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Abstract: Mapping forest composition using multiseasonal optical time series remains a challenge.
Highly contrasted results are reported from one study to another suggesting that drivers of
classification errors are still under-explored. We evaluated the performances of single-year Formosat-2
time series to discriminate tree species in temperate forests in France and investigated how predictions
vary statistically and spatially across multiple years. Our objective was to better estimate the impact
of spatial autocorrelation in the validation data on measurement accuracy and to understand which
drivers in the time series are responsible for classification errors. The experiments were based on
10 Formosat-2 image time series irregularly acquired during the seasonal vegetation cycle from
2006 to 2014. Due to lot of clouds in the year 2006, an alternative 2006 time series using only
cloud-free images has been added. Thirteen tree species were classified in each single-year dataset
based on the Support Vector Machine (SVM) algorithm. The performances were assessed using a
spatial leave-one-out cross validation (SLOO-CV) strategy, thereby guaranteeing full independence
of the validation samples, and compared with standard non-spatial leave-one-out cross-validation
(LOO-CV). The results show relatively close statistical performances from one year to the next despite
the differences between the annual time series. Good agreements between years were observed in
monospecific tree plantations of broadleaf species versus high disparity in other forests composed of
different species. A strong positive bias in the accuracy assessment (up to 0.4 of Overall Accuracy
(OA)) was also found when spatial dependence in the validation data was not removed. Using the
SLOO-CV approach, the average OA values per year ranged from 0.48 for 2006 to 0.60 for 2013, which
satisfactorily represents the spatial instability of species prediction between years.
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1. Introduction

Forest ecosystems play a major role in global biodiversity [1]. They provide several services
to humanity including carbon sequestration (which regulates climate [2]), timber production [3],
soil protection [4], and recreation. They also have an impact on human health and well-being. However,
the provision of such ecosystem services depends on several factors including the diversity of tree
species [5]. Therefore, knowing the distribution of tree species in forests is crucial to assess ecosystem
functions and services. More broadly, information on tree species is required for forest management
and also for long-term forest monitoring, especially in the current context of climate change and related
disturbances (forest fires, windstorms, drought, pests and diseases) [6].
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Remote sensing has long been used to collect information on forest resources including stand
composition [7,8]. Nevertheless, accurately distinguishing tree species is still challenging [9]. In the
past, maps of tree species were based on field surveys completed by computer-aided analysis of
aerial photographs [10,11]. While this approach provides accurate operational results for forest
managers, it is limited to small spatial extent because it is costly and time consuming, which also
affects its updating. In the last few decades, various types of remotely sensed images have been
used to automate the identification of forest tree species. Some authors focused on the spatial
resolution using very high-resolution satellite or airborne imagery [12–15]. They assumed the
classification would benefit from the spatially detailed information and would therefore be accurate.
Despite some successful results, this approach revealed itself to be of limited interest when only
a single date was used due to the low spectral resolution of the data because of the reduced spectral
and temporal information. Alternatively, as tree morphology and biochemical traits have a subtle
influence on spectral reflectance [16], several authors explored airborne hyperspectral imagery [17–19].
Depending on the number of classes of species, on the methodology used for classification, and on the
characteristics of the images (pixel size, number of spectral bands), the accuracy of the classification
varied. Nevertheless, studies based on hyperspectral imagery were typically more accurate than those
based on single-date multispectral data [9].

Taking advantage of the temporal dimension of the satellite data was another way to separate tree
species [9]. Time series can capture the phenological behavior of the vegetation and this functional trait
can be useful to discriminate the forest types. Changes in pigment contents, water and leaf morphology
across seasons can vary from one species to another. Time series with images covering all phenological
events from green-up to senescence (leaf-on, spring flush, autumn senescence, leaf-off) can produce
detailed classification results. The use of multitemporal data for this purpose is not new. This approach
has been explored from various image datasets of different spatial and temporal resolutions based on
spaceborne sensors such as MODIS [20,21], Landsat [22–26], RapidEye [27], WorldView [28], as airborne
sensor [29,30] or unmanned aerial systems [31]. More recently, the potential of the new freely available
high spatial resolution Sentinel-2 (S2) data has been investigated [32–36]. In general, the authors found
it advantageous to combine images acquired in spring and autumn, at the key phenological stages
of temperate forests, since it had a positive influence on the accuracy of the classification. Images
acquired in summer are also frequently selected in features ranking procedures, particularly for conifer
species [36], but also for deciduous species [30]. From a spectral point of view, red-edge bands and
SWIR bands are reported to be important variables when S2 time series are used [32–34].

