58]; structured sparsity based HSI-CSR
methods with RLPHCS [24], SRPREC [25] and CSFHR [28]; and the recent joint tensor decomposition
regularization and total variation based method (JTRTV) [40]. These methods represent state-of-the-art
HSI-CSR, especially LRTV and JTRTV, which fully consider the HSI sparsity priors. In comparison
experiments, we used the default parameter settings of those compared methods described in the
reference papers. We adopted random measurement matrix as the sampling operator for all methods.
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4.1. Quantitative Metrics

To evaluate the HSI-CSR performances of all methods, five quantitative picture quality indices
(PQIs) were employed in experiments. The first index is mean peak signal-to-noise ratio (MPSNR),
which is defined as the average PSNR of all bands for HSI, e.g.

MPSNR(X , X̂ ) =
1
S ∑S

s=1 PSNR(X s, X̂ s), (24)

where X s and X̂ s denote sth band images of ground truth X ∈ RW×H×S reconstructed HSI X̂ ∈
RW×H×S, respectively, and both of them are scaled to the range [0; 255].

The second index, mean structure similarity (MSSIM), was used to evaluate the similarity between
the reconstructed HSI and the original HSI based on structural consistency, which is defined as average
SSIM [59] of all bands for HSI,

MSSIM(X , X̂ ) =
1
S ∑S

s=1 SSIM(X s, X̂ s), (25)

The third index, mean feature similarity (MFSIM), emphasizes the perceptual consistency with
the original image, which is defined as average FSIM [60] of all bands for HSI,

MFSIM(X , X̂ ) =
1
S ∑S

s=1 FSIM(X s, X̂ s), (26)

High values of these three measures MPSNR, MSSIM and MFSIM represent better
reconstructed results.

The fourth index is the spectral angle mapper (SAM) [61], which calculates the average angle
between spectrum vectors of the CS reconstructed HSI and the reference one across all spatial positions;
its definition is as follows:

SAM(X , X̂ ) = cos−1(
xT x̂√

xTx
√

x̂T x̂
), (27)

where x and x̂ denote vector form of the ground truth X reconstructed HSI X̂ , respectively.
The fifth index is the Erreur relative globale adimensionnelle desynthèse (ERGAS) [62],

which measures fidelity of the CS reconstructed HSI based on the weighted sum of MSE in each
band, defined as follows

ERGAS(X , X̂ ) = 100

√√√√∑S
s=1

MSE(X s, X̂ s)

µ2
X̂ s

, (28)

where MSE(X s, X̂ s) is the mean square error between X s and X̂ s, and µ2
X̂ s is the mean value of X̂ s.

Different from the former three PQI measures, smaller values of these two measures represent better
reconstruction performances.

4.2. Experiments on Noiseless HSI Datasets

All methods are evaluated on three HSIs, namely Toy from the CAVE dataset (http://www1.cs.co
lumbia.edu/CAVE/databases/multispectral/), PaviaU and corrected Indian Pines from hyperspectral
remote sensing scenes (http://www.ehu.eus/ccwintco/index.php?title=Hyperspectra-Remote-Sen
sing-Scenes). The Toy is full spectral resolution reflectance data from 400 nm to 700 nm at 10 nm
steps (31 bands total), with spatial resolution 512 × 512. The PaviaU dataset contains 103 bands,
including 610 × 340 pixels. The Indian Pines is of size 145 × 145 with 10 m spatial resolution and
consists of 200 bands via removing 20 noisy bands polluted by water absorption, which covers the
wavelength in the range from 400 to 2500 nm by 10 nm spectral resolution. We conducted experiments
on the three HSI datasets mainly for the following reasons. (1) The three HSI datasets possess higher

http://www1.cs.columbia.edu/CAVE/databases/multispectral/
http://www1.cs.columbia.edu/CAVE/databases/multispectral/
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectra-Remote-Sensing-Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectra-Remote-Sensing-Scenes
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spatial-spectral resolutions and richer non-local similarity, which facilitates that the structured sparsity
across spatial-spectral domains is employed in our HSI-CSR model. (2) These HSIs are benchmark
testing datasets in HSI reconstruction, as presented in [21,22,24,25,40,42,43,45,50,53,54]. (3) We selected
the dataset with classification label, Indian Pines, which helps to compare all methods in term of
classification accuracy. For the experiment, we cropped a sub-region of 300 × 300 for all bands of Toy
and PaviaU, as shown in Figure 3. To validate the performance of proposed method, five different
sampling rates (SR), namely 0.02, 0.05, 0.10, 0.15 and 0.20, were considered.

