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Abstract: This study investigated the estimation of grain yields of three major annual crops in
Ontario (corn, soybean, and winter wheat) using MODIS reflectance data extracted with a general
cropland mask and crop-specific masks. Time-series two-band enhanced vegetation index (EVI2)
was derived from the 8 day composite 250 m MODIS reflectance data from 2003 to 2016. Using a
general cropland mask, the strongest positive linear correlation between crop yields and EVI2
was observed at the end of July to early August, whereas a negative correlation was observed in
spring. Using crop-specific masks, the time of the strongest positive linear correlation for winter
wheat was found between mid-May and early June, corresponding to peak growth stages of the
crop. EVI2 derived at peak growth stages of a crop provided good predictive capability for grain
yield estimation, with considerable inter-annual variation. A multiple linear regression model was
established for county-level yield estimation using EVI2 at peak growth stages and the year as
independent variables. The model accounted for the spatiotemporal variability of grain yields of
about 30% and 47% for winter wheat, 63% and 65% for corn, and 59% and 64% for soybean using
the general cropland mask and crop-specific masks, respectively. A negative correlation during the
spring indicated that vegetation index extracted using a general cropland mask should be used with
caution in regions with mixed crops, as factors other than the growth conditions of the targeted crops
may also be captured by remote sensing data.
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1. Introduction

Early-season forecasts of crop yields are often required as essential information for decision
making in harvest, processing, storage, transportation, and marketing of agricultural commodity [1].
Crop yield is an input to some of the agro-environmental indicators used in Canada to assess the
status and trends of environmental quality impacted by climate change and agricultural production
activities at various scales, for example, the residue soil nitrogen [2], soil cover [3,4], and greenhouse gas
emission intensity [5]. Thus, establishing a long-term national yield database at a smaller spatial scale
will improve the assessment of these agro-environmental indicators. Remote sensing data provides a
solution for yield estimation/forecast at different scales due to its capability in acquiring consistent
spatiotemporal information on crop growth conditions [6–8].

The principle behind the use of optical remote sensing data for crop yield estimation is that
canopy spectral reflectance is determined by crop biophysical and biochemical properties affecting
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canopy photosynthesis [9]. In particular, the fractional absorbed photosynthetically active radiation
(fAPAR) is highly correlated with many spectral vegetation indices [10,11]. Crop biomass accumulation
is proportional to the cumulative absorbed photosynthetically active radiation (APAR) regulated
by environmental stresses; therefore, fAPAR can be used to model crop yields with radiation use
efficiency (RUE) models [12,13]. Assimilation of time-series remote sensing products into process-based
crop growth models ([14–16] or simple RUE models [17]) has become a research trend. Although
it has been found that data assimilation is effective in determining uncertain parameters in the
soil-crop-atmosphere system to improve crop growth modeling and yield estimation, it requires a
large number of parameters to be localized and measured; hence, it is suitable for field or plot-level
experiments but may not be suitable for regional-scale applications. Direct use of vegetation indices
for yield modeling is also possible because they are found to be strongly correlated with crop yields
during the grain filling stage [18].

In practice, regression models for crop yield estimation are often established using vegetation
indices and reported or measured crop yields. Although empirical models may be region- or
year-specific, they can be effective for regional-scale crop yield estimation across multiple years [1,19–22].
The normalized difference vegetation index (NDVI) derived from the advanced very high resolution
radiometer (AVHRR) data has been extensively used because of its long history and global
coverage [7,23–26]. Later on, data from the moderate resolution imaging spectroradiometer (MODIS)
has been used more often because of better spatial, spectral, and radiometric resolutions [1,21].
A recent research trend is to merge these coarse resolution satellite data with high-spatial low-temporal
resolution satellite data (e.g., Landsat data) to generate high resolution time-series data for field level
studies [17,27–29]. Data volume and computation-resource requirement are high if this method is
applied at the regional scale and over a long time period, although mature cloud computing techniques
might provide a solution. Newly launched satellite constellations such as Sentinel-2, RapidEye,
or PlanetScope will provide global coverage high temporal and high spatial resolution data. This will
resolve problems encountered in studies on crop monitoring and yield estimation at the field or plot
levels in the future; however, they do not provide a solution for retrospective studies. Hence, coarse
resolution data from AVHRR and MODIS are still needed in many applications.

For crop yield modeling, remote sensing data are often extracted using a cropland mask. A general
cropland mask may be applicable in many cases [21,24]; however, its application may be impacted by
mixed signals from different crops. This may not be critical in regions such as the Canadian Prairies,
wherein the majority of annual crops are seeded in spring and have similar phenological cycles.
In Southern and Western Ontario, cropland is dominated by annual crops, including winter wheat,
corn, and soybean, rotated with perennial forage crops. These crops have quite different phenological
cycles [30]. To decompose signals from different crops, a fuzzy-decision tree classifier was developed
to identify the major crops in this region using 250 m time-series MODIS data with minimal ground
truth data [31]. Crop-specific masks were then generated from the identified “pure” pixels of these
major crops for extraction of remote sensing data representative to each crop type for each year.

