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Abstract: Leaves are used extensively as an indicator in research on tree growth. Leaf area, as one of
the most important index in leaf morphology, is also a comprehensive growth index for evaluating the
effects of environmental factors. When scanning tree surfaces using a 3D laser scanner, the scanned
point cloud data usually contain many outliers and noise. These outliers can be clusters or sparse
points, whereas the noise is usually non-isolated but exhibits different attributes from valid points.
In this study, a 3D point cloud filtering method for leaves based on manifold distance and normal
estimation is proposed. First, leaf was extracted from the tree point cloud and initial clustering was
performed as the preprocessing step. Second, outlier clusters filtering and outlier points filtering
were successively performed using a manifold distance and truncation method. Third, noise points
in each cluster were filtered based on the local surface normal estimation. The 3D reconstruction
results of leaves after applying the proposed filtering method prove that this method outperforms
other classic filtering methods. Comparisons of leaf areas with real values and area assessments of
the mean absolute error (MAE) and mean absolute error percent (MAE%) for leaves in different levels
were also conducted. The root mean square error (RMSE) for leaf area was 2.49 cm2. The MAE values
for small leaves, medium leaves and large leaves were 0.92 cm2, 1.05 cm2 and 3.39 cm2, respectively,
with corresponding MAE% values of 10.63, 4.83 and 3.8. These results demonstrate that the method
proposed can be used to filter outliers and noise for 3D point clouds of leaves and improve 3D leaf
visualization authenticity and leaf area measurement accuracy.
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1. Introduction

1.1. Background

Leaf parameters, including color features and morphological traits such as leaf length, leaf
initiation angle, leaf width, leaf thickness and leaf area, are valuable information about plants.
Phenotype measurement and classification using 2D images and 3D models based on leaves have
become popular topics in recent years [1–3]. With the rapid development of laser scanner, remote
sensing is widely used in 3D reconstruction and recognition in different fields due to the advantages
of non-contact, high precision and high efficiency [4]. In the past few decades, 3D reconstruction
from point clouds has gained great attention, especially for parameter measurement for different
types of trees [5–7]. Yun et al. [8] proposed a leaf area measurement method based on 3D point cloud
reconstruction using ground-based light detection and ranging (LiDAR). First, they utilized a support
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vector machine (SVM) to separate various tree organs from point clouds. Then, the moving least
squares (MLS) method was adopted to remove ghost points. Finally, the leaf area was calculated by
3D surface reconstruction using a triangulation algorithm. Bailey et al. [9] developed a semidirect
tree reconstruction method using terrestrial LiDAR point cloud data. They developed a digital tree
model including the position, orientation and size of every leaf. However, point cloud sources are
easily contaminated by noise and outliers [10]. To improve the authenticity of 3D visualization and the
validity of parameter measurement, an effective outliers and noise filtering method is needed.

In recent years, many filtering methods have been proposed for 2D images and 3D models.
Depending on the source, noise can be divided into internal and external noise; while according to
the relationship with signals, noise can be divided into additive and multiplicative noise. The most
popular classification is based on the probability density function of images, which classifies noise into
Gaussian noise, Gamma noise, Rayleigh noise and so forth. Gaussian noise [11], which the probability
density function is a normal distribution, is the most common and classical forms of noise. However,
for 3D point clouds, noise models, especially for outlier models, are difficult to obtain.

In the past few decades, the development of robust point cloud denoising algorithms has received
extensive attention. The goal of such algorithms is either to remove or to reduce the noise in the data
while preserving sharp features on the original point cloud surface. Research in the field of digital
image filtering has been adapted for point cloud filtering algorithms but it is not direct due to the
irregularity, shrinkage and drifting of point clouds. In recent years, a number of filtering methods for
3D point cloud have been developed, such as data clustering [12,13], density-based function [14,15],
principal component analysis (PCA) [16–18], locally optimal projection (LOP) [19,20], MLS [21,22],
nonlocal methods [23,24] and partial differential equations (PDEs) [25,26]. Zaman et al. [14] proposed
a point cloud denoising method based on a kernel density function. First, the density of the input
data points was estimated using kernel density estimation and the particle swarm optimization (PSO)
technique was employed to automatically approximate the optimal bandwidth of the kernel density.
Then, a mean-shift-based clustering technique was used to remove outliers through a thresholding
scheme. The MLS and PCA methods treat outliers as points with large noise and project the noise to an
estimated surface. The LOP method iteratively projects a subset of the input point cloud onto the point
cloud to reduce noise and outliers. The nonlocal means algorithm (NL-means) is an improvement of
the classical mean filtering introduced by Buades et al. [27]. In this algorithm, the estimated value
for a pixel is computed as a weighted average of related surrounding neighborhoods. However,
Mahmoudi et al. [28] considered this method computationally impractical. Thus, they preclassified
neighborhoods and reduced the original quadratic complexity to a linear problem to accelerate the
algorithm by reducing the influence of less related areas. BM3D [29] image denoising algorithms
for point cloud denoising were introduced to achieve good performance and robustness to high
levels of noise. These methods exploit the inherent self-similarity characteristics of surface patches in
the point cloud to preserve structural details. Prasath [30] used multiple scales contained in digital
images to produce anisotropic PDEs, in contrast to previous approaches and the proposed scheme
improved both noise removal and detail preservation. PDE-based techniques for filtering 3D point
clouds compute partial differential properties [31] and can be considered an extension of techniques
for triangular meshes.