(a) (b) (c)

Figure 3. HSIs employed in the compressive sensing experiments: (a) Toy; (b) PaviaU; and (c) Indian Pines.

4.2.1. Visual Quality Evaluation

To visually demonstrate the HSI-CSR performances of the proposed method, we present the
pseudocolor images with bands (25,15, 5), bands (55, 30, 5), and bands (23, 13, 3) of reconstructed
Toy, PaviaU and Indian Pines obtained by all methods under sampling rates of 0.20, 0.10 and 0.15
in Figures 4–6, respectively. We have the following observations. (1) All the competing methods
achieved relatively good reconstructed results. (2) The proposed method outperformed the other
methods, as shown by the enlarged subregion (delineated in a red box), where the large-scale sharp
edges and small-scale fine texture features are reconstructed well, as shown in Figures 4, 5 and 6j.
(3) The method StOMP produced serious noise during reconstruction and the details are blurred in
the results of BCS, KCS and CSFHR. Instead of l1-based sparsity term, the TVAL3 utilizes the TV
regularization based on gradient sparsity to preserve the more accurate edges but many details are lost.
Although LRTV simultaneously considers the gradient sparsity and low-rankness of the data, the lack
of an effective constraint for nonlocal spatial information will generate blurring artifacts. The JTRTV
method is a generalization of LRTV for high-dimensional data, although it can deal with the artifacts
problem generated by LRTV, it introduces unwanted noises. The RLPHCS and SRPREC consider the
structure sparsity based on the reweighted Laplace prior. Nevertheless, their reconstructed results
are unsatisfactory and the two methods appear to be virtually powerless for HSI-CSR. We provide
following justifications about poor performance of RLPHCS and SRPREC: (1) The two HSI-CSR
models use the maximum a posteriori framework to learn the hyperparameters; the accumulation of
estimated bias for parameters may lead to a poor HSI-CSR performance. (2) The collected dictionaries
in RLPHCS and SRPREC algorithms may not be overcomplete, which do not fully consider the
redundant structure over spatial and spectral domain. This demonstrates the effectiveness of NTSRLR
technique for HSI-CSR, greatly preserving the local details and structural information of the HSI.
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(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 4. Compressive sensing reconstructed results on pseudocolor images with bands (25,15, 5) of
the Toy image from different methods under sampling rate ρ = 0.20.

4.2.2. Quantitative Evaluation

In Tables 1 and 2, we provide the performance of all methods using MPSNR, MSSIM, MFSIM,
SAM and ERGAS results, over all the spectral bands in Toy, PaviaU and Indian Pines. We highlight the
best results for each case in bold in the current and following tables. The proposed method outperforms
the other approaches under all sampling rates and in particular the PQIs are better than the recent
JTRTV. At sampling rate ρ = 0.02, NTSRLR improves the MPSNR at least 10 dB more than JTRTV on
the Toy, 1.3 dB better on the PaviaU, and 2.7 dB better on the Indian Pines. For ρ = 0.20, the average gain
of MPSNR values of NTSRLR are more amplified compared with JTRTV, up to 14 dB on Toy, 8 dB on
PaviaU and 7 dB on Indian Pines. MSSIM, MFSIM, SAM and ERGAS values values under three HSI
datasets further confirm the robustness of the proposed method at all sampling rates. Although LRTV
is second best method, obviously it still is inferior to ours by visual quality evaluation. Since NTSRTR
explores the underlying nonlocal structure of an HSI by the tensor sparse representation and low-rank
modeling, it gives higher MPNSR, MSSIM, and MFSIM values, and smaller SAM and ERGAS than the
other methods, which only consider the local or single sparsity prior.
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(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 5. Compressive sensing reconstructed results on pseudocolor images with bands (55, 30, 5) of
the PaviaU image from different methods under sampling rate ρ = 0.10.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 6. Compressive sensing reconstructed results on pseudocolor images with bands (23, 13, 3) of
the Indian Pines image from different methods under sampling rate ρ = 0.15.