Crop yields in Ontario are usually available through field crop reporting conducted by Statistics
Canada. A remote sensing-based approach allows for crop yield estimation at different spatial scales
in a consistent way. No study was found in the literature for yield estimation at the county level in
this region. The objectives of this study were to (1) evaluate the use of time-series MODIS data for
crop grain yield estimation at the county level in Ontario, Canada, (2) assess the impact of different
cropland masks on crop yield estimation, and (3) investigate the capability of the yield estimation
models in capturing the spatiotemporal variability of grain yields.
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2. Materials and Methods

2.1. Study Area

The study area covers 28 counties in the Southern, Western, and Central Ontario regions, excluding
Haliburton, Muskoka, and Parry Sound, the three counties with minor cropping activities (Figure 1).
It is within the Mixedwood Plains Ecozone, a primary agricultural region at the most southern part of
Canada. The area is characterized by warm to hot summers and cold winters, fertile soils, and adequate
water supply for agricultural production [32]. Dominant crops are soybean (~2 Mha), grain corn
(~1.5 Mha), and winter wheat (~0.9 Mha), rotated with perennial forage crops (~1.5 Mha including hay
and pasture), varying from year to year. Over the past 15 years, more than 82% of corn, 85% of soybean,
90% of winter wheat, and about 65% of forage crops in Ontario were grown in these three regions.
The four crops have different phenological patterns. Winter wheat is seeded in the previous fall,
survives the cold winter with very slow growth, and grows fast in the following spring. The canopy
reaches full coverage in late spring and becomes physiological mature and is harvested in late July to
early August. Soybean and corn are seeded in May and harvested between late September and early
November. Forage crops start to grow and the canopy reaches full ground coverage quickly in spring,
and are then harvested (or grazed) multiple times during the growing season, and go dormant in
winter. Typical growth calendars for these crops can be found in Liu et al. [31] and Huffman et al. [30].
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Figure 1. Study area in Ontario, Canada. The dark lines outline the five regions in Ontario; the light
gray polygons are counties included in the study, and the dark gray polygons are three counties
representative of Southern (Chatham-Kent), Western (Perth), and Central (Durham) Ontario.

2.2. Crop Data

Reported crop grain yield and harvested area of the three annual crops at county level were
obtained from the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA; http://www.
omafra.gov.on.ca/english/) for the 14 year period from 2003 to 2016. In all the counties in Southern
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Ontario, the largest proportion of area was planted with soybean, and the smallest proportion of area
was planted with forage crops. In central Ontario, the largest proportion of area was planted with
forage crops. Areas of different crops were relatively balanced in Western Ontario. Average yields
for all the counties over the 14 year period were 8.84 t ha-1 for corn, 4.88 t ha-1 for winter wheat,
and 2.71 t ha-1 for soybean. An increasing trend of about 0.16 t ha-1 year-1 for corn, 0.06 t ha-1 year-1
for winter wheat, and 0.05 t ha-1 year-1 for soybean was observed during this time period. Correlation
between county-level yields of the crops over the 14 years was statistically significant. More specifically,
the correlation between the yields of corn and soybean (R2 = 0.71, n = 378) was much stronger than
the correlation between the yields of corn and wheat (R2 = 0.30, n = 377). Coefficient of variation of
county-level crop yields over the period was between 7% and 17% for corn, 6% and 25% for soybean,
and 10% and 21% for winter wheat. The reported county-level yields were used to assess the capability
of MODIS data for yield estimation, and the county-level harvested areas were used to assess the
crop classification.

2.3. Time-Series MODIS Data Processing

MODIS 250 m 8 day composite reflectance product (MOD09Q1, version 5) from 2003 to 2016,
and the 500 m land cover type products (MCD12Q1) from 2000 to 2014, were obtained from the Land
Processes Distributed Active Archive Center (LP DAAC). The study area is completely covered by
two MODIS tiles, h11v04 and h12v04. MODIS tiles were mosaicked using the MODIS re-projection
tool (MRT). There were 46 reflectance composites each year. The 250 m reflectance product allows for
calculation of vegetation indices with a higher temporal resolution than the standard vegetation index
product MOD13Q1.

2.3.1. Calculation of the Two-Band Enhanced Vegetation Index (EVI2)

Instead of NDVI, the two-band enhanced vegetation index (EVI2; [33]) was used in this study
for crop yield estimation, as it is less susceptible to saturation at high biomass [33–35], which is the
case in the study region. Son et al. [36] reported that EVI2 performed slightly better than NDVI for
yield estimation. EVI2 can be calculated from the red (ρR) and near infrared (ρN) band reflectance as is
shown below:

EVI2 = 2.5(ρN − ρR)/(ρN + 2.4ρR + 1). (1)

