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Abstract: Classification is a common objective when analyzing hyperspectral images, where each
pixel is assigned to a predefined label. Deep learning-based algorithms have been introduced
in the remote-sensing community successfully in the past decade and have achieved significant
performance improvements compared with conventional models. However, research on the extraction
of sequential features utilizing a single image, instead of multi-temporal images still needs to be
further investigated. In this paper, a novel strategy for constructing sequential features from a
single image in long short-term memory (LSTM) is proposed. Two pixel-wise-based similarity
measurements, including pixel-matching (PM) and block-matching (BM), are employed for the
selection of sequence candidates from the whole image. Then, the sequential structure of a given
pixel can be constructed as the input of LSTM by utilizing the first several matching pixels with high
similarities. The resulting PM-based LSTM and BM-based LSTM are appealing, as all pixels in the
whole image are taken into consideration when calculating the similarity. In addition, BM-based
LSTM also utilizes local spectral-spatial information that has already shown its effectiveness in
hyperspectral image classification. Two common distance measures, Euclidean distance and spectral
angle mapping, are also investigated in this paper. Experiments with two benchmark hyperspectral
images demonstrate that the proposed methods achieve marked improvements in classification
performance relative to the other state-of-the-art methods considered. For instance, the highest
overall accuracy achieved on the Pavia University image is 96.20% (using both BM-based LSTM and
spectral angle mapping), which is an improvement compared with 84.45% overall accuracy generated
by 1D convolutional neural networks.

Keywords: hyperspectral image classification; deep learning; recurrent neural network; spatial
similarity measurements; pixel matching; block matching

1. Introduction

Hyperspectral remote-sensing images (HSI) can entail both abundant spectral and spatial
information, which generally provides enhanced capability of distinguishing different objects from one
another, relative to multispectral images, and play an important role in a variety of research domains,
such as precision agriculture [1], land-use monitoring [2,3], change detection [4,5], and environment
measurements [6]. For such subfields, classification is a critical technology, where each pixel in an HSI
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will be classified with a pre-defined label, and encouraging achievements have been produced from
different methods.

Based on the acquisition of training samples, HSI classification frameworks can be divided
into three types: unsupervised, semi-supervised, and supervised classification. Considering the
availability of training samples and classification performances, supervised methods are investigated
the most and are typically selected as benchmark algorithms, such as k-nearest-neighbor [7–9],
support vector machines (SVM) [10–12], sparse representation [13–16], and artificial neural networks
(ANNs) [17,18]. Since acquiring sufficient labeled samples in the field can be quite difficult and
time-consuming, semi-supervised methods [19–23] and tensor-based methods [24–26], which can
obtain satisfying results only based on a limited number of training samples, also warrant many
investigations. To overcome the shortcoming of limited training samples, researchers have also
found that spatial information can be employed as crucial complementary and supportive features
in spectral-spatial feature-combination frameworks to improve classification performance [27–29].
Various spatial feature-extraction methods have been proposed for HSI classification; however, such
kinds of spectral-spatial features still refer to low-level features [30], and the classification performances
arising from spectral-spatial methods can be easily affected by the curse of dimensionality problem
and the difficulty in discriminating among some classes. Therefore, methods for extracting more robust
and representative features from the HSI image itself still need to be investigated.

In the most recent decade, deep learning (DL) has demonstrated marked effectiveness and
robustness on large datasets. Considering the inherent deep architecture, which can be viewed as an
efficient feature-extraction model, from low-level feature to the highly-abstract level, DL algorithms
are always employed as end-to-end classifiers for both pixel- and image-based classification tasks
in remote-sensing communities [31]. Chen et al. proposed a stacked autoencoder (SAE)-based
HSI classification framework [32], and it was the first paper on DL applications in HSI processing.
During unsupervised feature extraction, spatial information was incorporated in order to enhance
the classification performance. The authors have also investigated the performance of deep belief
network (DBN), another unsupervised deep feature learning method for HSI classification [33].
Additionally, even considering the relatively limited availability of ground-reference or other training
data, supervised DL algorithms have also been well-explored and have posted generally impressive
results. Convolutional neural networks (CNNs) can been viewed as a milestone in the DL epoch
since its first successful application in target detection [34]. CNNs are similar to conventional ANNs
in that they are all composed of neurons, activation functions, and loss functions for optimization.
The most significant development pertaining to CNNs is that with CNNs, 2-dimensional (2D) images
can be fed directly into the network architecture via the input layer by introducing convolutional
layers, instead of transforming 2D images to one-dimensional (1D) vectors. Such a property makes
image-based processing more efficient and straightforward, and applying a convolutional layer can
utilize spatial contextual information with a specific receptive domain. However, regarding pixel-based
processing of HSIs, CNNs cannot be employed directly due to its 2D filter-processing characteristic,
and preprocessing is needed, including patch extraction. Hu. et al. [35] applied a 1D CNN (1DCNN)
for pixel-based HSI classification, where a single pixel is considered as a 2D image whose height is
equal to 1. Makantasis et al. [36] proposed a 2D CNN (2DCNN)-based HSI classification method where
randomized principal component analysis (R-PCA) was conducted as a dimensionality reduction
to reduce the number of 2D convolutional filters. Li et al. [37] investigated the effectiveness of a
three-dimensional (3D) CNN (3DCNN)-based HSI classification technique, where spectral and spatial
features were simultaneously exploited without any dimensionality reduction pre-processing.