Despite the increasing number of studies that use time series to identify forest types, the true
predictive power of these kinds of data remain to be demonstrated. Even though it is difficult
to compare studies because of the use of different methods, sensors, and classes of tree species,
we observed very contrasted results from one study to another. For instance, using four dates for
S2 data in 2017, Persson et al. [34] obtained a kappa value of 0.83 to classify five species (Norway
spruce—Picea abies; Scots pine—Pinus sylvestris; Hybrid larch—Larix x marschlinsii; Birch—Betula sp.
and Pedunculate Oak—Quercus robur). This differs substantially from the Immitzer’s results [32]
(kappa = 0.59) as they used only two S2 images to map seven species including Norway spruce,
Scots pine, European larch (Larix decidua) and Oak (Oak sp). There was also a difference of almost
0.2 points of overall accuracy (OA) between a study by Persson et al. [34] and one by Liu et al. [35]
who classified eight types of forest in China with the same number of S2 images. In another study,
using only two S2 images to separate 11 forest classes of broadleaves and conifers, Bolyn et al. [33]
obtained very accurate results (OA of 0.93) in contrast with previous works but in line with others
based on dense time series acquired using different sensors [27,37,38].

The notable difference in accuracy among past studies suggests a better understanding is required
of the factors that affect the classification of species, as recommended by [9]. Several drivers of
classification errors remain insufficiently explored, among which, spatial autocorrelation of reference
data has long been identified but rarely quantified [39,40]. Spatial dependence in the reference data
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due to an inadequate sampling strategy to split training and validation sets can wrongly increase
classification accuracy [39,41,42]. Despite different approaches addressing this issue by imposing
a spatial stratification to select samples for training and testing [41,42], the spatial autocorrelation is not
always estimated explicitely. This can lead to keep a residual spatial dependence between training and
testing samples and not to fully eliminate the spatial overfitting. Contamination by clouds and cloud
shadows in dense image high resolution time series may also have a major impact on classification
performances. Because the distribution of such contamination may vary over time and in space across
years, a multiyear analysis is required to reliably evaluate their effect.

The first objective of this study is to explore the stability of classification results in tree species
discrimination from optical remotely sensed time series data of multiple years. The second objective is
to understand the main drivers that affect the classification accuracy in this context. To our knowledge,
this is the first study of variability between one-year classifications of tree species based on multiple
years using dense image high spatial resolution time series. We evaluated the classification performance
of single-year Formosat-2 time series in distinguishing forest types with spatially independent
validation data. We also investigated how the predictions vary statistically and spatially across
multiple years (from 2006 to 2014). The main contribution of this work is a better estimation of the
classification accuracy of the forest maps by reducing optimistic bias due to spatial autocorrelation.
The second contribution, resulting from the first, is a finer understanding of the drivers responsible for
classification errors. We hypothesize that time series data improve species discrimination compared to
single-date image due to seasonal variability in spectral reflectance between species.

2. Material

2.1. Study Area

The study site is located in south-western France, next to Toulouse, and covers an area of
24 km × 24 km (Figure 1). This delimited area was determined by a satellite acquisitions scheme
by the Centre National d’Etudes Spatiales (CNES) who acquired a Formosat-2 Satellite Image Time
Series (SITS) of the site. The Garonne river crosses the eastern part of the study area, influencing soil
composition and the nearly flat topography of the area. The climate is sub-Atlantic characterized
by sunny autumns, hot dry summers, and mild rainy winters (the average annual temperature is
>13 ◦C; annual precipitation = 656 mm). The landscape is dominated by arable lands (including wheat,
sunflower, maize) and grasslands. Forests cover up to 10% of the landscape (53 km2).