2.3.2. Crop Masks

Crop masks could be generated using crop classification maps; however, annual crop inventory
maps in Canada became operational only after 2011. In this study, cropland masks were generated from
the MODIS land cover product, and classification of the time-series reflectance data was conducted
using a fuzzy decision tree algorithm [31]. Firstly, a general cropland mask was generated by merging
classification codes 12 (cropland) and 14 (cropland/natural vegetation mosaic) in the land cover type-1
classifications in the MCD12Q1 product. A pixel was included in the cropland mask if it was classified
as class 12 or class 14 in any of the years between 2000 and 2014. The data were then resampled
from 500 m into 250 m resolution using the nearest neighbor method to match that of the reflectance
data. Secondly, the TIMESAT software package [37,38] was used to model the time-series EVI2 using
logistic functions, from which several phenological indicators characterizing the shape of the seasonal
growth curves were defined, such as the maximum EVI2, the time when peak EVI2 (85% of the
maximum) started and ended, and the time span when EVI2 was larger than 60% peak level. Thirdly,
a fuzzy decision tree classifier based on the phenological indicators was developed to identify the
major crop types in this region—corn, soybean, winter wheat, and forage. The classifier was trained
using 30 m high resolution annual crop inventory map of 2013 [39], resampled to the pixel size of the
MODIS products, and tested using crop inventory maps for 2011 and 2012. The accuracies for the two
tested years were comparable with the accuracy of the training year, with an overall accuracy about
75%. Detailed information on the classification algorithm and results are reported in Liu et al. [31].
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The classifier was applied to identify pure pixels of the major crop types annually between 2003 and
2016, and annual crop-specific masks were derived for MODIS data extraction.

2.3.3. Extraction of County Level Average EVI2

County level average time-series EVI2 was extracted using the general cropland mask and
crop-specific masks for yield estimation. MODIS data were only extracted from pixels with good
quality according to the quality attributes associated with the MODIS product, that is, pixels that were
clear or assumed clear of cloud contamination, and were not in cloud shadow.

2.4. Modeling for Yield Estimation

Regression analysis was conducted between county-level crop yields and MODIS EVI2 to study
the explanatory capability of time-series EVI2 for mapping regional yield variability. A linear model
was used because vegetation indices are considered to be linearly related to crop photosynthetic
capacity [40,41], which can be used to model crop biomass accumulation and yield [13,28,42,43]. In our
earlier study, NDVI was correlated with crop yields to investigate its capability for county level yield
estimation [44]. In this study, linear correlation analysis was conducted between crop yields and
EVI2 for all years combined (all-year model) and for each year individually (year-specific) in three
agricultural regions separately. For the all-year model, year was treated as an additional variable to
account for the long term trends of yields, thus a multiple linear regression model was adopted:

Y = a0 + a1EVI2 + a2 A (2)

where Y is county level yield; EVI2 represents county level average derived with a crop mask for a
given time in the growing season; A is the year; and a0, a1, and a2 are regression coefficients. Although
an all-year model was desirable, we conducted a year-specific regression to investigate the inter-annual
variability of the relationships between crop yields and EVI2.

The coefficient of determination (R2)—also defined as the Nash–Sutcliffe model efficiency
coefficient—the root mean square error (RMSE), and the mean relative absolute error (MRAE)
were calculated to assess the correlation between yield and EVI2 and the performance of the
regression models:

R2 = 1−
∑n

i=1(Yio −Yie)
2/
∑n

i=1(Yio − Ȳo)
2, (3)

RMSE =

√∑n
i=1(Yio −Yie)

2/n, (4)

MRAE = (
∑n

i=1|Yio −Yie|/Yio)/n, (5)

where Y represents yield, o indicates reported yields and e indicates estimated yields, i represents
an individual sample (of a county in a year), and n is the total number of samples. Relative RMSE
(RRMSE) was calculated as percentage to the mean crop yields.

3. Results

3.1. Crop Classification

To assess the performance of crop identification using the fuzzy decision tree algorithm, area
proportions of the four major crops estimated from the classification were compared with those
reported by OMAFRA at the county level for all 14 years (Figure 2). Area proportions were calculated
on the basis of the total areas of the four major crops because only these four crops were identified in
the study area. Given that the four crops constitute more than 85% of the total crop area in the region,
we consider the results acceptable, although the approximation could induce bias.
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Figure 2. Comparison of county level crop area proportions estimated annually using the fuzzy decision
tree classifier and reported by the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)
for the period between 2003 and 2016.

For most counties, the proportions of winter wheat area were around 13%, and could approach
30% in some counties (Figure 2a). There was a large overestimation of winter wheat in many counties.
Identification of corn was better, although discrepancy was still observed (Figure 2b). There was
a persistent underestimation of soybean due to a large omission error in classification (Figure 2c).
Estimated area proportions of forage crops correlated well with the reported proportions; however,
overestimation was also observed for most of the counties (Figure 2d). As reported by Liu et al. [1],
there was large confusion between winter wheat and forage crops, and between corn and soybean in
the classification. The phenological patterns of soybean and corn were similar, with only a slightly
shorter peak growth duration for soybean. Winter wheat and forage crops also have a similar pattern
with a quick and early growth phase in early spring, and undergo a complicated procedure in summer,
either due to mechanical harvest and then volunteer regrowth for forage crops, or harvest of winter
wheat followed by reseeding with cover crops to protect soil in winter [30]. These factors bring
additional challenges for crop identification using coarse resolution satellite data such as MODIS
imagery. Figure 2e, f shows the comparison of the two pairs of crops combined. Areal proportions for
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corn and soybean combined were mostly underestimated in most cases, and forage and winter wheat
were mostly overestimated.