However, several problems remain for these outliers and noise filtering methods. (1) Some
methods based on statistics require prior knowledge of the input objects, while the underlying
distribution is unknown. (2) Some methods are vulnerable to the scale of point cloud data and
oversmooth points. (3) Some nonlinear methods are sensitive to the structural properties of the
point cloud when estimating accurate point cloud features. (4) Some methods achieve better filtering
performance at the expense of time and complexity.

Some point cloud processing platforms, such as CloudCompare and MeshLab and universal
programming libraries, such as PCL and OpenGL, also provide directly available tools and functions
for point cloud filtering. Although using these tools and functions makes filtering and denoising easier
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and more convenient, new optimal methods are still in insatiable demand. For one thing, these tools
and functions are essentially simple algorithms. For example, the SOR filter in CloudCompare uses
the average distance of each point to its neighbors and eliminates the points that are farther than the
threshold distance. It is an Euclidean distance-based ideology like before. Moreover, these tools and
functions are usually strong in applicability and generality, which leads to the lack of pertinence to
specific point cloud features.

1.2. Objectives

Focusing on the above shortcomings that have plagued filtering performance for point cloud data,
the primary goal of this study is to develop a 3D point cloud filtering method for leaves. The method
was based on local plane normal features constructed by the manifold distance, with the important
premise that outlier and noise have totally different definitions and should be filtered separately.
First, the manifold distance was introduced for the detection of outlier clusters and outlier points
in each cluster. Then, PCA was employed to estimate the partial surface normal vector to identify
noise points. The other objectives of this study are to (1) investigate an appropriate threshold value
in the statistical truncation method to optimize the oversmoothing problem, (2) assess the effects of
combining the manifold distance and local surface normal estimation for noise detection, (3) balance the
relationship between filtering accuracy and computational complexity and (4) validate the authenticity
of reconstruction and visualization using the point cloud after filtering and assess the accuracy of leaf
parameter estimation.

2. Materials and Methods

2.1. Data Collection by TLS

A terrestrial laser scanner (TLS, Leica C10) was used to obtain point cloud data. This scanner
is a single-point-positioning scanner with high accuracy and precision. It can obtain massive point
clouds efficiently and quickly without any intervention. The maximum scanning distance of the Leica
C10 is 300 m and the scanning range is 360

◦ × 270
◦

(horizontal × vertical). While scanning, the TLS
was placed successively on different sides 3m from the target tree. After scanning, each scan from
the different angle was integrated into a single coordinate system by using a registration process to
acquire full coverage scanning data from the objective trees. The experimental trees were selected on
the campus of Nanjing Forestry University (32◦08′N, 118◦81′E) and included several species, such as
poplar, sakura and Liriodendron chinensis.

2.2. Framework of the Proposed Method

This section describes in detail the method we proposed for 3D point cloud filtering for leaves.
Partial point clouds were manually segmented from the whole point clouds scanned by the Leica
C10. The method in Reference [32] was employed to cluster the partial point clouds and extract
well-isolated individual trees from groups. The point clouds of leaves were separated using the tree
organ classification method proposed in Reference [8]. Taking a poplar leaf as an example, the whole
process, from the acquisition of the point cloud to the point cloud after filtering, followed the sequential
steps shown in Figure 1a.

The points that were to be filtered contained both outliers and noise, which had totally different
definitions in this study. The exact definition of an outlier often depends on hidden assumptions
regarding the data structure and the applied detection method [33]. Hawkins et al. [34] defined an
outlier as an observation that deviates so much from other observations as to arise suspicion that it
is generated by a different mechanism. Barnett et al. [35] indicated that an outlying observation or
outlier, is one that appears to deviate markedly from other members of the sample in which it occurs.
In this study, outliers were defined in a distance-based manner and divided into two categories: outlier
clusters and outlier points. The manifold distance was used for distance measurement instead of the
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traditional Euclidean distance. Outlier clusters are more subject to masking and swamping effects,
which are universal phenomena in outlier detection. Acuna et al. [36] provided an intuitive definition
of these effects. If an outlier cluster is treated the same as a series of individual outlier points, these
circumstances are more likely to occur. Hence, in this method, outlier cluster detection was the first
step after the initial clustering. Subsequently, in each remaining cluster, outlier point detection and
noise point detection were successively processed. At last, combining all remaining points and the
point cloud after filtering was obtained. The detailed work program flow of the proposed method is
shown in Figure 1b.
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Figure 1. Framework and program flow chart. (a) Framework of the whole process. (b) Detailed work
program flow of the method.