Remote Sens. 2019, 11, 193 14 of 24

The values of PSNR, SSIM and FSIM across all bands on Indian Pines under sampling rate ρ = 0.10
are presented in Figure 7. The proposed method achieves the best PSNR, SSIM and FSIM values in
most bands of the HSI, which also further validates the robustness of the proposed method over all
spectral bands. To further illustrate the superiority of proposed NTSRLR on spectrum reconstruction,
we chose four regions in Toy and PaviaU datasets shown Figure 8a,d; the average reflectance differences
were calculated between reconstructed spectra and original spectra across all bands. The curves of
those average reflectance differences are plotted in Figure 8b,c for Toy and Figure 8e,f for PaviaU. It is
obvious that the reflectance difference between the reference and the reconstruction by NTSRLR is
close to zero—much better than the other comparison methods.

(a) PSNR (b) SSIM (c) FSIM

Figure 7. PSNR, SSIM and FSIM values comparison of different methods for each band on Indian Pines
dataset under sampling rate ρ = 0.20.

(a) Toy (b) Cyan (c) Green

(d) PaviaU (e) Red (f) Blue

Figure 8. Comparison of spectra difference on Toy and PaviaU datasets: (b,c) the spectra difference
curves of different methods corresponding to the region marked by cyan and green rectangles of
Toy in (a) under sampling rate ρ = 0.05; and (e,f) the spectra difference curves of different methods
corresponding to the region marked by red and blue rectangles of PaviaU in (d) under sampling rate
ρ = 0.10.
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Table 1. MPSNRs, MSSIMs, and MFSIMs of different CSR methods on three selected HSIs under
different sampling rates.

SRs PQIs

Methods

StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR NTSRLR
[55] [56] [57] [34] [58] [24] [25] [40] [28]

Results on Toy

0.02
MPSNR 25.27 18.45 23.39 22.08 22.91 13.19 14.40 17.19 25.87 27.81
MSSIM 0.7040 0.3499 0.6565 0.6651 0.6364 0.2089 0.2786 0.1601 0.6639 0.7322
MFSIM 0.8044 0.6937 0.7820 0.8061 0.7397 0.6651 0.6272 0.5033 0.8389 0.8484

0.05
MPSNR 29.35 24.63 26.93 26.51 27.63 13.22 13.89 22.65 29.96 34.22
MSSIM 0.8256 0.6672 0.7811 0.7873 0.7817 0.2372 0.1929 0.3374 0.7462 0.8930
MFSIM 0.9189 0.7837 0.8523 0.8783 0.8273 0.6493 0.5480 0.6233 0.8845 0.9423

0.10
MPSNR 29.71 28.24 29.94 32.06 31.81 13.06 15.92 29.93 32.35 40.12
MSSIM 0.8416 0.8072 0.8641 0.9233 0.8871 0.2034 0.1267 0.6860 0.8418 0.9640
MFSIM 0.9261 0.8563 0.8987 0.9517 0.9052 0.6163 0.4505 0.8466 0.9255 0.9814

0.15
MPSNR 30.90 29.40 31.88 34.99 33.46 13.69 27.79 31.47 34.99 44.52
MSSIM 0.8982 0.8429 0.9025 0.9427 0.9141 0.1993 0.7492 0.7673 0.8985 0.9848
MFSIM 0.9485 0.8777 0.9232 0.9669 0.9282 0.5642 0.9082 0.8894 0.9527 0.9928

0.20
MPSNR 31.75 31.63 33.26 40.54 37.65 13.71 25.74 33.39 38.53 47.86
MSSIM 0.9345 0.8845 0.9236 0.9808 0.9593 0.2495 0.7384 0.8504 0.9541 0.9925
MFSIM 0.9617 0.9094 0.9375 0.9876 0.9664 0.6182 0.8942 0.9307 0.9785 0.9965

Results on PaviaU

0.02
MPSNR 28.11 21.74 23.79 23.08 22.99 15.18 14.84 28.04 25.11 29.83
MSSIM 0.7603 0.4767 0.5486 0.6500 0.5014 0.1562 0.0990 0.6708 0.6923 0.8000
MFSIM 0.8246 0.6825 0.6743 0.7974 0.6429 0.6808 0.5758 0.8593 0.8095 0.8884