Recurrent neural networks (RNNs) [38], another novel DL architecture with outstanding
adaptability for handling sequence data has recently achieved promising performance, particularly
for natural language processing (NLP) [39,40]. Since multi-temporal information can be obtained
conveniently with the development of modern satellite remote-sensing technology, RNNs and an
improved type of RNN, referred to as long short-term memory (LSTM) [41], were explored to extract
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temporal features from multiple images. Ienco et al. [42] utilized RNN and LSTM to perform
land-cover classification on multi-temporal satellite images. In [43], Sharma et al. proposed a
patch-based RNN framework incorporating both spectral and spatial information within a local
window to classify Landsat 8 images. Furthermore, single-image-based RNN methods are also
applied to HSIs. Mou et al. [44] proposed a novel RNN-based HSI classification algorithm by using
a parametric rectified hyperbolic tangent function (PRetanh). In this framework, each individual
pixel in the HSI can be regarded as one sequential feature for the RNN input layer. Wu et al. [45]
investigated the combination of CNN and RNN layers on the spectral feature domain and employed
the convolutional RNN (CRNN) model for HSI classification. The utilization of a CNN can extract
patch-level local invariant information among spectral bands, which provides spatial contextual
features for the following RNN layers. Shi et al. [46] proposed another strategy to design the
sequential data in RNN model instead of taking spectral vector from all bands as one sequential
data, but taking advantage of spatial neighbors. For this method, local spectral-spatial features were
first extracted by exploiting a 3DCNN on a local image patch, and then sequences were built based on
an eight-directional construction.

Although the aforementioned RNN-based DL models have significantly contributed to HSI
processing efforts, there are still some critical problems that need to be addressed. The first issue is the
limitation of training sample. Acquiring sufficient labeled training data for HSI classification is often
difficult and time consuming. Moreover, satisfactory DL-based classification accuracy has always relied
upon very large sets of training samples. Therefore, obtaining convincing HSI classification results
by utilizing limited training data for DL models is a challenging task. However, unlabeled samples,
which are relatively easier to acquire than labeled samples, have already been investigated for HSI
classification purposes under semi-supervised classification frameworks [19–22]. Such investigations
illustrate the potential effectiveness of unlabeled data for such a purpose. Another critical issue
involves the construction of sequential data for the RNN model. In [44,45], the respective authors
analyzed the HSI from the perspective of a sequential point, meaning that each pixel is considered to
be a data sequence since all pixels in the HSI are sampled densely from the entire spectrum, and they
are expected to have dependencies between different bands. Nonetheless, such dependencies still
need to be explored in order to more fully exploit the integrity of the full spectral signature. In order
to distinguish different classes, it is frequently advantageous to utilize the information encapsulated
within the entire reflectance spectrum, as is the case with many conventional classification methods.
Furthermore, exploiting the spectral feature directly in the RNN model will introduce more parameters
that need to be computed and optimized in the training step.

In this paper, we propose a novel LSTM-based HSI classification framework with spatial similarity
measurements (SSM), which is inspired by [47], where the LSTM model and the spatial location are
combined simultaneously. First, the sequential feature for each pixel is constructed by selecting
candidates from the whole image based on the similarity between each candidate and the target pixel.
This selection method mainly relies upon two different similarity measurements where spectral and
spatial information are considered, namely pixel-matching-based (PM) spatial similarity measurements
and block-matching-based (BM) spatial similarity measurements, respectively. LSTM entails the
significant capability of handling sequential data, and it achieves outstanding performance in NLP.
The proposed similarity-measuring strategies provide an innovative framework to extract sequential
features for HSI classification by employing all pixels in the entire HSI, regardless of whether
the pixel candidates to be a given sequential feature are labeled or not. The proposed sequential
feature effectively encodes the dependency of the target pixel with regard to its contexts, where the
pixel-level spectral similarities and the patch-, or block-level contextual similarities are naturally
encoded, respectively. More specifically, LSTM assumes that closer “time steps” (which denote selected
pixels/blocks with higher similarity) in general have stronger feature sharing, while also allowing for
longer-term dependency that can account for non-local similarity and long-tail effects. The motivation
for extending one pixel to its sequential features is essentially to find a new feature embedding of
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the pixel, which makes reference to other similar pixels. The action of re-ordering those pixels in
terms of their similarity measures is to ensure that all obtained sequential features admit “comparable”
formats in terms of monotonically-decreasing similarity to the original pixel (i.e., the target pixel, or the
given pixel of interest). In this framework, the influence of unlabeled data in an HSI is enhanced
compared with conventional supervised-learning methods due to our proposed spatial selection,
where any pixel can be selected as a candidate to construct sequential features. In view of global
searching based on the whole image, more supportive pixels are incorporated with a wider receptive
domain. In addition, spatial contextual information, which has already been utilized to reduce the
“salt-and-pepper” phenomenon in remote-sensing/HSI classification [48], is also investigated here
in the BM-based framework. Similarity measurements of two pixels is implemented by using the
neighboring points of two pixels instead of their spectral feature vectors. Compared with the PM-based
method, the BM-based scheme can obtain more typical sequential feature representation combining
both spectral and spatial features together. In summary, this is the first study to propose such methods
operating over the entire image. This is important because these new, novel methods can incorporate
additional information collected throughout the whole image by exploiting unlabeled pixels, instead
of utilizing only the limited prior information in the form of labeled pixels. Figure 1 illustrates the
framework of our proposed method.

Figure 1. Architecture of the proposed methods.

The organization of the remainder of this paper is as follows: Section 2 provides a brief
introduction to the original RNN and LSTM models. Section 3 describes the proposed LSTM
classification framework based on pixel matching and block matching. Experimental results are
discussed in Section 4. Section 5 presents the conclusions.

2. Background: RNN and LSTM

2.1. RNN

The recurrent neural network (RNN) has shown great capability in time-sequence data processing,
including NLP [49] and speech recognition [40]. A significant characteristic of a time sequence is
that there is typically a strong relationship between a given sample and the previous samples. In the
hidden Markov model (HMM), which is a widely-utilized sequence model in language processing,
the probability of a specific state depends only on its previous state, instead of all previous states.
Let X = [x1, x2, · · · , xt] be the sequence data where t is the label of state. x1 represents the data at the
first state, and xt represents the data at the t state. The Markov assumption can be formulated as

P(xt|x1, · · · , xt−1) = P(xt|xt−1), (1)

where P(·) expresses the conditional probability. Compared with HMM, RNN is quite similar with
HMM since the computation on the current state relies on the previous state. In contrast to conventional
ANNs, the RNN has a circular processing on the sequential data, which means that such processing



Remote Sens. 2019, 11, 194 5 of 19

will be applied on each data instance in the sequence, and the result at each state relies on the previous
state. This circular processing also represents the parameter sharing. Parameter sharing is a prevalent
method to control the number of parameters in a DL scheme. Still given X = [x1, x2, · · · , xt] as
sequential data, the hidden state st can be represented as

st = fs(Wxsxt + Wssst−1 + bt), (2)

where Wxs is the weight matrix from input data to the hidden state, and Wss is the weight matrix from
the current state to the next state, respectively. bt is the bias variable. st denotes the hidden state at
time step t, and fs(·) represents the nonlinear activation function. The calculation of the output at state
t is quite similar with Equation (2) as follows:

yt = fy(Wsyst + by), (3)

where Wsy is the weight matrix from the hidden state to the output. by is the bias, and fy(·) is the
nonlinear activation function.