2.3. Adapted Truncation Method

The truncation method is a technique used to filter abnormal values in a data set. For a given data
set qi, (i = 1, 2, . . . , M), which is sorted in ascending order and M is the total number of this data set.
The quartiles of this data set divide it into four equal parts, each of which contains 25 percent of the
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data. The numbers at the first quorum and the third quorum are lower quartile Q1 and upper quartile
Q3, respectively, which are expressed as follows:

Q1 =

{
q([0.25M]+1) 0.25M is not an integer
q(0.25M)+q(0.25M+1)

2 0.25M is an integer
(1)

and

Q3 =

{
q([0.75M]+1) 0.75M is not an integer
q(0.75M)+q(0.75M+1)

2 0.75M is an integer
(2)

The specific procedures of the truncation method to filter abnormal values in the data set are
as follows:

First, calculating Q1 and Q3 using Equation (1) and Equation (2);
Second, calculating the interquartile range Riq, which can be formulated by

Riq = Q3 −Q1 (3)

Third, calculating the lower truncation TL and upper truncation TH according to the
following formula:

TL = Q1 − µ · Riq (4)

and
TH = Q3 + µ · Riq (5)

while µ denotes the threshold value of the truncation method. qi < TL and qi > TH are defined as the
abnormal values of this data set.

In the universal truncation method, the threshold value µ usually equals 1.5. Although using
quartiles as numerical characteristics makes the method robust, it is more suitable for data with a
regular distribution, such as a normal distribution. Most abnormal values would be omitted by a
smaller TL and larger TH . Hence, it was inappropriate for our point cloud data. A more suitable
threshold value is given in this study.

2.4. Outlier Detection and Filtering in Manifold Space

2.4.1. Measuring Manifold Distance

Points on adjacent positions have high similarities. However, the Euclidean distance can measure
only local congruence instead of that of the whole point cloud. Figure 2a presents the two connection
modes of two points in a point cloud from the front view and Figure 2b shows the horizontal view.
Clearly, the Euclidean distance in the red line between two points cannot reflect the whole manifold
similarities well, while the connection mode in blue, which we call the geodesic curve, better reflects
the similarities between these two points. A geodesic curve in differential geometry is defined as
follows: for any curve on a surface, the geodesic curvature of each point on it is zero. All points on
the geodesic curve are on the surface and the distance between two points is shorter than any other
paths between these two points. This distance, which we call the shortest path, more accurately reflects
the similarities between two points on a surface. The shortest path problem is broad but the variable
weight in this study refers to the distance between two points.

For a sample point cloud P, Pi ∈ P and Pj ∈ P, (i, j = 1, 2, . . . , N), N is the number of points and
two methods can be used to find the shortest path between Pi and Pj. One method is to go directly
from Pi to Pj; the other is to go to Pj through point Pk ∈ P, (k = 1, 2, . . . , N), as depicted in Figure 2c,
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which is the local enlarged point cloud of Figure 2a,b. Defining d
(

Pi, Pj
)

and d′
(

Pi, Pj
)

as the distance
and the shortest distance between Pi and Pj, we obtain

d′(pi, pj) =

{
d(Pi, Pj) d(Pi, Pj) < d(Pi, Pk) + d(Pk, Pj)

d(Pi, Pk) + d(Pk, Pj) d(Pi, Pj) > d(Pi, Pk) + d(Pk, Pj)
(6)
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Common solutions of the shortest path problem include the Floyd, Dijkstra and Bellman-Ford
algorithms [37]. Among these algorithms, the traditional Floyd algorithm is globally optimal and the
main program is simple, easy to implement. Therefore, the Floyd algorithm was used in this study.

Constructing the adjacency matrix DN×N and iterating DN×N to approximate the manifold
distance by the traditional Euclidean distance are the key steps in the Floyd algorithm. Using the two
methods mentioned previously in the lemma, the main procedures are as follows:

First, for points Pi(xi, yi, zi) and Pj
(

xj, yj, zj
)
, the traditional Euclidean distance is defined as

d
(

Pi, Pj
)
=
√(

xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2 (7)

and for any positive integer k, ϕi = {Pim}, (m = 1, 2, . . . , k) can be determined, where Pim represents
the k nearest neighbor of point Pi.