Classification results can also be assessed using average seasonal growth profiles of the three
annual crops represented by time-series EVI2. Figure 3a–c shows growth curves of winter wheat,
corn, and soybean in three counties, Chatham-Kent in Southern Ontario, Perth County in Western
Ontario, and Durham in Central Ontario, as examples. The growth profiles were constructed using
extracted EVI2 from “pure” pixels identified by the classification algorithms for the three crops in
2016. Growth profiles extracted using a general cropland mask for the three counties are shown in
Figure 3d. It was observed that EVI2 of winter wheat reached peak stage from late May to early June,
and declined to minimum at the end of July when the crop is senescent and ready for harvest. Corn
and soybean started to grow from late May, reaching peak growth status between late July and end of
August. Because most areas in these three counties were seeded with soybean and corn combined,
seasonal vegetation growth profiles extracted using a general cropland mask showed a typical pattern
of the two summer crops (Figure 3d), that is, reach peak stage in late July. In 2016, the area seeded with
corn and soybean was about 80% in Chatham-Kent, whereas only about 60% in Perth and Durham.
Another factor causing the discrepancy could be associated with variability of phenological cycles
pertaining to different crop varieties that could not be specified in this study.
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Figure 3. Crop growth profiles from March to October, illustrated using two-band enhanced vegetation
index (EVI2) extracted for winter wheat (a), corn (b), soybean (c), and the three crops combined (d).
The curves were derived from 2016 for three representative counties in Southern (Chathem-Kent),
Western (Perth), and Central (Durham) Ontario (refer to Figure 1).

In summary, although the estimated areal proportions obtained from the classification algorithm
had a large discrepancy with the reported area proportions, the growth curves of the three annual
crops reflected their typical phenological patterns with contamination by other crops.
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3.2. Seasonal Variation of Linear Correlation Between EVI2 and Crop Yields

A multiple linear regression (Equation (2)) was conducted using crop yields from all the 14 years
(2003 to 2016) and in all the counties combined, and using EVI2 extracted with a general cropland
mask (GM), and crop-specific masks (SM) derived from classification. The intention was to explore the
general explanatory power of EVI2 as a function of time across a typical growing season. The correlation
coefficients are shown in Figure 4 for the three crops. This allows for discrimination of positive versus
negative correlations. A clear seasonal pattern can be observed for all cases. EVI2 derived using a
general cropland mask had a negative correlation with the yields of the three annual crops during a
period around the end of May (day-of-year (DOY) = 150) and the end of October (DOY = 300), and a
positive correlation during a period around the end of July (DOY = 210) corresponding to the peak
growth stage of corn and soybean, the two dominant crops in the region. The transition from negative
to positive correlations for the three crops occurred between the end of June and the start of July. Using
crop-specific masks, the strongest positive correlation for winter wheat changed to mid-to-late May,
whereas the time of the strongest positive correlation did not change for corn and soybean. When crop
specific masks were used, the strongest positive correlation occurred approximately at peak growth
stages of respective crops, that is, late May for winter wheat and late July and early August for corn and
soybean. This was because vegetation indices at the peak stage captured the variability of maximum
green biomass accumulation up to this stage, which was largely carried over to the variability of final
yields. The negative correlation between the yields of corn (and soybean) and EVI2 at around the end
of May and end of October was reduced when crop specific masks were used.
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3.3. Inter-Annual Variability of the Linear Relationships

Linear regression was conducted for each year between county level yields and time-series EVI2
extracted using the two types of cropland masks. The results for the strongest correlations are shown
in Figure 5, which include relative root mean square error (RRMSE, %), coefficient of determination
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R2, and mean relative absolute error (MRAE) (%). Annual averages of county level yields and the
coefficient of variation (CV) (%) are also shown in Figure 5.
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Figure 5. Annual variation of the strongest correlation between crop yields and time-series EVI2,
extracted using a general cropland mask (GM) and crop-specific masks (SM) for winter wheat (a,d),
corn (b,e), and soybean (c,f). Yield: average county level yield; R2: coefficient of determiantion; CV:
coefficient of variation of yields; RRMSE: root mean square error relative to average yield; MRAE: mean
relative absolute error. Samples from the three agricultural regions were analyzed together.

For winter wheat (Figure 5a,d), county level annual yield variability—represented by CV—was
between 10% and 21% during the 14 year period. Except for 2011 using the general cropland mask and
2012 using crop specific mask, the strongest linear correlation between yields and EVI2 was significant
at the 5% level (n = 27). The correlations between yields and EVI2 showed a strong inter-annual
variation, as represented by both MRAE and DOY, at which the strongest correlation was observed.
DOY of the strongest positive correlation ranged between 193 (mid-July) and 241 (end of August) when
the general cropland mask was used, and ranged between DOY 121 (early May) and 169 (mid-June)
when crop-specific mask was used. MRAE was larger than 10% for a few years and in most cases
ranged between 7% and 9%.
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For corn (Figure 5b,e), CV of county level yields ranged between 7% and 17%. Correlation between
yields and EVI2 was significant (n = 26) for all cases. DOY of the largest R2 was between 193 (mid-July)
and 257 (mid-September), but mostly in late July and early August. DOY for the two crop masks was
about the same for most years but had large differences for some of the years. For instance, the best
DOY was 241 using the general cropland mask and 201 using the crop-specific mask in 2006. MRAE
was below 8% in most cases, and for some cases was as low as 3%, for example, in 2003 and 2011.
MRAE was comparable using the two crop masks, although there was a slight tendency of a smaller
MRAE using the general cropland mask.