The hidden state st can be viewed as the memory of the RNN model, as it is calculated based on
the previous state through forward propagation. Meanwhile, sequential data in the previous states
are taken into consideration as well. In such forward propagation, some parameters, including three
different weight matrices Wxs, Wss, and Wsy, are shared across all steps, which is quite different
from a traditional neural network. The parameter-sharing scheme reduces the number of trainable
parameters, and makes the total computation more efficient.

2.2. LSTM

In Equation (2), the calculation of the hidden state depends on the previous state. However, with
the increase in the length of the sequence data, gradient vanishing and gradient exploding will be
introduced in this recurrent model due to the forward and backward propagations of weight matrices.
To address this issue, long short-term memory was developed with a more sophisticated recurrent
neuron. In LSTM, each recurrent neuron can be regarded as a cell state. Similar to the conventional
RNN, LSTM also employs the previous state as the input to the current state. However, with LSTM,
there are three gates, including forget gate, update gate, and output gate, to control the update of the
current neuron. Figure 2 illustrates the basic structure of the LSTM recurrent unit.

Figure 2. The basic structure of an unrolled long short-term memory LSTM unit.

The first part of LSTM is the forget gate which determines if the previous state will be retained or
not. Still given X = [x1, x2, · · · , xt] as sequential data, yt and st are the output and the hidden state at
step t, respectively. The common computation for forget gate ft is as follows:
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ft = σf (Wyfyt−1 + Wxfxt + bf), (4)

where the W(·) terms denote the weight matrices, and the b(·) term is the bias variable. σ(·) is the
logistic sigmoid function. The following step is to compute the update gate ut and a new candidate
state value s̃t:

ut = σu(Wyuyt−1 + Wxuxt + bu), (5)

s̃t = tanh(Wysyt−1 + Wxsxt + bs), (6)

where tanh(·) is the hyperbolic tangent function. Then, the new hidden step st can be updated by
using the aforementioned equations

st = st−1 × ft + s̃t × ut. (7)

Finally, the output gate and the output of the current neuron yields:

ot = σo(Wyoyt−1 + Wxoxt + bo), (8)

yt = ot × tanh(st). (9)

3. Spatial Similarity Measurements in LSTM

For the LSTM model, the sequential feature is a critical issue when training LSTM since
determining the representative feature will improve classification performance and reduce the
training-time cost. In this section, the spatial similarity measurement-based LSTM model will be
introduced as a method to construct sequential features. First, two different strategies utilized in SSM
will be discussed, named PM-based and BM-based schemes. For each of them, when computing the
similarity between pixels, two distance measurements are investigated, which are Euclidean distance
(EU) and spectral angle mapper (SAM). Furthermore, we will introduce the way of constructing
sequence as the input of LSTM model.

3.1. Pixel Matching

Measuring the similarity in the pixel data vectors between different pixels is a common technology
in many HSI analysis applications, such as endmember-based analysis [50], manifold learning [51,52],
and graph-based semi-supervised learning [22]. Since HSIs have abundant spectral information,
typically entailing hundreds of bands, spectral features collected from all bands have the most
discriminative capability to distinguish different ground objects or materials encompassed within
the given image, and have been most widely utilized in HSI classification [53]. In the pixel-matching
scheme, pairwise spectral similarity measurements are applied for all pixels. Suppose we have HSI data
X ∈ RL×C×B with L rows, C columns, and B bands. X can be rewritten as X = [x1, x2, ..., xN] ∈ RB×N

with row-major order, where N is the total number of pixels in the HSI, which equals L ∗ C. For any
pixels xi in X, the distances measured between xi and all pixels of X will be computed as follows:

dPM(xi, X) = [d(xi, x1), · · · , d(xi, xj), · · · , d(xi, xN)], (10)

where d(xi, xj) denotes the distance between xi and xj, and d(·) is the distance calculation function.
There are multiple methods available to compute pairwise distance. In this paper, Euclidean distance
and the spectral angle mapper (SAM) are utilized in the pixel-matching scheme. Euclidean distance is
a well-known distance measurement, and its definition is given as follows:

dEU(xi, xj) =
√
(x1

i − x1
j )

2 + (x2
i − x2

j )
2 + ... + (xB

i − xB
j )

2 = ‖xi − xj‖. (11)
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The other distance measure adopted in this study is SAM, which is investigated well in
endmember-based HSI classification. It can be defined as follows:

dSAM(xi, xj) = cos−1(
xi

Txj

‖xi‖‖xj‖
). (12)

In the following text of this paper, we use d(·)() to represent either the EU or SAM distance
calculation function in the pixel-wise measurement. Therefore, Equation (10) can be rewritten
as follows:

dPM(xi, X) = [d(·)(xi, x1), · · · , d(·)(xi, xj), · · · , d(·)(xi, xN)]. (13)

3.2. Block Matching

Although spectral features provide rich, significant information that facilitates discrimination of
different ground objects in HSI, classification accuracy based on utilization of spectral features alone
is not always satisfactory due to the “salt-and-pepper” phenomenon [48]. Given Tobler’s First Law
of Geography [54], incorporation of spatial contextual information has attracted increasing attention
in the research literature in recent years and has exhibited the capability to reduce “salt-and-pepper”
noise and improve classification performance, including yielding smoother classification maps. In the
current study, we utilize the image patch distance (IPD), proposed in [55], for similarity measurement
that considers local spatial information. The IPD method was developed based on the Hausdorff
distance [56], also referred to as the Pompeiu–Hausdorff distance. Instead of using spectral features
to measure the pairwise similarity between two pixels, spatial neighbors within the respective local
window of such two pixels will also be employed. Let w be the local window size, and the si represents
the block neighborhood, where pixel xi is centered within the w× w spatial window. All block sets S
can be defined as follows:

S = [s1, s2, · · · , sN]. (14)

Given ∀si, sj ∈ S, we first calculate the distances between one arbitrary pixel xm from si and sj
and then select the minimum distance as follows:

dmin(xm, sj) = min
xn∈sj

d(·)(xm, xn), (15)

where d(·) is the distance-measuring function. Correspondingly, the minimum distance between one
arbitrary pixel xm from sj and si can be computed in the following manner:

dmin(xm, si) = min
xn∈si

d(·)(xm, xn). (16)

Therefore, the definition of block matching between si and sj is:

dBM(si, sj) =
w2

∑
m=1

(max(dmin(xm, si), dmin(xm, si)))

=
w2

∑
m=1

(max(min
xn∈sj

d(·)(xm, xn), min
xn∈si

d(·)(xm, xn))).

(17)

Finally, the ultimate BM measurements are defined as:

dBM(xi, X) = dBM(si, X)

= [dBM(si, s1), · · · , dBM(si, sj), · · · , dBM(si, sN)].
(18)
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3.3. Sequential Feature Extraction

After measuring the pairwise similarity among pixels in the whole image, the sequential feature for
each pixel is extracted so that it can be fed into the RNN model directly. Based on the aforementioned
two matching schemes, given one pixel xi ∈ X, its corresponding matching vector is

dM(xi, X) = [dM(xi, x1), · · · , dM(xi, xj), · · · , dM(xi, xN)], (19)

where dM(·) denotes the pairwise matching function introduced in previous sections. Note that
the order of dM(xi, X) is determined only based on its location in the image. To characterize a
representative sequential feature, dM(·) is reordered based on the degree of similarity, and then
the corresponding pixels are selected as the sequential representation. With the definition given in
Equation (19), we assume we have one pixel xi ∈ X, its reordered dM(xi, X), named ds f (xi, X), is built
as follows:

ds f (xi, X) = [di1
s f , · · · , dij

s f , · · · , diN
s f ], (20)

where dij
s f denotes the distance-measuring result between xi and xj. ds f (xi, X) is the ascending sort of

dM(xi, X). More specifically, d1
s f is the minimum value among ds f (xi, X), and d2

s f is the second-smallest
value. During ascending sorting, pixels most similar to xi among all pixels in the whole image will
be selected as the sequential representation of xi. Note that not all candidates in ds f (xi, X) will be
considered, and the parameter l is defined to control how many candidates can be selected or to
determine the length of such sequence. The first l pixels with distance-measuring results from d1

s f

to dl
s f will be selected, and the first elements of this sequence is xi itself since dM(xi, xi) equals zero,

which is the minimum value in dM(xi, X). Given the sequence length l, the final sequential feature of
xi can be defined:

ds f (xi) = [xi1
sf, · · · , xij

sf, · · · , xil
sf], (21)

where xij
sf represents xj, whose distance-measuring result is located at the jth place.

4. Experimental Setup, Results, and Discussion

4.1. Datasets

In this study, two benchmark HSI datasets were utilized, including Pavia University, and Salinas
images, as displayed in Figure 3 and Table 1. The Pavia University image was collected by the
Reflective Optics System Imaging Spectrometer (ROSIS) sensor. It consists of 102 spectral bands, with
a spectral range from 430 nm to 860 nm. The image spatial resolution is 1.3 m, and the total image
size is 610 × 340 pixels. For the Pavia University image extent, nine (9) classes were considered in
the classification experiments. The Salinas image was acquired via the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), and the image contains 512 lines × 217 samples, with the spatial
resolution of 3.7 m. After removing 20 noise and water-absorption bands, 204 spectral bands remained
for subsequent analysis. The ground-reference data for the Salinas image entails 16 classes.
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Figure 3. False-color image composites and their corresponding ground-reference data. (a) false-color
composite of Pavia University image bands (R: band 55, G: band 33, and B: band 13);
(b) ground-reference data (with class legend) for the Pavia University image; (c) false-color composite
of Salinas image bands (R: band 57, G: band 27, and G: band 17); (d) ground-reference data (with class
legend) for the Salinas image.

Table 1. Class codes for Pavia University and Salinas images.

Pavia University Image Salinas image

Class No. Name Class No. Name

1 Asphalt 1 Brocoli_green_weeds_1
2 Meadow 2 Brocoli_green_weeds_2
3 Gravel 3 Fallow
4 Trees 4 Fallow_rough_plow
5 Painted Metal Sheets 5 Fallow_smooth
6 Bare Soil 6 Stubble
7 Bitumen 7 Celery
8 Self-Blocking Bricks 8 Grapes_untrained
9 Shadows 9 Soil_vinyard_develop

10 Corn_senesced_green_weeds
11 Lettuce_romaine_4wk
12 Lettuce_romaine_5wk
13 Lettuce_romaine_6wk
14 Lettuce_romaine_7wk
15 Vinyard_untrained
16 Vinyard_vertical_trellis

4.2. Experimental Design

To evaluate the performance of the proposed SSM-based LSTM methods, three algorithms,
including SVM, 1DCNN [35], and 1DLSTM [44], are investigated as baseline algorithms. For SVM,
the radial basis function (RBF) is utilized as kernel function, and the parameters of SVM are acquired
by cross validation. For the following two deep-learning algorithms, they are 1D-based architectures,
where spectral features are fed into the classifier directly. For the 1DCNN, two convolutional layers,
two max pooling layers, and one fully-connected (FC) layer are selected due to the limited available
training samples. For the 1DLSTM architecture, three LSTM layers and one FC layer are adopted.
Different model structures are implemented based on different images, and the specific parameter
settings for the Pavia Univeristy and Salinas images are summarized in Table 2, where the convolutional
layer is represented as “Conv(number of kernels)-(kernel size)”, maxpooling layer is performed as
“Maxpooling-(kernel size)”, and LSTM layer is denoted as “LSTM-(kernel size)”. Regarding the
proposed methods, both pixel-matching and block-matching are investigated, and, for each matching
scheme, EU and SAM are employed as distance measurements. Therefore, there are four different
LSTM-based classification frameworks investigated here, named LSTM_PM_EU, LSTM_PM_SAM,
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LSTM_BM_EU, and LSTM_BM_SAM. For the LSTM structure, we use four recurrent layers and two
fully-connected layers, and the length of the sequential feature is 20. The size of the recurrent layers
are 32, 64, 128, and 256, respectively, and the size of first fully-connected layer is 50. The second
fully-connected layer is applied for the purpose of classification, and its length equals the number of
classes. During training of the recurrent model, the batch size is set to 20, and the number of epochs
is 500.