Second, initializing the adjacency matrix DN×N , D(i, j) is as follows:

D(i, j) =

{
d(Pi, Pj) Pj ∈ ϕi

+∞ Pj /∈ ϕi
(8)

Third, the distance matrix DN×N is iterated continuously using Equation (6) and (8) while
traversing all points in the data set. Until the iteration terminates, each element D(i, j) is represented
as the manifold distance between points Pi and Pj.

However, the Floyd algorithm, as discussed above, essentially proceeds through a triple loop.
Excessive iteration leads to computational complexity and requires an extremely large amount of
storage, especially for a large number of nodes. Unfortunately, the point cloud scanned by TLS are
usually numerous and in high density. Two improvements of the Floyd algorithm were proposed
by Wei [38]. The first improvement is the construction of an iterative matrix in which all nodes are
initially compared; nodes that are not related to the results are removed to reduce the frequency of
iteration when searching for the next node. Second, a serial number matrix is constructed to record
the case of inserting a node in the process of iteration. Aini et al. [39] named another contribution:
the rectangular algorithm. This algorithm benefits from a rectangle graphical approach, requires less
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computational effort and is easier to implement than the Floyd algorithm. However, both of these
methods focus on the iteration process itself. Our proposed method deals with the data size directly.
The initial clustering is processed at the beginning and under this condition, the method can proceed
with the Floyd algorithm for only one cluster at a time. Without removing any points or constructing
any new matrices, the computational time is reduced.

2.4.2. Filtering Outlier Clusters

As illustrated, initial clustering is the preprocessing step in this method. The K-means clustering,
which is simple and easy to implement, was used to divide the original point cloud P into K clusters,
which denoted by Rl , (l = 1, 2, . . . , K). K is an integer by rounding up N/100 and N represents the
number of points.

To measure how far cluster Rl is from the other K − 1 clusters, which denoted by d′C(l), the
mathematical models are as follows:

Cl =
1
Nl

Nl

∑
li=1

Pli (xli , yli , zli ) (9)

and

d′C(l) =
K

∑
l′ = 1
l 6= l′

dC
(
l, l′
)

(10)

where Cl is the center of Rl , Pli , (i = 1, 2, . . . , Nl) are the points in cluster Rl , Nl represents the number
of points and dc(l, l′) represents the manifold distance between clusters Cl and Cl′ . Using the truncation
method with the newly defined threshold value µ′ to calculate the upper truncation TH1 of data set d′C
and a cluster is defined as an outlier cluster when its d′C(l) is bigger than TH1 .

The detailed procedures are given as follows:

Input: Point cloud P

1. Divide the original point cloud data into K clusters
2. Calculate Cl of Rl using Equation (9)
3. Calculate dc(l, l′) using the method in 2.4.1
4. Calculate d′C(l) using Equation (10)
5. Calculate TH1 of d′C using Equation (5) and µ′

6. For l = 1 : K
7. if d′C(l) > TH1

8. Define Rl as an outlier cluster and remove Rl

9. end if
10. end for

Output: New clusters without outlier clusters: R′l , (l = 1, 2, . . . , K′)

2.4.3. Filtering Outlier Points

After filtering the outlier clusters, new clusters without outlier clusters R′l , (l = 1, 2, . . . , K′) and
points Pli , (i = 1, 2, . . . Nl) in R′l are obtained, where K′ represents the number of remaining new
clusters. The manifold distance between point Pli and Plj

in cluster R′l , denoted by dp
(
li, lj

)
, can be

used to obtain k nearest points of Pli , which is expressed as ϕli =
{

Plim

}
, (m = 1, 2, . . . , k).



Remote Sens. 2019, 11, 198 8 of 18

For each cluster, to measure how far the point Pli is from the other points in this cluster, which
denoted by d′p(li), the mathematical model is:

d′p(li) =
k

∑
m=1

dp(li, lim) (11)

Calculating the upper truncation TH2 of data set d′p(l) and a point is defined as an outlier point in
this cluster when its d′p(li) is bigger than TH2 .