2.2. Satellite Image Time Series

We used a dense optical image dataset composed of Formosat-2 time series acquired in nine
consecutive years from 2006 to 2014. This dataset was obtained during preparation for the Sentinel-2
and VENµS mission with cooperation between the Israeli Space Agency (ISA) and the French CNES [43].
A total of 156 dates was acquired with an average of 14 images per year and a maximum of 43 images
in 2006. The distribution of the dates over time varied from one year to another and the number of
images available during the growth season differed from the number available at the end of vegetation
season (Figure 2).
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Figure 1. The map on the left shows the location of the study area in the Haute-Garonne district
(in dark grey) near Toulouse, France. On the right, a false-color image acquired on 13 August 2013
which represents the entire Formosat-2 scene covering an extent of 24 × 24 km.
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Figure 2. Number and acquisition dates of each image in the Formosat-2 time series from 2006 to 2014.

Cloud coverage also varied considerably from one date to another, ranging from a minimum of 8
cloud-free images in 2011 to a maximum of 20 in 2006. For 2006, by visual inspection, we created an
additional dataset (named 2006 bis) by selecting only the cloud-free images, resulting in a time series
of 20 dates (compared to the original 46).

The Formosat-2 multispectral images are delivered in an 8-bit radiometric resolution. Each image
provides 4 spectral bands ranging from the visible (Blue: 0.45–0.52 µm, Green: 0.53–0.60 µm, Red:
0.63–0.69 µm) to the near-infrared (NIR: 0.76–0.90 µm) with a nominal pixel size of 8 m. All the images
were acquired under a constant viewing angle and a field of view of 24 km like Landsat, VENµS
and Sentinel-2.
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2.3. Ancillary Data

A forest mask produced in 1996 by the French National Forest Inventory database (IGN BDForêt®,
v.1) was used to select forest pixels in the SITS (i.e., forest stands with a minimum area of 2.25
hectares) and to exclude non-forested areas. Based on aerial photographs taken in 2006, 2010 and 2013
(IGN BDOrtho®), the mask was manually updated to retain only SITS forest stands that remained
stable over the nine year period

2.4. Field Data

Four field campaigns were conducted between November 2013 and January 2017 to identify and
locate reference samples of tree species in the study site. All the main forests were visited. Only the
dominant broadleaf and conifer tree species were recorded. To insure tree species purity in the training
samples, plots were delimited at the center of homogeneous areas covering an area of approximatly
576 m2 (i.e., nine contiguous 8 m × 8 m Formosat-2 pixels). Only the pixel at the center of each area
was used for the classification protocol. Plots were located using a Garmin GPSMap 62st receiver
(3–5 m accuracy) and distributed over 72 distinct forest stands.

Thirteen tree species of which eight were broadleaf species and five conifer species were studied
(Table 1). In some species, identification was limited to the genus level because of the existence of
cultivars (case of Aspen) and the difficulty involved in determining the exact species of Oak, Willow
and Eucalyptus. We acquired a total of 1262 sample plots (named reference samples in the rest of the
paper). Class distribution was moderately imbalanced reflecting the uneven distribution of species
abundances in the forests. The number of samples varied from 50 (the minimum for Willow) to 211
(the maximum for Aspen). Conifers were less well represented with an average of 73 samples per class
compared with 112 for broadleaf species.

Table 1. List of tree species with their sample size, in pixels, collected during field surveys (n = 1262).
The number of forest stands in which the samples were collected is also provided. Stand delimitation
is based on the French National Forest Inventory database (IGN BDForêt® v.1).