For soybean (Figure 5c,f), CV of county level yields showed a larger inter-annual variation than
the other two crops, ranging between 6% (in 2013) and 25% (in 2007). Correlation was significant at the
5% level (n = 25) for all years except for 2014 using the crop-specific mask (R2 = 0.07). Similar to that
for corn, the time window best for soybean yield estimation was between mid-July and late August.
Although estimation error remained relatively low in most cases (MRAE < 7%), a large difference in
the best DOY within a time window of about 40 days after late July (DOY = 193) was also observed.

To illustrate the inter-annual variation of the relationships between crop yields and EVI2,
scatter-plots between reported crop yields and EVI2 were shown in Figure 6 for 3 years (2006,
2011, and 2016) as examples. EVI2 was extracted using the crop-specific masks from the time with
strongest correlation for winter wheat, corn, and soybean, respectively. Inter-annual variability of
the relationships between crop yields and EVI2 was remarkable, both in terms of best time for the
prediction and the regression models. For winter wheat, the range of yields was much wider in 2011
and 2016 than in 2006, with CV of 21%, 18%, and 13%, respectively. The relationships were quite
different for the 3 years. Correlation was the strongest in 2006 with the smallest MRAE (5%) using
MODIS 8-day composite at DOY = 137 (mid-May). Samples for 2016 had the lowest EVI2 because the
data was from composite DOY = 121, about 2 weeks earlier than that for the other 2 years. For corn,
the range of county yields was smaller in 2006 and 2011 than in 2016. Although the best time for yield
prediction was separated by about 3 weeks (DOY = 201 in 2006 and 225 in 2011), regression equations
for the 2 years were similar. Again, EVI2 in 2016 was lower because MODIS data were from composites
at the end of August, corresponding to the senescent stage. For soybean, a narrower dynamic range of
yield was also observed in 2006 and 2011 compared with 2016; however, samples largely converged for
all 3 years.
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3.4. Yield Estimation Using a Multiple Linear Regression Model

A multiple linear regression model was established for county-level crop yield estimation using
EVI2 and year as two independent variables. Results from previous sections show that the strongest
correlation between crop yields and EVI2 were observed at the peak growth stages of the crops,
with inter-annual variations of the best time within a time window. To establish a simple model
applicable across different years, average EVI2 was derived within a narrow time window correspondent
to the peak growth stages of the crops. The use of the average EVI2 for crop yield estimation will induce
a loss of accuracy in some years, but can increase model robustness through a reduced variability
associated with crop growth calendars. The time window for averaging was from DOY 201 to 217
using the general cropland mask, from DOY 121 to 145 using crop-specific mask for winter wheat,
and from DOY 209 to 241 for corn and soybean using the two masks. In considering that cropping
practices (cultivars and growth calendars) might be different among the three agricultural regions
(Southern, Western, and Central Ontario), the regression model was established individually for each
region. Performance was assessed on the results obtained using the three models independently,
and on the results combined. Regression results and statistical performance indicators are reported in
Table 1. Figure 7 shows the comparison between all the reported and estimated yields using general
cropland mask and crop-specific masks. The following observations can be made:

(1) Crop yields can be estimated reliably in all cases using the multiple linear regression model
(p < 0.001), except for winter wheat in Central Ontario, which had a low R2 (~0.10) and smaller F-value
(p < 0.025). The inferior performance for winter wheat in Central Ontario was also demonstrated by a
smaller correlation coefficient for EVI2 (r_EVI2; 0.03 for SM and -0.06 for GM), and a larger uncertainty
of the regression coefficients (σ(a1)) respective to the coefficient itself (a1). The regression coefficient for
EVI2 was 0.909 ± 1.745 using crop-specific mask and -1.611 ± 1.539 using the general cropland mask.
Trend of yields was the main factor of yield variability in this case (r_Year ~ 0.30).

(2) Performance of yield estimation was always poorer in Central Ontario than in the other two
regions, as shown by a relatively larger MRAE and a lower R2.

(3) Models based on crop-specific masks achieved slightly better results than those based on a
general cropland mask, according to MRAE and lower R2.

(4) Yields of the three crops had a clear increasing trend over the 14 year period, as shown by
the positive correlation coefficients between crop yields and the year (r_Year in Table 1). Partial t-test
showed that regression coefficient a2 was at the significance level of p < 0.001 (t > 3.0). According to
the derived coefficient a2, annual increase of crop yields was between 0.125 to 0.166 t/ha for corn, 0.037
to 0.058 t/ha for soybean, and 0.054 to 0.094 t/ha for winter wheat over the 14 year period, dependent
on regions.