The detailed procedures are given as follows:

Input: R′l , (l = 1, 2, . . . , K′), Pli
∈ R′l , (i = 1, 2, . . . , Nl)

1. for l = 1 : K′

2. Calculate dp

(
li, lj

)
using the method in 2.4.1

3. for i = 1 : Nl

4. Find ϕli
=
{

Plim

}
, (m = 1, 2, . . . , k) of Pli

and k = 10
5. Calculate d′p(li) using Equation (11)

6. end for
7. Calculate the upper truncation TH2 of d′p(l) using Equation (5) and µ′

8. for i = 1 : Nl

9. if d′p(li) > TH2

10. Define Pli
as the outlier point and remove Pli

11. end if
12. end for
13. end for

Output: Clusters R′l without outlier points: Pli
′ ∈ R′l ,

(
i = 1, 2, . . . , N′l

)
2.5. Noise Detection and Filtering Based on the Normal Feature of Local Surfaces

2.5.1. Local Surface Fitting and Normal Estimation

PCA is a dimensional reduction method used in feature extraction, especially for surface normal
estimations. For a given data point Pi and its k nearest neighbor set ϕi = {Pim}, the covariance matrix
C3×3 of this local neighborhood is defined as follows:

C3×3 =
1
k

k

∑
m=1

(
Pim − Pi

)T(
Pim − Pi

)
(12)

where Pi is the mean of ϕi = {Pim} and can be calculated by the following formula:

Pi =
1
k

k

∑
m=1

Pim (13)

Using singular value decomposition (SVD), C3×3 can be decomposed into three principal
components v1, v2, v3, which are the three eigenvectors corresponding to the eigenvalues λ1, λ2, λ3,
respectively, sorted in descending order. The third principal component v3 corresponds to the direction
in which the projected observations have the smallest variance, which means that eigenvector v3

approximates the normal direction of this local neighborhood.
However, many previous studies have pointed out that PCA is sensitive to outliers and fails

to reliably fit planar surfaces in the presence of outliers [40]. Hence, many methods that can make
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PCA results robust have been proposed. Hubert et al. [41] combined robust covariance estimation
with Projection Pursuit and proposed RPCA. They claimed that their method yielded accurate
estimates for outlier-free datasets and more robust estimates for outlier-contaminated data and had
the further advantage of outlier detection [32]. Rousseeuw et al. [42] developed fast-MCD in 1999 and
Nurunnabi et al. [43] used fast-MCD-based RPCA to fit a planar surface. However, most of the above
methods have yielded limited improvements in the definition of the distance weight. Traditional PCA
compares Euclidean distances of potential target points to find the local neighborhood of one point. It
provides less robust local neighborhood relationships for our point cloud data, which is crucial for
deciding which points should contribute to the normal estimations. To increase the accuracy of the
results, the manifold distance in DN×N is used in this study to construct the local neighborhood and
calculate the normal estimation of each point.

2.5.2. Filtering Noise Points

After filtering outliers, remaining new clusters, R′l , (l = 1, 2, . . . , K′) and points Pli
′,

(i = 1, 2, . . . , N′ l) in R′l , were obtained, while N′l represents the new number of points in R′l . For each
cluster, using the manifold distance to construct k nearest neighbor set ϕli

′ =
{

Plim
′}, (m = 1, 2, . . . , k)

of each point Pli
′(xli , yli , zli

)
and the angle between this point and its normal direction v3li

(vxli
, vyli

, vzli
)

was used to decide whether this point is the noise point in this cluster, which can be described
as follows:

θ(li) =

(
xli · vxli

+ yli · vyli
+ zli · vzli

)
(

xli
2 + yli

2 + zli
2
)1/2 ·

(
vxli

2 + vyli
2 + vzli

2
)1/2 (14)

Calculating the lower truncation TL3 and upper truncation TH3 of the θ(l) and points, angles of
which are between these two bounds, will be retained. Otherwise, they are removed as noise points.

The detailed procedures are given as follows:

Input: R′l , (l = 1, 2, . . . , K′), Pli
′ ∈ R′l ,

(
i = 1, 2, . . . , N′l

)
1. for l = 1 : K′

2. for i = 1 : N′ l
3. Find ϕli

′ =
{

Plim
′}, (m = 1, 2, . . . , k) of Pli

′ and k = 10
4. Calculate v3li

of point Pli
′ using Equation (12), Equation (13) and SVD

5. Calculate θ(li) using Equation (14)
6. end for
7. Calculate TL3 and TH3 of θ(l)
8. for i = 1 : N′l
9. if θ(li) < TL3 or θ(li) > TH3

10. Define Pli
′ as a noise point and remove Pli

′

11. end if
12. end for
13. end for

Output: Cluster R′l without outlier and noise points, P′′li
∈ R′l ,

(
i = 1, 2, . . . , N ′′

l
)

3. Experiments and Results Analysis

Numerous comparison analyses were performed to evaluate the effectiveness and practicability of
the proposed method. Leaves of trees with different heights and diameters at breast height (DBH) were
collected as analysis samples, as shown in Table 1. In Section 3.1, the effects of the different threshold
values of the truncation method on the recognition rates are compared intuitively. In Section 3.2,
the proposed method is compared with two other methods to evaluate the filtering performance of
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the proposed method. 3D reconstruction and visualization results are also presented in this section.
In Section 3.3, analyses of leaf area measurement are given to further verify the applicability of the
proposed method.