Species Sample Size Forest Stands

Broadleaf
Silver birch (Betula pendula) 85 3
Oak (Quercus robur/pubescens/petraea) 115 12
Red Oak (Quercus rubra) 147 7
Aspen (Populus spp.) 211 6
European Ash (Fraxinus excelsior) 80 3
Black locust (Robinia pseudoacacia) 63 7
Willow (Salix spp.) 50 3
Eucalyptus (Eucalyptus spp.) 148 4

Conifer
Corsican Pine (Pinus nigra subsp. laricio) 70 6
Maritime Pine (Pinus pinaster) 103 7
Black Pine (Pinus nigra) 55 2
Silver Fir (Abies alba) 75 5
Douglas Fir (Pseudotsuga menziesii) 60 7

3. Classification Protocol

A global overview of the classification protocol applied on each Formosat-2 single-year time series
is shown in Figure 3.

3.1. Pre-Processing

In this step, surface reflectance time series were produced from the Formosat-2 level 1A images
using the MACCS (Multisensor Atmospheric Correction and Cloud Screening) processing chain
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developed by the CNES [44,45]. MACCS involved orthorectification, atmospheric correction, detection
of clouds and cloud shadows, and reduction of topographic effects on illumination, based on
multitemporal and multispectral criteria. Atmospheric correction relies on the estimation of aerosol
optical thickness based on a spectro-temporal technique that minimizes (i) variations in surface
reflectances between pixels acquired consecutive cloud-free images after correction and (ii) differences
between the blue surface reflectance predicted from the red band (empirical relationship) and the blue
surface reflectance obtained after correction [46]. Clouds are detected using a multitemporal approach
that analyzes the increase in reflectance in the blue spectral band [45]. If high variation is observed,
cloud is likely to be present. Based on this method, masks of clouds and related shadows are produced
by MACCS for each image in the time series.

In the second step, SITS of each year were filtered using a linear gap-filling algorithm applied to
each spectral band to remove noisy data (i.e., cloudy and shady pixels) and to retrieve their surface
reflectance [47]. Invalid pixels were replaced by the interpolated values from the closest available valid
pixels in the time series. Gap-filling was chosen for its simplicity and its previously demonstrated
efficiency already demonstrated when time gaps between consecutive images are limited [48].

  

Field data Ancillary data

Forest mask 

Pre-processing
using MACCS

Training set

Test set

(n=1262)

- Atmospheric correction
- Orthorectification
- Cloud detection

 - Optimization of the   
   hyperparameters 
   (cross-validation)

IGN
BD Foret

Split

Image data

2007 2014...

Annual Formosat-2 SITS

Annual
Cloud masks

Annual

Gap filling of
 annual time series

Training: 
one model / year

 SVM (RBF, Linear)

Predicting: 
one map / year

Accuracy 
assessment

Accuracy report

2014

...

Annual map of tree species

Multi-year
comparison

2006

2006

2007

- LOO-CV
- SLOO-CV

50 repetitions

Top-Of-Canopy
   Reflectances

Figure 3. Classification protocol for a single year time series, repeated for the 9 years available
from 2006 to 2014. The splitting procedure to create independent training and test sets is based
on a spatial and non-spatial leave-one-out cross-validation (SLOO-CV and LOO-CV, respectively).
The LOO-CV were trained with exactly the same number of training samples as the SLOO-CV,
after random undersampling.



Remote Sens. 2019, 11, 2512 7 of 28

3.2. Training

Classification models were built using all spectral bands of each annual time series as predictors
with exactly the same pixels for training and testing. We used the supervised SVM (Support Vector
Machine) classifier [49] known to be the best approach in the case of small training data sets with
respect to data dimensionality [50]. In this study, we selected the Radial Basis Function (RBF) kernel
which is the most frequently used and has already been proven to be effective in the case of similar
classification problems [51]. Hyperparameters including the regularization parameter (C) and the
kernel bandwidth (γ) were tuned by cross-validation in a search space with the following settings:
C = {0.01, 0.1, ..., 110} and γ = {1−9, 1−8, ..., 13}. A linear kernel was also tested for comparison with
RBF. However, since the linear kernel performed worse, the results are not presented here. To account
for imbalanced data and to prevent potential bias due to the dominant classes [52], the class weights in
the SVM parameters were also modified. Weights were set inversely proportional to class frequencies.
SVM was computed using the scikit-learn python library [53]. Vector of features were standardized
(i.e., centering and scaling to unit variance) prior to training.