(5) Although EVI2 at peak growth stage accounted for yield variability effectively (Section 3.3),
considerable temporal variability over the long period was due to the long term yield trends. Over the
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study period, yield variability due to the long term trend and due to spatial heterogeneity were
comparable, as demonstrated by the comparable correlation coefficients r_EVI2 and r_Year.

(6) For all cases in Figure 7, there was an underestimation when yields were higher than average
and an overestimation when yields were lower than average. This tendency was less severe when
crop-specific masks were used, as linear regression between the estimated and reported yields had a
larger slope using crop-specific masks than using a general cropland mask.
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Figure 7. Relationships between reported and estimated crop yields at the county level for the period
from 2003 to 2016. Crop yields were estimated using a multiple linear regression model from average
EVI2 at the peak growth stages and year as independent variables. EVI2 was extracted using a general
cropland mask (GM) and crop-specific masks (SM).
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Table 1. Models for yield estimation (Equation (2)) in three agricultural regions, and their performance assessment. a0, a1, and a2: coefficients of the multiple linear
regression model; σ: the uncertainty of the coefficient; r_EVI2 and r_Year: correlation coefficients for EVI2 and year, respectively; mean yield: average county level
yields; RMSE: root mean square error of estimation; R2: coefficient of determination; MRAE: mean relative absolute error of estimation; F: F-test; n: number of samples;
SM: crop-specific mask; GM: general cropland mask. All models are at the significance level of p < 0.001, except for shaded models with p < 0.01.

a0 a1 σ(a1) a2 σ(a2) r_EVI2 r_Year Yield (t/ha) RMSE R2 MRAE (%) F n

Winter
wheat, SM

South −0.069 12.135 1.060 0.094 0.013 0.59 0.31 5.086 0.574 0.54 9.0 79 139
West 1.675 8.042 1.070 0.079 0.012 0.42 0.33 5.054 0.564 0.37 9.2 40 140

Central 3.567 0.909 1.745 0.062 0.021 0.03 0.32 4.346 0.721 0.10 12.1 5 83
All 4.904 0.607 0.47 9.8 362

Winter
wheat, GM

South 0.966 6.937 1.020 0.055 0.015 0.51 0.32 5.095 0.695 0.33 11.3 33 140
West 2.217 4.861 0.880 0.054 0.013 0.42 0.33 5.054 0.606 0.27 9.8 25 140

Central 4.593 −1.611 1.539 0.065 0.021 −0.06 0.31 4.341 0.722 0.11 12.5 5 82
All 4.904 0.668 0.36 11.0 362

Corn, SM

South −1.245 16.019 1.491 0.164 0.016 0.57 0.55 9.600 0.738 0.62 6.4 113 140
West 0.184 12.190 1.304 0.163 0.017 0.52 0.55 8.643 0.782 0.57 7.5 91 140

Central 1.042 10.525 1.849 0.150 0.026 0.53 0.53 8.174 0.870 0.50 8.9 37 78
All 8.915 0.786 0.65 7.3 358

Corn, GM

South 1.699 12.253 1.108 0.142 0.016 0.64 0.55 9.600 0.728 0.63 6.4 118 140
West 2.697 9.204 1.108 0.166 0.017 0.47 0.55 8.643 0.817 0.53 7.8 78 140

Central 2.960 8.817 1.870 0.125 0.028 0.49 0.47 8.172 0.962 0.39 10.2 26 83
All 8.904 0.820 0.62 7.8 363

Soybean,
SM

South −1.720 6.944 0.617 0.057 0.007 0.61 0.48 2.880 0.305 0.60 9.3 103 140
West −1.519 6.437 0.488 0.056 0.006 0.66 0.45 2.722 0.293 0.65 9.5 127 140

Central −0.329 4.321 0.682 0.046 0.010 0.58 0.46 2.478 0.321 0.49 10.8 35 78
All 2.730 0.304 0.64 9.7 358

Soybean,
GM

South −0.254 4.962 0.485 0.049 0.007 0.64 0.48 2.880 0.319 0.57 10.0 89 140
West −0.203 4.881 0.430 0.058 0.007 0.61 0.45 2.722 0.317 0.59 10.6 98 140

Central 0.413 3.696 0.665 0.037 0.010 0.56 0.43 2.477 0.339 0.41 11.9 28 82
All 2.727 0.323 0.59 10.7 362
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4. Discussion

4.1. Discrimination of Major Crops

For crop yield estimation using vegetation indices, the index should represent a particular crop.
Annual crop inventory map was not available before the year of 2011 in Canada, making it difficult to
estimate yields in a historical year. Using the cloud computing platform of the Google Earth Engine,
Massey et al. [45] produced high-resolution (30 m) circa-2010 cropland extent classification for North
America; however, different crops were not identified. Using annual crop classification maps of
multiple years, crop-specific masks were generated and used for yield forecast in Canada [46]; however,
the masks represent spatio-temporal “likelihood” distribution of crops and do not reflect the annual
variation of the crop area changes. Using the decision tree algorithm, we were able to discriminate the
four major crops with minimal requirement of ground truth data for training the classifier, thus mapping
major crop types back to 2000 using 250 m time-series MODIS data [31]. Although a satisfactory result
was achieved to extract “pure” crop pixels, the majority of pixels at 250 m resolution were mixed in
the regions of study, leading to large omission/commission errors in classification and impacting the
creation of crop-specific masks (Figure 2). County-level phenological patterns for the three annual
crops, represented by EVI2 extracted using crop-specific masks, were contaminated by this pixel mixing
effect (Figure 3). Many experimental studies have been conducted to merge high-spatial-low-temporal
resolution data with low-spatial-high-temporal resolution data to generate time-series high resolution
data [17,27–29,47]. Although applying this approach to the regional scale can be a challenge due
to huge data volume and the need for intensive computational resources, it could be applicable as
cloud computing becomes mature, or if the approach could be implemented at field scale instead of
pixel scale.