Table 1. Summary of sample tree and leaf parameters.

Minimum Maximum Mean Standard Deviation

Tree height (m) 0.71 10.8 6.2 3.6
Tree DBH (cm) 1.2 20.6 12.7 5.1

Leaf point Number 189 752 423 112
Leaf length (cm) 3.4 12.4 7.1 1.9
Leaf width (cm) 2.7 10.5 6.2 1.8

3.1. Effects of the Threshold Value µ on Recognition Rates

Different threshold value µ resulted in totally different filtering performance for the leaf point
cloud. To find a suitable threshold value for our point cloud, this study tested five different values for
each leaf sample, with 0.3 as the interval. Figure 3 gives a poplar leaf sample.
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Figure 3. Filtering performance analyses of different threshold values µ. (a) Real leaf point cloud.
(b) Original point cloud of the part in the red circle in (a). (c) Filtering performance when µ = 1.5.
(d) Filtering performance when µ = 1.2. (e) Filtering performance when µ = 0.9. (f) Filtering
performance when µ = 0.6. (g) Filtering performance when µ = 0.3.

The points in blue are the outliers and noise detected by the truncation method. Clearly, when
µ = 1.5, the recognition rate is very low. In addition, compared with Figure 3d,e, Figure 3f reveals a
better filtering performance. However, when µ = 0.3 in Figure 3g, the point cloud is oversmoothed.
The results demonstrated that the threshold value µ = 0.6 was suitable for the leaf point cloud.

3.2. Filtering Performance Evaluation Based on 3D Reconstruction

The method we proposed has two main innovations: filtering outlier clusters, outlier points
and noise points separately and using manifold distance as a metric. To highlight the advantages of
these two innovations, the comparison analyses were carried out with other two methods: using the
Euclidean distance method and classical PCA method. The Euclidean distance method uses the same
procedures as the method we proposed excluding the use of manifold distance and classical PCA is a
standard method that neither filters outliers and noise separately nor uses manifold distance.

Leaves of different species and levels were chosen from the collected samples to conduct a
comprehensive assessment. 3D reconstructions of leaves were obtained by the nonuniform rational
B-spline (NURBS) method, which has become a widely utilized approach for surface reconstruction in
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recent years [37,44]. The presence of outliers and noise would mislead the choices of control points
in NURBS, which indirectly influence the fitting performance. Moreover, 3D visualizations of the
samples were constructed using VC++ 2015 and OpenGL.

To demonstrate the performance of filtering using different methods, mature leaves were taken
as examples. Figure 4 shows the experimental results for a mature poplar leaf. The blue points in
Figure 4a–c, which represent outliers and noise found by the filtering methods, reveal that the proposed
method generally had better performance in terms of both quality and quantity in filtering, resulting
in better reconstruction of the point cloud. The proposed method and method using the Euclidean
distance method, all treated outlier clusters and points separately, thereby avoiding masking and
swamping effects to some extent, whereas the classical PCA, as shown in Figure 4c,f, had the worst
filtering results. Comparison results fully explains why it is necessary to filter outlier clusters and
points separately. In addition, the point cloud after filtering in Figure 4d is closer to the shape of the
real leaf than that in Figure 4e,f. Hence, the reconstruction and visualization in Figure 4g outperformed
that in Figure 4h,i.
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Figure 4. Comparison analyses for mature poplar leaf filtering and visualization: the filtering
performance of (a) the proposed method, (b) the Euclidean distance method and (c) the classical
PCA method; the point cloud after filtering using (d) the proposed method, (e) the Euclidean distance
and (f) classical PCA; 3D reconstruction after filtering using (g) the proposed method, (h) the Euclidean
distance, (i) and classical PCA.

For the mature sakura leaf point cloud, as shown in Figure 5a,b, the method we proposed and
the Euclidean distance method yielded almost completely different filtering results because the leaf
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surfaces of sakura are usually curved. Consequently, using the manifold distance or not has great
effects on the sakura leaf point cloud. The results in Figure 5c,f reveal that classical PCA was still
not good for filtering sakura leaf point cloud. Moreover, outliers and noise, which were omitted in
filtering, directly caused the distortion of the 3D reconstruction in Figure 5h,i.
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Figure 6 gives the experimental results for a mature Liriodendron chinense leaf. The Liriodendron
chinense leaf surface has many corners and edges. Hence, better filtering result was required for the its
reconstruction and visualization. As shown in Figure 6e, the method using Euclidean distance omitted
four single outliers in the lower left corner of the point cloud and the reconstruction of this leaf is out
of shape in this position. Similarly, classical PCA could not handle points in the corners well and thus
the reconstruction result in Figure 6i has sharper corners.