0.05
MPSNR 30.06 24.26 26.59 27.49 25.29 14.38 15.46 35.73 32.74 37.96
MSSIM 0.8571 0.5572 0.6783 0.8099 0.5914 0.1698 0.1266 0.9235 0.8756 0.9551
MFSIM 0.9371 0.7379 0.7854 0.8863 0.7132 0.7123 0.6379 0.9666 0.9442 0.9774

0.10
MPSNR 30.40 26.36 29.14 32.99 27.48 15.73 16.00 37.10 34.36 42.15
MSSIM 0.8223 0.6479 0.7871 0.9158 0.6907 0.1225 0.1157 0.9452 0.9062 0.9794
MFSIM 0.9409 0.7963 0.8606 0.9479 0.7894 0.5930 0.5461 0.9761 0.9583 0.9905

0.15
MPSNR 31.59 27.08 30.85 33.81 28.33 26.46 28.29 37.39 36.77 44.55
MSSIM 0.8707 0.6812 0.8422 0.9417 0.7268 0.6771 0.8567 0.9487 0.9417 0.9872
MFSIM 0.9523 0.8137 0.8981 0.9683 0.8165 0.8738 0.9255 0.9778 0.9741 0.9944

0.20
MPSNR 32.49 28.54 32.13 40.56 30.46 28.14 35.38 38.03 40.56 46.55
MSSIM 0.9020 0.7445 0.8745 0.9740 0.8057 0.7328 0.9547 0.9548 0.9705 0.9917
MFSIM 0.9594 0.8518 0.9198 0.9862 0.8745 0.8964 0.9800 0.9807 0.9871 0.9965

Results on Indian Pines

0.02
MPSNR 30.45 33.03 31.46 22.81 30.12 19.51 23.58 30.87 30.85 33.54
MSSIM 0.7487 0.7692 0.7385 0.4916 0.7839 0.2234 0.4025 0.8010 0.8089 0.8202
MFSIM 0.8299 0.8128 0.7337 0.8421 0.8026 0.7149 0.8327 0.8102 0.8500 0.8775

0.05
MPSNR 35.70 37.23 33.71 26.77 37.28 16.44 21.01 37.07 36.86 41.15
MSSIM 0.8693 0.8153 0.7763 0.8057 0.8221 0.0920 0.2944 0.9240 0.8671 0.9470
MFSIM 0.8639 0.8554 0.7983 0.8936 0.8517 0.4714 0.8125 0.9475 0.9210 0.9553

0.10
MPSNR 40.77 38.97 35.38 34.10 39.66 16.06 25.10 39.29 37.38 44.12
MSSIM 0.9395 0.8427 0.8165 0.9153 0.8606 0.0614 0.5336 0.9338 0.8798 0.9719
MFSIM 0.9420 0.8867 0.8491 0.9440 0.8919 0.3846 0.8317 0.9472 0.9439 0.9750

0.15
MPSNR 43.71 39.42 36.39 34.65 40.47 19.62 24.05 39.85 39.27 45.65
MSSIM 0.9465 0.8478 0.8417 0.9248 0.8743 0.4756 0.4416 0.9354 0.9197 0.9810
MFSIM 0.9794 0.8942 0.8743 0.9496 0.9056 0.7956 0.7804 0.9476 0.9569 0.9818

0.20
MPSNR 44.92 40.72 37.12 41.66 42.36 20.95 26.07 39.67 41.81 46.96
MSSIM 0.9350 0.8740 0.8601 0.9670 0.9052 0.5259 0.4957 0.9367 0.9475 0.9863
MFSIM 0.9772 0.9179 0.8907 0.9748 0.9349 0.8216 0.7966 0.9465 0.9706 0.9858
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Table 2. SAM and ERGAS comparisons of different CSR methods on three selected HSIs under different
sampling rates.