4.2. Issues with Crop Yield Estimation in Areas with Mixed Cropping System

It is observed that EVI2 extracted using the general cropland mask was correlated with yields
of the three annual crops positively in summer and negatively in spring and fall. This reveals the
following two aspects of the reality. First, yields of the three crops were highly correlated, with a
much stronger correlation between corn and soybean (R2 = 0.71) than that between corn and winter
wheat (R2 = 0.30). This echoes similar yield limiting factors of the three crops related to environmental
conditions. The relatively weaker correlation between winter wheat and the two summer crops
could be due to the difference in their growing cycles and the experienced different meteorological
conditions. In the study region, the peak growth stage for winter wheat is in late May, whereas for
corn and soybean it is in August. Second, the negative correlation in spring could be due to the typical
phenological cycles and the area proportion of soybean and corn. A negative correlation was observed
between county-level EVI2 during the spring and the areal proportions of corn and soybean (Figure 8a).
This was understandable because these two crops are seeded in spring when the corresponding EVI2
is low; thus, the larger areal proportion of these two crops corresponded to the lower average EVI2.
On the contrary, the county-level areal proportion of these two crops was positively correlated with the
county level grain yield (Figure 8b). This suggests that soybean and corn are less likely to be seeded in
counties where yield of the two crops is low. According to the reported crop yields and harvested areas,
the counties distributed to the east and north of the study area have relatively lower yields, and this
tendency is persistent from year to year. The negative correlation indicates that the effect associated
with area proportions of different crops has not been completely eliminated by using crop-specific
masks (Figure 4).

The inferior performance for yield estimation in Central Ontario (larger MRAE) was because
crop yields in this region are relatively low. Another reason is that annual crops are not extensively
distributed in the region, thus coarse resolution MODIS EVI2 cannot effectively capture annual
crop growth conditions. Higher resolution remote sensing data would be useful in improving the
performance in this case.
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As shown in Figure 2, large confusion existed between classification of corn and soybean and
between winter wheat and hay, but not between the two groups. This confusion would not have a big
impact on yield estimation from EVI2 at peak growing stage extracted using the crop-specific masks,
as during their peak growing stages, corn and soybean had about the same EVI2, and winter wheat
and hay had about the same EVI2. Further improvement of crop-specific masks might improve yield
estimation, but this will rely on higher resolution data to reduce pixel mixing effects.
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4.3. Issues with Yield Estimation across Different Years

The goal of this study was to establish a crop yield estimation model applicable across different
years for regions with mixed crops using MODIS vegetation indices. The long-term crop yield increasing
trend has not been considered in some of the similar yield estimation models [1,21,42]. Using a regression
tree approach, Johnson estimated corn and soybean yields from MODIS NDVI and the daytime land
surface temperature (LST) in the United States corn belt region [1]. The estimation error for the years
2006–2011 was 0.38–0.47 t/ha for soybean and 0.96–1.26 t/ha for corn. Taking into consideration the
yield trends, we obtained an estimation error of 0.29–0.32 t/ha for soybean and 0.74–0.87 for corn using
peak growing stage EVI2 only. Using a simple linear regression and phenologically adjusted MODIS
EVI2, Bolton and Friedl estimated crop yields in Central United States [42], and obtained a relative
estimation error of 8%–14% for soybean and 9%–12% for corn in the years 2004–2009. In our study,
the estimation error using crop-specific masks was 9.7% for soybean and 7.3% for corn. This shows the
effectiveness of our model for crop yield estimation.

Although the established multiple linear regression models performed well for yield estimation of
the three crops across different years, large estimation error can happen in some years. Figure 9 shows
the comparison of MRAE for yield estimation, obtained using the all-year multiple linear regression
models and using the year-specific strongest linear regression models based on time-series EVI2 only.
Each sample represents estimation error for one year. The samples reside mostly below the 1:1 lines,
showing a lower estimation accuracy using the all-year model.