Remote Sens. 2019, 11, 198 13 of 18
Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 19 

Remote Sens. 2018, 10, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/remotesensing 

 

(a)      (b)      (c) 379 

 380 

(d)      (e)      (f) 381 

 382 

(g)      (h)      (i) 383 

Figure 6. Comparison analyses for mature Liriodendron chinense leaf filtering and visualization: the 384 
filtering performance of (a) the proposed method, (b) the Euclidean distance method and (c) the 385 
classical PCA method; the point cloud after filtering using (d) the proposed method, (e) the Euclidean 386 
distance and (f) classical PCA; the 3D reconstruction after filtering using (g) the proposed method, (h) 387 
the Euclidean distance and (i) classical PCA. 388 

In addition to mature leaves, tender leaves can also reflect the growth status of trees. Hence, 3D 389 
reconstruction results of tender leaves from the three species above were also given in Figure 7. The 390 
leaf areas of tender leaves are usually small. Although they have fewer points than mature leaves, 391 
the reconstruction and visualization of them are still real after filtering with the proposed method. It 392 
proves that the method we proposed can be applied to different leaves of different species and levels. 393 

 394 

(a)       (b)      (c) 395 

Figure 7. The 3D reconstruction and visualization of (a) a tender poplar leaf, (b) a tender sakura leaf 396 
and (c) a tender Liriodendron chinense leaf. 397 

3.3. Leaf Area Measurement 398 

The 3D reconstruction and visualization of the point cloud can be used to estimate many 399 
complex leaf traits. Leaf area is one of these traits and the application of the partial mesh area method 400 
based on the NURBS fitting surface can be used to calculate the leaf area [45]. To further validate the 401 
performance of the proposed filtering method, leaf areas of samples of different sizes were calculated 402 
and 120 of them, which areas ranged from 5 to 80 cm2, were randomly chosen in analyses of leaf area 403 

Figure 6. Comparison analyses for mature Liriodendron chinense leaf filtering and visualization:
the filtering performance of (a) the proposed method, (b) the Euclidean distance method and (c) the
classical PCA method; the point cloud after filtering using (d) the proposed method, (e) the Euclidean
distance and (f) classical PCA; the 3D reconstruction after filtering using (g) the proposed method, (h)
the Euclidean distance and (i) classical PCA.

In addition to mature leaves, tender leaves can also reflect the growth status of trees. Hence,
3D reconstruction results of tender leaves from the three species above were also given in Figure 7.
The leaf areas of tender leaves are usually small. Although they have fewer points than mature leaves,
the reconstruction and visualization of them are still real after filtering with the proposed method.
It proves that the method we proposed can be applied to different leaves of different species and levels.
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Figure 7. The 3D reconstruction and visualization of (a) a tender poplar leaf, (b) a tender sakura leaf
and (c) a tender Liriodendron chinense leaf.

3.3. Leaf Area Measurement

The 3D reconstruction and visualization of the point cloud can be used to estimate many complex
leaf traits. Leaf area is one of these traits and the application of the partial mesh area method based
on the NURBS fitting surface can be used to calculate the leaf area [45]. To further validate the
performance of the proposed filtering method, leaf areas of samples of different sizes were calculated
and 120 of them, which areas ranged from 5 to 80 cm2, were randomly chosen in analyses of leaf
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area measurement. Two comparisons were conducted: one was the comparison of the leaf area
measurements after filtering using the proposed method and the actual area, as described in Figure 8
and the other one was the comparison of the leaf area measurements after filtering using classical PCA
and the actual area, as described in Figure 9. The actual leaf area was obtained by manual measurement
using an LI-3000C area meter. As shown in Figure 8, the RMSE of leaf area regression is 2.49 cm2 and
R-square is 0.98. However, the RMSE is 5.02 cm2 and R-square is 0.95 in Figure 9. The measurement
results from the 3D reconstruction of the point clouds after filtering with the proposed method were
closer to the actual area values, which also indicated that the proposed filtering method can improve
the performance of leaf area measurement.
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Figure 8. Leaf areas derived from point clouds filtered with the proposed method vs. manual
measurement. The regression formula is y = 0.995x− 0.331. RMSE = 2.49cm2. R− square = 0.98.
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Figure 9. Leaf areas derived from point clouds filtered with classical PCA vs. manual measurement.
The regression formula is y = 1.054x + 2.52. RMSE = 5.02cm2. R− square = 0.95.