SRs PQIs

Methods

StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR NTSRLR
[55] [56] [57] [34] [58] [24] [25] [40] [28]

Results on Toy

0.02
SAM 0.3040 0.6548 0.3062 0.5096 0.3888 0.9853 0.9707 0.6599 0.4014 0.2810
ERGAS 165.5 864.5 294.7 362.5 309.7 2411 2740 582.3 178.9 154.8

0.05
SAM 0.2500 0.2781 0.2351 0.3967 0.2886 0.9633 0.9210 0.6532 0.3401 0.2029
ERGAS 147.8 257.3 193.9 204.3 181.9 2064 2536 321.4 141.5 84.65

0.10
SAM 0.2318 0.1968 0.1894 0.2162 0.2080 0.6234 0.8382 0.4129 0.2750 0.1031
ERGAS 141.94 170.4 136.9 107.0 113.1 1273 1853 140.3 108.1 35.92

0.15
SAM 0.2629 0.1654 0.1635 0.1940 0.1828 0.4228 0.4562 0.3582 0.2151 0.0998
ERGAS 123.9 148.6 109.9 78.40 93.82 1262 1620 118.5 79.23 28.08

0.20
SAM 0.1123 0.1471 0.1478 0.1112 0.1294 0.3866 0.4250 0.2964 0.1599 0.0733
ERGAS 112.5 116.1 94.29 41.20 58.60 978 1305 95.77 53.85 20.86

Results on PaviaU

0.02
SAM 0.1819 0.2223 0.1931 0.1576 0.2460 0.9542 0.9950 0.1722 0.1248 0.1128
ERGAS 137.8 345.6 264.4 329.0 284.3 2537 3585 156.7 153.8 125.8

0.05
SAM 0.1542 0.1749 0.1512 0.1347 0.2021 0.8849 0.9646 0.0817 0.1019 0.0550
ERGAS 123.4 245.2 187.6 153.2 213.4 2079 2997 67.56 96.19 50.98

0.10
SAM 0.1447 0.1417 0.121 0.0862 0.1701 0.7069 0.8168 0.0725 0.0905 0.0389
ERGAS 118.7 188.0 138.7 90.35 165.2 1858 2425 58.58 80.19 32.53

0.15
SAM 0.1116 0.1326 0.1059 0.0708 0.1596 0.2914 0.2368 0.0708 0.0728 0.0315
ERGAS 103.6 173.3 113.96 77.17 149.8 1247 1921 56.68 61.15 24.90

0.20
SAM 0.0858 0.1178 0.0957 0.0462 0.1359 0.2407 0.0836 0.0674 0.0521 0.0260
ERGAS 93.40 146.2 98.66 38.73 117.7 1231 1427 52.63 41.26 19.74

Results on Indian Pines

0.02
SAM 0.1511 0.1622 0.1383 0.2774 0.1246 0.9166 0.9476 0.1075 0.1087 0.0821
ERGAS 143.2 161.8 138.6 759.7 126.5 1723 2297 129.7 198.7 116.0

0.05
SAM 0.1447 0.0830 0.1063 0.0832 0.0911 0.5668 0.8286 0.0553 0.0723 0.0382
ERGAS 89.48 88.69 119.2 233.2 87.85 1558 1988 64.84 152.6 49.62

0.10
SAM 0.0434 0.0728 0.0888 0.0587 0.0743 0.4821 0.6523 0.0515 0.0659 0.0282
ERGAS 38.77 74.77 96.91 43.08 68.53 1078 1323 58.37 127.4 35.96

0.15
SAM 0.0365 0.0714 0.0799 0.0498 0.0693 0.3914 0.4663 0.0505 0.0549 0.0229
ERGAS 34.98 72.32 86.24 37.45 62.99 917 1258 56.15 78.07 30.81

0.20
SAM 0.0295 0.0622 0.0741 0.0344 0.0586 0.2749 0.4590 0.0481 0.0553 0.0190
ERGAS 31.39 61.87 79.43 33.59 51.61 366 982 50.78 59.69 27.19

4.2.3. Classification Performance on Indian Pines Dataset

The classification accuracy of the HSI with different algorithms was employed to further verify
the effectiveness of the proposed method. Under the same circumstance, we chose the support vector
machine (SVM) [63] and overall accuracy (OA) as the classifier and evaluation index, respectively.
During the classification results with SVM algorithm, we used 16 ground-truth classes in Indian
Pines and 10% randomly generated training sets from each class to test the classification accuracy.
The classification results with different HSI-CSR methods under sampling rate ρ = 0.20 are revealed in
Figure 9a–j. The OA are given in Table 3. As shown in Figure 9j, the classification results in original HSI
appear continuous, and the OA is 86.37%. As shown in Figure 9i, the classification results of NTSRLR
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still show a continuous phenomenon, and the OA of NTSRLR is closer to the reference value. However,
the classification results of other methods are more fragmentary in most regions of the image, with
lower OA values.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original (l) 16 classes

Figure 9. Classification results for the Indian Pines image using SVM before and after CSR under
sampling rate ρ = 0.20.