3.3. Estimating Prediction Errors by Spatial Cross-Validation

Because spatial autocorrelation between training and test sets may produce optimistic bias in
assessments of classification performance [39,41,42], we used a spatial leave-one-out cross-validation
(SLOO-CV) sampling strategy [54,55] to separate the training and test sets to guarantee full
independence between them. In this approach, one reference sample is used as the test set and
the remaining samples, non-spatially correlated with the test set, are used as the training set (Figure 4).
This is repeated n times where n equals the number of samples. The n prediction results are then
averaged to obtain an estimation of the prediction error. In our case, the test set was composed of
one pixel of each class (i.e., a total of 13 pixels at each iteration) and the procedure was repeated
50 times, this being the number of reference samples of the lowest class size. We compared this
splitting procedure with the classical non-spatial leave-one-out cross-validation strategy (LOO-CV)
using the same training size per class as in SLOO-CV, by random undersampling. For year-to-year
comparison, we also used the same training and test sets related to each sampling approach by setting
the same random seed.

  

d

Pixel for testing

Pixels for training

Pixels spatially correlated
with the test
(removed)

Figure 4. Spatial leave-one-out cross-validation (SLOO-CV) schema for one class. One pixel is used
for testing. The other pixels are used for training, except pixels geographically too close to the pixel
selected for testing. This procedure is repeated n times where n is the number of reference samples.
Spatial autocorrelation between nearby pixels is assumed up to a distance d which can be estimated
using Moran’s I.

The spatial autocorrelation distance was estimated by computing the Moran’s Index from the
pixels of forests in the SITS [56]. Moran’s I estimates the correlation between the value of a variable at
one location and nearby observations. The index ranges from -1 (negative spatial autocorrelation) to
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+1 (positive spatial autocorrelation) with a value close to 0 in the absence of spatial autocorrelation
(random spatial distribution). More formally, the Moran’s I is defined as the ratio of the covariance
between neighborhood pixels and the variance of the entire image:

I(d) =
n
S0

n
∑

i=1

n
∑

j=1
wi,j(xi − x)(xj − x)

n
∑

i=1
(xi − x)2

(1)

where, in our case, xi is the pixel value of x (a spectral band of the SITS for pixels of forests) at location
i, xj is the pixel value of x at location j (a nearby pixel of forest of i), x is the average value of x, n is the
number of pixels of forests in the image, wi,j is the weight equals to 1 if pixel j is within distance d of
pixel i, otherwise wi,j = 0, and S0 the sum of all wi,j’s:

S0 =
n

∑
i=1

n

∑
j=1

wi,j (2)

In this study, Moran’s I was computed for each spectral band of each year, for neighborhoods
(lags) varying from 1 to 100 pixels (i.e., from 8 m to 800 m). Based on correlograms, we evaluated
the distance between nearby pixels for which Moran’s I equals 0.2, considering the potential effect of
spatial autocorrelation as not significantly different from the thresold value of Moran’s I [57]. Then,
the median distance was calculated for each spectral band, taking all the dates of one year into
account (Figure 5). This was done for each year. Finally, the average value of the median distance of
each year was kept in the spatial cross-validation procedure to split the training and test sets. This
average value was estimated to be 340 m (i.e., 42 pixels).
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Figure 5. Moran’s I correlograms of each Formosat-2 spectral band of the Satellite Image Time Series
(SITS) 2013, for pixels representing forests. Each curve represents one date of the SITS. the red dashed
line represents the median distance value (in x) where Moran’s I = 0.2 (in y). For a Moran’s I thresold
value of 0.2, spatial independence between nearby pixels was assumed. This is the case beyond to
528 m in the blue band, 168 m in the green, 176 m in the red and 144 m in the near-infrared.