In order to evaluate classification performance quantitatively, all ground-reference data for each
image is randomly split into training and testing sample sets. In our experiments, we randomly
select 200 samples per class as training data, with the remaining ground-reference data used as
testing data. Ten replications of the experiments with such random selections were performed,
and all classification accuracies were averaged across the ten replications. Furthermore, three other
quantitative indicators were also adopted for the evaluation, including overall accuracy (OA), average
accuracy (AA), and the Kappa coefficient (Kappa) [57]. The pixel-matching and block-matching
experiments were implemented on the Texas A&M High Performance Research Computing (HPRC)
system, and the remaining experiments, such as training LSTM models and classification accuracy
assessments, were carried out on a local workstation with a 3.2 GHz Intel(R) core i7-8700 Central
Processing Unit (CPU), and a NVIDIA(R) GeForce GTX 1070 graphics card.

Table 2. Parameter settings for 1D-CNN and 1D-LSTM, where the convolutional layer is represented
as “Conv(number of kernels)-(kernel size)”, maxpooling layer is performed as “Maxpooling-(kernel
size)”, and LSTM layer is denoted as “LSTM-(kernel size)”.

Pavia University Image Salinas Image

1DCNN 1DLSTM 1DCNN 1DLSTM

Conv(10)-8 LSTM-32 Conv(8)-12 LSTM-32
Maxpooling-2 LSTM-64 Maxpooling-2 LSTM-64

Conv(10)-8 LSTM-128 Conv(8)-12 LSTM-128
Maxpooling-2 Maxpooling-2

FC layer-9 FC layer-16

4.3. Classification Results: Pavia University Image

The first set of experiments is conducted on the Pavia University image. The quantitative results
are shown in Table 3, where values in bold are the highest class-specific accuracies and the standard
deviations are also presented, which are calculated based on ten OAs obtained from the aforementioned
ten (10) experimental replications. The classified images are displayed in Figure 4 for qualitative
analysis, which are obtained from the fifth trial. As shown in Table 3, the block-matching-based
method LSTM_BM_SAM achieved best performance, with 96.20% OA, 94.65% AA, and 94.91% Kappa.
For the first three benchmark algorithms, the highest OA (i.e., 84.45%) is obtained from 1DCNN.
Regarding our newly-proposed pixel-matching-based LSTM frameworks, the OA of LSTM_PM_SAM is
84.56%, exhibiting limited improvement relative to SVM, 1DCNN, and 1DLSTM, and the classification
performance of LSTM_PM_EU even decreases relative to 1DCNN and 1DLSTM. However, after
incorporating spatial information via similarity measurements, LSTM_BM_EU and LSTM_BM_SAM
obtain marked improvements over all non-block-matching methods, with 95.96% and 96.20% OA,
respectively. Within each matching method, the performance of SAM is always better than that of
the Euclidean distance. Regarding the AA of each class, class 7 (Bitumen, Red) is more difficult
to discriminate compared with other classes due to the mixed spectral features. The proposed
LSTM_BM_SAM improves the original SVM OA by more than 35%.

From the classification maps shown in Figure 4, marked improvements in classification
performance are visually apparent. In Figure 4b–f, “salt-and-pepper” noise is still obvious due to the
lack of incorporation of spatial contextual information in the classification. Within the red-rectangle
annotation, many class 2 (Meadow, Bright Green) pixels are misclassified as class 6 (Bare Soil, Yellow),
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and class 3 (Gravel, Brown), as shown in Figure 4b–f. However, the classification maps derived
from LSTM_BM_EU and LSTM_BM_SAM (Figure 4g,h) are spatially smooth and generally correctly
classified, where most discrete, spurious/misclassified points are eliminated if they are located within
an otherwise homogeneous area. Therefore, combining spatial contextual information can yield
marked alleviation of image misclassification. Similar to what is observed within the red-rectangle
annotation, more accurate and homogeneous classification results can be achieved within the red-circle
annotation as well. Such results demonstrate the validity and capability of combining spatial and
spectral features together when measuring the similarity between two pixels, and the effectiveness of
constructing a sequential feature for a specific pixel based on such similarity between that target pixel
itself and candidates from the whole image.

Table 3. Comparison of different classification accuracy results for the Pavia University image (%),
where LSTM_PEU equals LSTM_PM_EU, LSTM_PSAM equals LSTM_PM_SAM, LSTM_BEU equals
LSTM_BM_EU, and LSTM_BSAM equals LSTM_BM_SAM.