For winter wheat, the difference between the all-year model and the year-specific model was
relatively small. The largest difference was in 2016 for the models using the general cropland mask,
with MRAE of 16% for the all-year model and 10% for the year-specific model, and respective MRAE of
11% and 13% for the models using crop-specific mask (Figure 9a). For corn, the largest difference was
observed in 2004, with MRAE of 14% using crop specific mask, 12% using the general cropland mask for
the all-year model, and 4% for the year-specific model (Figure 9b). For soybean, the largest difference
was observed in 2004 (15% and 16% using the all-year model, and 6% and 7% using year-specific
model, for general cropland mask and crop-specific mask, respectively) and 2007 (24% and 20%
using the all-year model, and 7% and 11% using the year-specific model, for general cropland mask
and crop-specific mask, respectively) (Figure 9c). This large difference in estimation errors between
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the all-year model and the year-specific model might have been induced by a lower than normal
precipitation in the maturity stage of the two crops (in September). Figure 10 shows the monthly
precipitation during July–September versus the long term monthly precipitation normal, as obtained
from the weather station in London, Ontario. The monthly precipitation in September of 2004 (18.4 mm)
and 2007 (44.6 mm) was much lower than normal (98.9 mm), which may have impacted crop growth
after the peak stage in August, which had not been captured by peak growing stage EVI2.
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Figure 9. Comparison of yield estimation error, that is, mean relative absolute error (MRAE, %),
using 250 m MODIS EVI2 using year-specific models and an all-year model. EVI2 was extracted using
a general cropland mask and crop-specific mask for 2003–2016. The circles show the results of the
years when there is a large difference between the all-year model and the year-specific model using the
general cropland mask.

It was considered that the year-specific model captured the spatial variability of yields, whereas
the all-year model captured both spatial and temporal variability. It then seems that spatial variability
of corn and soybean yields were captured by EVI2 better than that of winter wheat, as demonstrated
by a generally lower MRAE using the year-specific model. In contrast, the all-year models showed an
inefficiency in capturing inter-annual variability of corn and soybean yields for some years (Figure 9b,c).
For the all-year model, the variable “year” captured temporal variability only, by assuming a constant
variation of yields throughout the whole period, yet this might not be true. The average EVI2 at peak
growth stages captured spatial variability as well as temporal variability if inter-annual variability
of growth conditions showed up during the peak growth stages. A limit for the model in this study
was that yield variability induced by abnormal growth conditions after the peak growth stage was
not captured.
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4.4. Inter-Annual Variability of the Relationships between EVI2 and Crop Yields

Vegetation indices are highly correlated with crop photosynthetic capacity [10,48], and can be
used to model biomass accumulation and to estimate crop yield [13,49]. They are standard products
(or can be derived) from measurements of many satellite sensors, particularly for the coarse resolution
operational satellites [50–53]. This provides a basis for regional-scale crop yield modeling using
regression models [1,21,42]. It was observed that crop yield was best correlated with EVI2 derived
from a time period corresponding to peak growth stage of the crops (Figures 3 and 4), which has been
confirmed by many studies. For instance, it was reported that MODIS data acquired 65–75 days after
green-up for maize and 80 days after green-up for soybean provided the best yield forecast in Central
United States [42]. Mkhabela et al. [21] observed that MODIS NDVI from late June to early July can
provide preliminary yield forecasts across the Canadian Prairies. The study by Johnson [1] on soybean
and corn yield estimation in the corn belt region of the central United States also showed that MODIS
NDVI was best from late July to early August.

However, empirical models based on vegetation indices may be spatially or temporally
dependent [19]. The inter-annual variability was shown by either variations of the best time for
yield estimation or the difference in linear regression models (Figure 5). This was determined by
year-specific meteorological conditions, crop growth calendars, as well as management practices
(e.g., areal proportions of crops and rotational decisions). EVI2 at peak growth stage can capture the
cumulative growth conditions before this time but cannot capture important yield limiting events
onwards. As observed from this study, the exact time for the highest R2 between yield and EVI2 varied
within a wide time window, in which the linear correlation was still significant but was lower than the
largest R2. A regression model could be established by averaging vegetation indices over this time
window [21,54]. This would lead to a more stable regression model applicable to multiple years and
might be useful for yield forecasting, but will induce an inferior performance for a particular year
when specific yield limiting events in that year are not captured.
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5. Conclusions

In this study, time-series two-band enhanced vegetation index (EVI2) derived from 8 day composite
250 m MODIS reflectance data were used for crop yield estimation at the county level in Southern,
Western, and Central Ontario agricultural regions. The regions are characterized by major crops of
distinct phenological patterns, such as winter wheat and forage crops versus soybean and corn. A fuzzy
decision tree classifier was used to identify these major annual crops to create crop-specific masks for
extraction of county-level EVI2. The classification algorithm was able to identify pure pixels of major
crops in the study area, with relatively large errors compared with high resolution crop classification
maps and the reported county-level harvested area of crops. County-level crop yields were strongly
correlated with EVI2 extracted at peak crop growth stages. Crop-specific masks were found to be
able to decompose the compounding effects of different phenological patterns. Although accuracy
of crop yield estimation using a general cropland mask was not considerably lower than that using
crop-specific masks, the model may be impacted by other factors such as areal proportions of different
crops. Cautions should be taken in using the general cropland mask when actual cropping condition
(e.g., difference in relative areal proportions) is not known. The multiple linear regression model using
peak stage average EVI2 and the year as independent variables can be used to map spatial-temporal
variability of crop yields across different years with satisfaction; however, model performance may
be poor in some years when important yield limiting factors are not captured by EVI2 at the peak
growth stage. Further refinement of crop-specific masks and incorporation of additional information
on growth conditions may help improve the performance of crop yield estimation at regional scale.
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