3.4. Accuracy Assessment of One-Year Classifications and Comparison

The results of the classifications were assessed according to the confusion matrix based on Overall
Accuracy (OA) and the F1 score (i.e., the harmonic mean of precision and recall varying from 0 for the
worst case to 1 for perfect classification), errors of omission and errors of commission. A Wilcoxon
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signed-rank test was used to determine if the difference in accuracy between annual classifications
and sampling strategies (LOO-CV vs SLOO-CV) was statistically significant.

Classifications were also compared spatially to highlight instability between years. A map
of uncertainty was produced by computing the number of agreements between the one-year
classifications (i.e., the modal value related to the class with the highest frequency) for each pixel.
Additionally, the distribution of this uncertainty was examined per class using either all the predicted
pixels or only the reference samples. Finally, the maps were visually inspected to identify problem
areas and to better understand the errors with the help of field knowledge. The maps shown in results
section were produced using the SLOO-CV.

4. Results

4.1. Overall Statistical Performances

The classification performances for each year are presented in Table 2. Generally speaking,
the performances were similar between the years but very different between sampling strategies
(SLOO-CV vs LOO-CV) in a given year.

When prediction errors were estimated by spatial cross-validation (SLOO-CV), the average OA
varied from 0.48 in 2007 to 0.60 in 2013 with high variability in the results (average standard deviation
of 0.12). No significant differences were observed between the years 2008–2012, 2012–2014 and
between 2006 and 2007 which were the cloudiest SITS (p < 0.05; Wilcoxon signed-rank test statistic;
see Appendix B for statistical details). For the year 2006, when cloudy images were removed from the
SITS (i.e., using the 2006bis dataset), the classification was improved, the performance was similar to
that in the other years (average OA = 0.57). The best classification was obtained using the 2013 time
series (average OA = 0.60).

When accuracy was computed using the standard leave-one-out cross-validation (LOO-CV),
prediction errors were very low compared to when SLOO-CV was used, suggesting a high optimistic
bias in the evaluation. The average OA varied from 0.97 in 2011 to 1.00 in 2006 and 2014 with a standard
deviation close to zero. The cloudiest years (2006 and 2007) did not differ significantly in performance
from the other years in most cases (Appendix B). These results contradict the previous ones: while the
year 2007 was the worst with the SLOO-CV, with LOO-CV it had the second best score.

In the following sections, we only detail the results based on the SLOO-CV strategy since it best
reflects the true performance of the classifications.

4.2. Accuracy per Species

In most cases, whatever the year, broadleaf tree species were better discriminated than
conifers (Figure 6). The highest performances were obtained for monospecific plantations of Red
oak (average F1 score = 87%) and Willow (average F1 score = 86%). Aspen was also detected with
good accuracy (average F1 score = 68%). Conversely, some species were difficult to identify, including
European ash (average F1 score = 26%) and Silver birch (average F1 score = 36%) except in the years
2010 and 2013.

High confusion rates were obtained for conifer tree species. Black pine was the worst class
with a F1 score close to zero, except in 2014 (F1 score = 62%). Maritime pines were generally better
discriminated but the performances remained low (average F1 score = 40%). The best agreement was
obtained for Silver fir (average F1 score = 50%) which reached its best score (average F1 score = 81%)
in the year 2010.
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Table 2. Accuracy report of spatial leave-one-out cross-validation (SLOO-CV) sampling strategy and leave-one-out cross-validation (LOO-CV) for each single-year
classification based on OA statistics. The 2006bis time series only includes cloud-free images of 2006. The average percentage of cloud coverage was estimated by
computing for each species the number of time each reference sample was affected by clouds (detected from the MACCS processing chain).