Table 3. Classification performance comparison before and after CSR on Indian Pines under different
sampling rates.

SRs
StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR

NTSRLR Original
[55] [56] [57] [34] [58] [24] [25] [40] [28]

0.02 71.19% 50.64% 52.37% 60.96% 51.85% 29.61% 10.51% 20.03% 53.21% 73.69%

86.37%
0.05 75.70% 57.83% 56.18% 69.64% 57.83% 36.66% 13.32% 54.47% 59.17% 77.32%
0.10 76.32% 59.01% 62.01% 71.24% 60.92% 41.82% 14.62% 55.66% 62.98% 79.31%
0.15 78.41% 63.80% 65.80% 77.03% 62.70% 45.53% 45.53% 56.84% 65.24% 80.26%
0.20 80.28% 68.73% 70.73% 79.19% 65.73% 46.57% 57.83% 58.13% 67.70% 81.79%

4.3. Robustness for Noise Suppression during HSI-CSR

To further evaluate the effectiveness and robustness of proposed HSI-CSR method for noise
suppression, we chose the Urban dataset (http://www.tec.army.mil/hypercube) contaminated by
different degrees of mixture noise, which was with size of 307 × 307 and 4 m spatial resolution, and
covers the wavelength in the range from 400 to 2400 nm by 10 nm spectral resolution. Under same
competing methods, we removed 24 bands seriously affected by atmospheric attenuations and water
absorptions, and finally reserved 186 bands for the dataset.

We present the pseudocolor image with bands (186, 131, 1), in which the input data is polluted
by Gaussian noise and stripes, as shown in Figure 10k. The CSR results produced by StOMP, BCS,
CSFHR and TVAL3 could neither recover the original HSI nor perform the denoising task well.
Instead, the methods RLPHCS and SRPREC amplified the noise. Although the methods KCS, LRTV
and JTRTV could suppress the noise to some extent, they lost the edges and textural details when
compared to NTSRLR.

Furthermore, we present the quantitative comparisons by showing the horizontal mean profiles
of bands 1 and 186 in Urban dataset before and after CSR in Figures 11 and 12. The horizontal axis in
the figure denotes the row number, and the vertical axis represents the mean gray value of each row.
As shown in Figures 11k and 12k, the profiles have huge fluctuation due to the disturbance of noises.
After CSR, the fluctuation has been moderately alleviated. Evidently, the profiles with the proposed
NTSRLR method are more natural and smoother. The over-smooth profiles corresponding to BCS
are mainly due to the image blurring. This further substantiates the efficiency and robustness of the
proposed HSI-CSR method for noise suppression.

http://www.tec.army.mil/hypercube


Remote Sens. 2019, 11, 193 18 of 24

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 10. Compressive sensing reconstructed results on pseudocolor images with bands (186, 131, 1)
of the noisy Urban image from different methods under sampling rate ρ = 0.10.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 11. Horizontal mean profiles of compressive sensing reconstructed results on 1st band of real
noisy Urban HSI data from different methods under sampling rate ρ = 0.10.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 12. Horizontal mean profiles of compressive sensing reconstructed results on 186th band of real
noisy Urban HSI data from different methods under sampling rate ρ = 0.10.

Here, we give the theoretical analysis to explain why the proposed HSI-CSR algorithm is able to
suppress noise at the same time. The primary cause is that proposed NTSRLR contributes the noise
suppression to the joint tensor sparse and low-rank constraint on nonlocal cubes. The work in [64]
refers to the fact that the low-rank representation for those nonlocal similar patches to a given patch
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offer helpful remedy for its better image denoising. For tensor data, one can obtain the same results
when unfolding a tensor into a matrix along certain mode, and the nonlocal tensor low-rank term
of NTSRLR model can simultaneously provide complementary low-rank structures along all modes
to promote the denoising performance of tensor data. Therefore, the noise of HSI can be suppressed
to some extent. Besides, the research is [53,54] has demonstrated the effectiveness of tensor sparse
models in multi-dimensional signals denoising, which verifies the positive impact of NTSRLR on noise
suppression from the perspective of tensor sparse representation.