Class No. SVM 1DCNN 1DLSTM LSTM_PEU LSTM_PSAM LSTM_BEU LSTM_BSAM

1 97.52 ± 0.21 96.53 ± 0.57 95.76 ± 0.65 85.51 ± 3.06 94.06 ± 0.72 98.76 ± 0.44 98.78 ± 0.39
2 95.77 ± 0.30 94.78 ± 1.55 94.13 ± 0.93 94.11 ± 1.40 96.01 ± 1.08 99.08 ± 0.25 98.84 ± 0.29
3 65.57 ± 3.41 68.93 ± 3.65 64.29 ± 3.02 70.41 ± 2.27 66.61 ± 3.68 90.22 ± 2.28 89.22 ± 2.63
4 71.27 ± 7.38 76.62 ± 7.92 75.71 ± 4.95 62.69 ± 6.28 81.58 ± 4.77 92.97 ± 2.19 94.70 ± 1.71
5 95.50 ± 1.55 98.50 ± 0.86 97.73 ± 1.31 98.51 ± 0.67 95.57 ± 2.80 98.99 ± 1.18 99.42 ± 0.64
6 59.51 ± 6.74 63.62 ± 11.03 61.12 ± 7.62 69.71 ± 8.18 64.39 ± 8.23 88.65 ± 4.93 90.65 ± 3.92
7 52.10 ± 0.93 66.87 ± 4.86 65.74 ± 3.62 63.76 ± 4.45 56.69 ± 4.42 89.72 ± 4.25 88.47 ± 6.60
8 84.27 ± 1.13 83.54 ± 1.73 81.48 ± 1.70 82.37 ± 1.59 80.50 ± 1.01 93.32 ± 2.46 93.27 ± 1.28
9 99.92 ± 0.11 99.65 ± 0.31 99.72 ± 0.35 93.74 ± 2.05 95.99 ± 5.06 99.09 ± 0.62 98.49 ± 1.75

OA 82.12 ± 1.79 84.45 ± 3.01 83.41 ± 2.66 82.70 ± 1.73 84.56 ± 2.41 95.96 ± 1.01 96.20 ± 0.57
AA 80.16 ± 0.96 83.23 ± 1.71 81.74 ± 1.47 80.09 ± 1.19 81.27 ± 1.72 94.53 ± 0.98 94.65 ± 0.64

Kappa 76.98 ± 2.12 79.79 ± 3.53 78.42 ± 3.13 77.40 ± 2.05 79.86 ± 2.89 94.60 ± 1.31 94.91 ± 0.75

Figure 4. Classification maps for the Pavia University image from the fifth trial: (a) ground-reference
map; (b) SVM, with OA = 80.04%; (c) 1DCNN, with OA = 78.32%; (d) 1DLSTM, with OA = 83.72%;
(e) LSTM_PM_EU, with OA = 83.81%; (f) LSTM_PM_SAM, with OA = 86.78%; (g) LSTM_BM_EU,
with OA = 93.18%; and (h) LSTM_BM_SAM, with OA = 96.01%. The red-rectangle and red-circle
annotations represent sample areas of interest, discussed in the text.
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4.4. Classification Results: Salinas Image

For the Salinas image, the results are similar to those attained and described in Section 4.3.
The quantitative results are shown in Table 4, where, again, values in bold are the highest class-specific
accuracies. The OAs of the SAM-based method are lower than those associated with its corresponding
Euclidean distance-based method, and the performance of the block-matching strategy is always
better (more accurate) than that of the pixel-matching scheme, where spatial contextual information is
ignored. The best classification performance is still obtained from LSTM_BM_SAM, with OA = 90.63%,
AA = 93.95%, and Kappa accuracy = 89.55%. Class 15 (Vineyard_untrained, Violet) is the class with
the lowest accuracy due to the high spectral and thematic similarity between this vineyard class and
other grape fields, and the best classification result for this class is acquired from 1DCNN (among
SVM, 1DCNN, and 1DLSTM), with 59.34% accuracy. However, LSTM_BM_EU and LSTM_BM_SAM
markedly improve classification accuracy by utilizing spatial features, where class 15 accuracies
increase by 7.99% and 10.51%, respectively, compared with the 1DCNN result.

Manual interpretation of the classification maps shown in Figure 5 enables us to determine why
class 15 (Vineyard_untrained) entails the lowest OA. Note that many class 15 (Vineyard_untrained,
Violet) pixels are misclassified as class 8 (Grapes_untrained, Baby Blue). Pixel-matching-based methods,
including LSTM_PM_EU and LSTM_PM_SAM, still yield much discrete noise within the red-circle
annotation in Figure 5. However, LSTM_BM_EU and LSTM_BM_SAM produce more homogeneous
and smoothed classification results for the Grapes_untrained class, especially within the red-circle
annotation, illustrated in Figure 5g,h. Within the red-rectangle annotation, we can see that it is
difficult to classify class 10 (Corn_senesced_green_weeds, Brown), for example, and many pixels are
misclassified in Figure 5b–f. However, such misclassification is markedly minimized when applying
block-matching-based methods, i.e., LSTM_BM_EU (Figure 5g) and LSTM_BM_SAM (Figure 5h).
Such improvement illuminates the advantages of utilizing spatial contextual information when
measuring the pixel-wise distances, especially when it is challenging to discriminate between two
classes with very similar spectral features.

Table 4. Comparison of different classification results for the Salinas image (%), where LSTM_PEU
equals LSTM_PM_EU, LSTM_PSAM equals LSTM_PM_SAM, LSTM_BEU equals LSTM_BM_EU,
and LSTM_BSAM equals LSTM_BM_SAM.

Class No. SVM 1DCNN 1DLSTM LSTM_PEU LSTM_PSAM LSTM_BEU LSTM_BSAM

1 96.84 ± 1.18 99.12 ± 1.52 94.18 ± 10.04 98.61 ± 3.93 99.40 ± 0.89 95.78 ± 11.30 99.86 ± 0.22
2 98.79 ± 0.13 98.79 ± 0.69 98.69 ± 0.78 98.75 ± 1.08 99.39 ± 0.28 99.60 ± 0.16 99.34 ± 0.51
3 85.11 ± 1.38 95.53 ± 1.32 88.68 ± 7.32 92.89 ± 3.68 95.70 ± 1.07 96.11 ± 1.25 96.24 ± 1.10
4 97.44 ± 0.18 97.94 ± 0.67 97.20 ± 1.02 98.33 ± 0.74 98.45 ± 0.68 98.66 ± 0.95 97.90 ± 1.70
5 95.03 ± 0.85 97.20 ± 2.76 98.07 ± 1.65 96.26 ± 7.50 97.63 ± 1.57 98.75 ± 1.65 98.83 ± 0.68
6 99.79 ± 0.11 99.77 ± 0.21 98.98 ± 1.16 99.64 ± 0.44 99.45 ± 0.87 99.69 ± 0.36 99.71 ± 0.33
7 98.63 ± 0.44 99.35 ± 0.62 98.81 ± 0.91 99.37 ± 0.53 99.11 ± 0.76 99.40 ± 0.43 99.38 ± 0.51
8 76.70 ± 1.31 83.99 ± 4.02 76.24 ± 5.90 76.97 ± 2.91 76.50 ± 3.48 83.04 ± 1.37 85.66 ± 3.00
9 99.12 ± 0.04 99.02 ± 0.29 98.03 ± 1.46 98.78 ± 0.28 98.66 ± 0.33 99.20 ± 0.41 99.43 ± 0.27