Moreover, another comparison analyses using 120 leaf samples were conducted to further analyze
the impacts that the filtering method had on leaves with different areas. These 120 leaves were
classified as small leaves (SFs), with areas of 5 cm2–15 cm2; medium leaves (MFs), with areas of
16 cm2–40 cm2; and large leaves (LFs), with areas of 41 cm2–80 cm2. The mean absolute error (MAE)
and mean absolute error percent (MAE%) of the samples filtered using the proposed method and
classical PCA were separately calculated in analyses as follows:

MAE =
n

∑
i=1

∣∣∣∣∣Ai − Âi
n

∣∣∣∣∣ (15)
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and

MAE% =
1
n

n

∑
i=1

∣∣∣∣∣Ai − Âi
Ai

∣∣∣∣∣× 100% (16)

where Ai and Âi are the actual leaf area and the measured leaf area and n is the number of leaf samples.
For each type of sample, n = 40. Table 2 gave the comparison results of the MAE and MAE% values
for samples filtered by the proposed method and classical PCA. Clearly, the MAE and MAE% of
the samples filtered using the proposed method are less than those filtered by classical PCA. This
difference was more obvious when the area was smaller, especially for SFs.

Table 2. Comparison of the MAE and MAE% values for samples filtered with the proposed method
and classical PCA.

Filtering Using The Proposed Method Filtering Using Classical PCA

Leaf Size SF MF LF SF MF LF
MAE (cm2) 0.92 1.05 3.39 2.76 5.61 6.83

MAE% 10.63 4.83 3.8 33.68 27.05 11.79

4. Discussion

4.1. Comparison with Existing Methods

In this paper, a new method for 3D leaf point cloud filtering was proposed. Above all, as discussed
before, the Floyd algorithm suffers from high computational complexity, especially for large-scale
point cloud data. Although [38] and [39] improved the Floyd algorithm, they did not deal with the
data size directly. In this paper, the original point cloud data were initially clustered and under this
circumstance, the Floyd algorithm proceeded with only one cluster with a fixed number of points at one
time. In addition, a new filtering strategy was also used in the method. Previously, Sridhar et al. [46]
proposed a formulation for outliers based on the distance of a point from its Kth nearest neighbors.
They ranked each point on the basis of its distance to its Kth nearest neighbor and classified the top
points in this ranking as outliers. Breunig et al. [47] used the local outlier factor (LOF) to measure
the outlier degree of an object. Although these methods are practical for finding local outliers, they
do not filter outlier clusters and outlier points separately. In this study, after the initial clustering
was performed, outlier clusters were filtered and then outlier points were filtered. This strategy
weakens the masking and swamping effects of outlier clusters and shows better filtering performance.
Moreover, in this study, a manifold distance-based PCA method was applied for noise detection.
PCA is a neighborhood-based filtering technique. This technique determines the filtered position of a
point using similarity measures between a point and its neighborhood, which has a strong influence
on the efficiency and effectiveness of the filtering approach [48]. The similarity can be defined by
the positions of points, normals or regions [49]. Many previous PCA-based methods constructed
neighborhoods using the traditional Euclidean distance. However, using the manifold distance to
construct a local plane surface and determine which points should contribute to the normal estimations
helps achieve more robust features and better filtering performance.

4.2. Recommendations

The method we proposed uses an adaptive threshold value in the truncation method to filter
abnormal values. Figure 3 shows the filtering performance of this threshold value and the result was
satisfactory. In fact, the filtering accuracy of the truncation method for point cloud data depends
strongly on the properties of the point cloud data, such as scale and density, rather than the threshold
value itself. Although the experimental results proved that the threshold value used in this method
was appropriate for leaf point cloud data, for other specific point cloud data, specific analyses and
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comparisons should be performed to choose the suitable threshold value in the truncation method to
ensure the filtering effect.

5. Conclusions

In this study, a 3D point cloud filtering method for leaves based on manifold distance and normal
estimation was proposed and point cloud data were collected using a Leica C10 terrestrial laser scanner.
First, the original point cloud was initialized into several clusters and the truncation method with the
newly defined threshold value was used to filter outlier clusters. Second, for each new cluster, the
outlier points were filtered using the same truncation method and noise points were then filltered
by normal estimations and included angles. The truncation method was used again to filter points
with singular angles. After traversing all clusters, the filtering process was complete. Three analyses
were conducted in this study: an analysis of a suitable threshold value in the truncation method, a
comparison of the filtering performance between the proposed method and two other methods and
an evaluation of the leaf area measurement. The first analysis proved that the truncation method
with the new threshold value was suitable for point cloud data. The second analysis indicated that
the proposed method had better filtering performance in terms of both quality and quantity than
the method using Euclidean distance and classical PCA. The last analysis demonstrated that the area
measurement results for leaves after filtering using the proposed method were closer to the actual leaf
areas. Considering these results, the proposed method can be deemed as an improvement of 3D point
cloud filtering method for leaves. From a practical perspective, the proposed method can be further
used for 3D reconstruction and leaf trait measurement.
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