Note that we removed all noisy bands and preserved only 171 bands for quantitative assessment.
Table 4 presents MPSNR, MSSIM, MFSIM ERGAS and SAM of all methods under sampling rates 0.10,
0.15 and 0.20. It can be seen that our method not only recovered the structural and perceptual feature
of Urban dataset, but also preserved better spectral information.

Table 4. MPSNRs, MSSIMs, MFSIMs ERGAS and SAM of different CSR methods on Urban with
different sampling rates.

SRs PQIs

Methods

StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR NTSRLR
[55] [56] [57] [34] [58] [24] [25] [40] [28]

0.10

MPSNR 19.63 16.95 23.63 24.76 17.79 22.04 15.13 27.74 26.76 30.88
MSSIM 0.6523 0.4147 0.8152 0.8705 0.4423 0.8155 0.4245 0.8959 0.8933 0.9471
MFSIM 0.8841 0.6918 0.8916 0.9277 0.6562 0.9088 0.7711 0.9561 0.9279 0.9746
ERGAS 280.2 380.4 184.2 159.6 346.3 261.6 480.9 111.5 109.8 76.89
SAM 0.2884 0.2157 0.1551 0.1197 0.2644 0.2737 0.4775 0.1196 0.1252 0.0682

0.15

MPSNR 20.61 17.45 25.78 26.40 18.48 24.16 20.94 27.94 28.27 33.51
MSSIM 0.7088 0.4546 0.8740 0.9134 0.4924 0.8442 0.8306 0.8992 0.9064 0.9662
MFSIM 0.8972 0.7138 0.9242 0.9575 0.6946 0.9284 0.9016 0.9580 0.9582 0.9845
ERGAS 250.4 359.7 145.4 122.9 320.0 202.4 296.3 108.9 91.23 56.89
SAM 0.2461 0.2076 0.1310 0.1024 0.2518 0.2202 0.2885 0.1180 0.1075 0.0564

0.20

MPSNR 20.93 18.72 27.37 33.26 20.35 25.99 25.24 28.40 30.11 35.62
MSSIM 0.7274 0.5509 0.9051 0.9664 0.6133 0.8583 0.9034 0.9040 0.9275 0.9762
MFSIM 0.9011 0.7645 0.9418 0.9840 0.7810 0.9459 0.9445 0.9608 0.9705 0.9896
ERGAS 241.4 310.8 122.3 59.45 259.0 165.8 183.7 103.1 67.60 44.66
SAM 0.2323 0.1879 0.1156 0.0592 0.2207 0.1831 0.1859 0.1149 0.0828 0.0481

4.4. Effectiveness Analysis of Single NTSR or NTLR Constraint

To further demonstrate the effectiveness of nonlocal tensor sparse representation and low-rank
regularization in our model, we conducted two more experiments using the PaviaU dataset. The first
experiment was to perform CSR without the nonlocal tensor low-rank regularization term, and the
reconstructed HSI was achieved solely by nonlocal tensor sparse representation (NTSR). The second
experiment was a reconstruction with the nonlocal tensor low-rank regularization method, but without
NTSR, which is abbreviated as NTLR.

Figure 13 shows the comparison results of MPSNR, MSSIM and SAM of all methods under
sampling rates from 0.05 to 0.20 with interval 0.05. Compared with other methods, the proposed
NTSRLR obtained larger MPSNRs and MSSIMs, and smaller errors as measured by SAM under
different sampling rates. In particular, when the sampling rate is small, the results from NTSRLR are
significantly better than the NTSR and NTLR, which are based on a single constraint. This provides
additional evidence for the effectiveness of the proposed method from the perspective of having
integrated constraints with both non-local sparse representation and low rankness in our model.
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(a) MPSNR (b) MSSIM (c) SAM

Figure 13. MPSNR, MSSIM and SAM bars of different methods under sampling rates 0.05 to 0.20 with
interval 0.05 on PaviaU dataset.