10 81.91 ± 1.58 85.89 ± 2.09 84.90 ± 1.94 85.94 ± 4.19 88.65 ± 1.20 94.16 ± 1.58 91.00 ± 2.13
11 69.51 ± 1.00 82.23 ± 6.71 81.23 ± 13.79 76.81 ± 8.06 83.24 ± 4.33 86.00 ± 3.27 83.49 ± 4.40
12 93.33 ± 0.34 96.82 ± 1.05 87.58 ± 9.57 97.09 ± 1.33 97.26 ± 1.03 98.31 ± 1.36 98.26 ± 1.67
13 92.67 ± 0.65 94.15 ± 2.62 90.12 ± 4.05 96.07 ± 2.23 95.27 ± 2.27 95.89 ± 2.78 97.33 ± 1.98
14 89.68 ± 2.19 89.80 ± 3.78 84.77 ± 12.61 87.66 ± 5.95 88.47 ± 5.34 92.50 ± 3.95 90.75 ± 3.77
15 56.78 ± 2.39 59.34 ± 12.38 56.88 ± 8.13 60.79 ± 6.72 63.62 ± 5.58 67.33 ± 2.82 69.85 ± 3.21
16 95.59 ± 1.18 98.06 ± 0.44 93.84 ± 1.59 96.53 ± 2.14 96.63 ± 1.12 98.03 ± 1.07 96.19 ± 3.79

OA 84.75 ± 0.62 85.99 ± 4.14 84.07 ± 2.90 86.35 ± 2.07 87.53 ± 0.95 89.90 ± 0.43 90.63 ± 0.61
AA 89.18 ± 0.23 92.31 ± 0.96 89.26 ± 3.02 91.28 ± 1.40 92.34 ± 0.56 93.90 ± 0.71 93.95 ± 0.55

Kappa 76.98 ± 2.12 84.45 ± 4.49 82.26 ± 3.19 84.78 ± 2.26 86.07 ± 1.05 88.72 ± 0.48 89.55 ± 0.68
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Figure 5. Classification maps of Salinas image from the fifth trial: (a) ground-reference map; (b) SVM,
with OA = 83.38%; (c) 1DCNN, with OA = 87.00%; (d) 1DLSTM, with OA = 86.85%; (e) LSTM_PM_EU,
with OA = 86.21%; (f) LSTM_PM_SAM, with OA = 87.13%; (g) LSTM_BM_EU, with OA = 90.02%;
and (h) LSTM_BM_SAM, with OA = 90.72%. The red-circle and red-rectangle annotations represent
sample areas of interest, discussed in the text.

4.5. Parameter Sensitivity Analysis

The influence of different parameter values associated with our proposed methods is investigated
in this section, including the length of sequential feature l, and the size of the local window w, utilizing
block-matching-based methods. The effect of varying the value of l is tested on LSTM_PM_EU,
LSTM_PM_SAM, LSTM_BM_EU, and LSTM_BM_SAM, and the effect of varying the value of w is
tested using LSTM_BM_EU and LSTM_BM_SAM.

For the first parameter, l, five different lengths (10, 20, 30, 40, and 50) are investigated, while
the window size utilized in LSTM_BM_EU and LSTM_BM_SAM is fixed at 5. The results are shown
in Figure 6. Regarding the Pavia University data, the best performances for those four proposed
methods are obtained with different sequential feature lengths (Figure 6a). Sequential feature lengths
of 20 and 10 result in the highest classification OAs for LSTM_PM_EU (82.70%) and LSTM_PM_SAM
(86.68%), respectively. For the two block-matching-based methods, the highest OA for LSTM_BM_EU
is 96.54% (when l is 50), and setting l to 20 yields the highest-accuracy result for LSTM_BM_SAM.
For the pixel-matching-based algorithms, the classification performance of the Euclidean-distance
measure is always better than that of SAM. Furthermore, selecting a smaller sequential length
(i.e., 10 or 20) is suitable for these two methods. Regarding the block-matching-based methods,
Euclidean distance performs better than SAM, except for l is 20. Smaller sequential lengths used
with SAM result in higher OAs, but such lengths are not suitable when using the Euclidean distance
measure. Nevertheless, the difference in the resultant classification accuracies when employing
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these two distance measurements in the block-matching scheme is smaller than what it is in
pixel-matching scheme. Moreover, the standard deviations for those four methods, across the
five sequential lengths, are 1.0020, 1.4280, 0.5342, and 0.4805, for LSTM_PM_EU, LSTM_PM_SAM,
LSTM_BM_EU, and LSTM_BM_SAM, respectively, which illustrates that, for the Pavia University data,
the block-matching scheme is less sensitive than the pixel-matching method to the sequential-length
parameter value.

For the Salinas data, the best choices for l vary depending on the algorithm. As shown in Figure 6b,
the length of 40 yields highest accuracies in LSTM_PM_EU and LSTM_BM_SAM. LSTM_PM_SAM
achieves best OA when utilizing 20 as the sequential length. Length of 30 results in the highest OA in
LSTM_BM_EU. Different from what we observed from Figure 6a, within the pixel-matching-based
schemes, SAM always performs better than Euclidean distance except l = 20. Additionally, smaller
length provides a better performance for LSTM_PM_SAM (l = 20) but not applicable in LSTM_PM_EU.
For the blocking-matching schemes, SAM is the more robust distance measurement since it performs
better at four lengths (10, 20, 40, 50), and obtains the highest accuracy with l = 40. Euclidean distance
only yields better result compared with SAM at the length of 30 and that is the highest OA among
all lengths. For the standard deviations of those four methods, they are 0.3658, 0.4739, 0.9334,
and 0.8140, respectively, which exhibits that pixel-matching-based methods is less sensitive than
block-matching-based ones. However, due to the higher OAs obtained by LSTM_BM_EU and
LSTM_BM_SAM, block-matching schemes are still the applicable methods to classify the Salinas data.