4.5. Computational Complexity Analysis

For an input HSI X ∈ RW×H×S, the number of FBCs is P = O(WH), the size of each FBC group
is wh× s× S, where s is number of FBCs in each group. The computation cost seems not very small
for quite large P. However, CSR on the P FBCs can be processed in parallel, each with relatively small
computational complexity. The computational complexity of the proposed algorithm that mainly lies
in the update ofMp(i) , Uip(i = 1, 2, 3). Updating Uip requires computing an SVD of Ii × Ii matrix, and
updatingMp(i) requires computing an SVD of Ii × (∏j 6=i Ij) matrix. Relatively, the other variables
Gp, x and multipliers updating will not consume lots of running time.

4.6. Convergence Analysis

Lastly, we have conducted experiments to show the convergence of our method using the Toy and
Indian Pines dataset as examples under different sampling rates and different initializations. Figure 14
plots the PSNRs versus iteration numbers for the tested HSIs when the sampling rates are at 0.10 for
Toy and 0.15 for Indian Pines, when using initialization x = Φ∗y and DCT. As can be seen, the different
initialization ways can provide quite close solutions, which indicates the performance of proposed
algorithm is not sensitive to initialization. However, the two initialization ways possess different rates
of convergence, and, by contrast, the initialization via DCT requires only a small number of iterations
to get to the final PSNR. Therefore, we adopted the initialization strategy based on DCT to speed up
our algorithm. Besides, the value of PSNR will become a constant when the algorithm converges.
Thus, in the experiment, we set the maximum number of iterations for termination condition.

(a) ρ = 0.10 (b) ρ = 0.15

Figure 14. Verification of the convergence of the proposed method. Progression of the PSNRs for the
Toy and Indian Pines datasets under different sampling rates.
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4.7. Parameters Analysis

There are four parameters {λi}4
i=1 in the proposed model. Considering the different roles of

nonlocal tensor sparseness and low-rankness terms, we conducted two more experiments on PaviaU
dataset in Section 4.4. The results of MPSNR, MSSIM and SAM demonstrate the nonlocal tensor
low-rank regularization term plays a more important role in proposed model than nonlocal tensor
sparse representation term. It implies that the nonlocal tensor low-rankness term should be assigned
a greater weight to balance the two parts. Therefore, we set λ2= 1 and λ3= 10 in all our experiments.
Correspondingly, we can regard the other two parts with λ1 and λ4 tradeoff as loyalty terms of the
nonlocal tensor sparseness and low-rankness; it is reasonable to obtain a greater value for λ4, and we
set λ1= 0.02 and λ4= 250, as suggested in [42].

Besides, the spatial size of cube and the number of non-local similar cubes are two key parameters.
Some research [17,18,30,41] reports that the spatial size of cube and the number of non-local similar
cubes are dependent on sampling rates. The higher the sampling rate is, the more detailed information
of texture and structure the HSI loses. For this reason, the bigger spatial size and more non-local
similar cubes are beneficial to provide extra knowledge to further promote the HSI reconstruction
performance. Thus, according to the parameter setting principle in [17,18,30,41], we set spatial size
to 6 × 6, 7 × 7, 8 × 8, 9 × 9 and 10 × 10 for ρ = 0.20, 0.15, 0.10, 0.05 and 0.02, respectively; and the
corresponding number of non-local similar cubes are set to 50, 55, 60, 65 and 70.

5. Conclusions

In this paper, we propose a novel method for hyperspectral image compressed sensing
reconstruction by non-local tensor sparse representation and low-rank regularization. The proposed
method considers intrinsic structured sparsity, where the nonlocal similarity between spatial cubes
and the global correlation across all bands are considered fully. Each cube group contains similar
structures; its tensor-based sparsity and low-rank properties can be regarded as very valuable priors.
Experimental results reveal that the proposed methods outperform the state-of-the-art methods in
term of visual inspection, quantitative and classification accuracy assessment. The proposed method
is also superior in noise suppression. We also conclude that it is advantageous to have integrated
constraints using both non-local tensor sparse representation and low-rankness rather than using only
one of them in our model.
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