Figure 6. Analysis of different sequential feature lengths. (a) OAs based on the Pavia University image
data; and (b) OAs based on the Salinas image data.

Another investigation of parameter l is its influence on the training time of the LSTM model since
a larger l will introduce more parameters to be learned in the LSTM model and will result in more
processing time. The training times of different approaches are given in Table 5. Those training times
are the average values obtained from the 10 replications. Different methods with the same l have
similar training times for both the Pavia University and Salinas images. However, the training time
differs when a different l is applied within one LSTM model. As an example, consider the application
of the LSTM_BM_SAM to the Pavia University image; the training time is 32.00 min when l is 10.
The training time increases along with utilization of larger l, and it reaches 142.07 min, which is
more than four times the minimum training time consumption. Fortunately, BM-based methods are
less sensitive compared with PM-based methods regarding the selection of different l, which can be
obtained from Figure 6. To balance the computation time cost and classification performance, choosing
a smaller l (e.g., 10 or 20) is an appropriate strategy for our proposed methods, even though PM-based
methods are relatively more sensitive with respect to parameter l.
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Table 5. Average training time (min) of LSTM models.

LSTM Parameter Pavia University Image

Sequential Feature Length LSTM_PM_EU LSTM_PM_SAM LSTM_BM_EU LSTM_BM_SAM

10 30.88 34.01 29.11 32.00
20 51.14 53.25 49.92 53.73
30 83.39 87.43 77.52 81.63
40 112.49 115.03 105.31 110.75
50 145.29 144.98 132.31 142.07

Salinas Image

Sequential Feature Length LSTM_PM_EU LSTM_PM_SAM LSTM_BM_EU LSTM_BM_SAM

10 29.08 34.19 28.47 28.00
20 46.27 49.02 44.96 47.64
30 76.94 85.61 75.83 75.41
40 110.57 117.78 101.10 102.07
50 124.06 147.91 128.13 128.90

For the second parameter, w, four different window sizes (5× 5, 7× 7, 9× 9, 11× 11) and two
methods (LSTM_BM_EU and LSTM_BM_SAM) are chosen for the comparison experiments, where
l is fixed at 20. These results are shown in Figure 7. For the Pavia University data-based results
(Figure 7a), the overall classification accuracy of LSTM_BM_SAM is higher than that of LSTM_BM_EU.
LSTM_BM_EU obtains a higher OA only when w is set at 7, and that is also the best accuracy across
all four window sizes. LSTM_BM_SAM achieves the best performance with a window size of 5 (the
smallest window size considered), and the OA decreases as the window size increases. Regarding the
Salinas data-based results, given in Figure 7b, the classification accuracies for LSTM_BM_SAM are
still higher than those for LSTM_BM_EU, and both of those two methods realize the most accurate
results with a window size of 5. Compared with parameter l, the optimal value for w is easier to
determine in order to achieve a more accurate classification result. It is predictable that incorporating
local spatial contextual information is likely to help better measure the similarity between two pixels,
yielding improved classification performance. However, with increasing window size, too many
neighboring pixels are included in the calculation, resulting in over-smoothed classification maps,
and class spatial boundaries are not preserved. As a consequence, selection of a relatively small
window size should introduce sufficient—though not too much—spatial information, leading to higher
classification accuracies.

Figure 7. Analysis of different window sizes. (a) OAs based on the Pavia University image data;
and (b) OAs based on the Salinas image data.
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5. Conclusions

In this paper, we propose a novel LSTM HSI classification framework, where unlabeled
data are well-exploited in order to construct sequential features from a single HSI. Instead of
using spectral features as the sequential data structure of LSTM, similar pixels collected from
the entire image are used to construct the respective sequential features. Specifically, when
constructing a sequential feature, the similarity between a target pixel and all other pixels in the
image is considered. To better depict the similarity between two pixels, two similarity-measuring
strategies—pixel-matching and block-matching—are adopted here, where individual spectral features
are utilized in the pixel-matching-based schemes, and both spatial and spectral information are
employed in block-matching-based schemes. Such schemes take full advantage of unlabeled data
in the HSI, as labeled data are almost always limited in nature and difficult to acquire for HSI
classification. Moreover, block-matching-based schemes also consider spatial contextual information
in the classification process, and it is demonstrated in this research that such schemes are effective in
increasing HSI classification. Our proposed methods produce markedly more accurate results when
operating on two well-known, extensively-studied HSI datasets compared with other selected baseline
algorithms. Particularly regarding the Pavia University image, the LSTM_BM_SAM achieves the best
classification performance, with 96.20% OA, which is 11.75% higher than the best result obtained by
the three benchmark algorithms, which in this case was 1DCNN, with 84.45% OA. Furthermore, that
OA is also higher than those from other three proposed methods (LSTM_PM_EU, LSTM_PM_SAM,
and LSTM_BM_EU), with an OA increase of 13.50%, 11.64%, and 0.24%, relative to those respective
methods. Additionally, in these experiments, BM-based methods always yield better results compared
with their corresponding PM-based methods, which demonstrates the effectiveness and capability of
the utilization of spatial contextual information.

Regarding the proposed block-matching method, fixed window sizes are applied for classification.
In the future, we will explore adaptive window-size applications, intended to eliminate the
phenomenon of over-smoothing in the classified images and to preserve the respective boundaries
between different classes. In addition, measuring pixel-wise similarity from the entire HSI more
efficiently still needs to be investigated in future research.

The proposed methods in this study combine similarity measurements and recurrent neural
networks, and, although in the present study we focus on encoding spatial contextual information,
future work may involve implementing these methods in a temporal context (i.e., in a true
multi-temporal remote-sensing context).
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