2006 2006bis 2007 2008 2009 2010 2011 2012 2013 2014

Classification accuracy (average Overall Accuracy ± standard deviation)

SLOO-CV 0.52 ± 0.13 0.57 ± 0.15 0.48 ± 0.12 0.57 ± 0.10 0.55 ± 0.11 0.56 ± 0.12 0.55 ± 0.11 0.58 ± 0.14 0.60 ± 0.11 0.58 ± 0.11
LOO-CV 1.00 ± 0.02 0.99 ± 0.03 0.99 ± 0.02 0.98 ± 0.04 0.99 ± 0.03 0.98 ± 0.03 0.97 ± 0.04 0.98 ± 0.04 0.99 ± 0.02 1.00 ± 0.02

Characteristics of each SITS

Number of images 43 20 15 11 16 14 12 13 17 15
Images in spring 13 4 2 1 2 3 4 3 3 5

Images in autumn 10 6 4 4 3 4 4 2 4 4
Cloud coverage 25% 0% 12% 5% 4% 3% 2% 0% 1% 0%
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Figure 6. Average F1 score (in %) per species and per year based on the SLOO-CV sampling strategy
using the Support Vector Machine (SVM) (RBF kernel) classifier. Values range from white (F1 score = 0%)
to dark green (F1 score = 100%). Average values of F1 score per year and per species are also provided
(in the bottom row and last column on the right, respectively).

On average, the year 2013 was the best, mainly because of a high score for Silver birch compared
to the other years. Year 2007 was the least accurate. Higher performance disparity was observed from
one year to another for most species, except Red oak and Willow.

4.3. Confusion between Species

Generally, when errors occurred, the broadleaf tree species were confused with each other as
well as with conifers. The main source of omissions for Silver birch was mispredictions as Oak which,
in turn, was confused with European ash but also with Black locust and with some pines (see the
confusion matrix for the year 2013 in Figure 7, for example). Red oak was the subject of very little
confusion. High rates of omissions were observed for European ash with misclassifications as Oak,
Aspen and Black locust. Under-detection was also observed for the evergreen Eucalyptus plantations
due to confusion with Willow. In conifer species, the errors mainly appeared between species of Pine
but also between Pine and Douglas fir.

Confusions between species were similar from one year to another but the commission and
omission errors rates varied and accuracy was very low for some species (Figure 8).
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Figure 8. Average rate of commission and omission errors (in %) per species and per year based on the
SLOO-CV sampling strategy.
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4.4. Spatial Agreement between Years

As revealed by the map of the modal class values, Oak was the most representative species
in the study region, especially in the small forests, which is consistent with our field observations
(Appendix A). Conifers and plantations of broadleaf species were less frequent but pixels of the same
class appear to be grouped in homogeneous stands, as expected.

When spatial uncertainty was analyzed using the map of agreements between the one-year
classifications, good stability was observed in the monospecific tree plantations of broadleaf
species (Figure 9). The stands composed of Aspen, Red oak, and Eucalyptus were clearly differentiated.
In contrast, in complex forests including a mix of different species, disagreements between annual
classifications were higher, as suggested by the previous statistical assessment. An example is given
in Figure 10 showing a mix forest composed of conifers (mainly Black pine but also Douglas fir and
Silver fir) and deciduous species (mainly Oak and Silver birch). There was considerable confusions
between conifer species from one year to another (low agreement). The extent of Silver birch areas was
also highly variable. In this forest, the dominant species were rather well-identified but their exact
location was inaccurate at the pixel level.

Significant disagreements between the classifications were also observed in other contexts,
especially in thin riparian forests and forest edges where species composition and diversity is high,
with lots of species unsampled (Figure 9). This was also true in low density forest stands, for which
confusions appeared with the understory vegetation. Finally, disagreements were also observed in
areas very affected by clouds and cloud shadows.

43
°3
0ʹ
0ʺ

N
43

°2
4ʹ
0ʺ

N

1°0ʹ0ʺE 1°6ʹ0ʺE 1°12ʹ0ʺE 1°18ʹ0ʺE

1 2 3 4 5 6 7 8 9 10

number	of	agreements

	1							3							5		6						8						10

Figure 9. Spatial comparison between the annual classifications of forest tree species from 2006 to 2014
(including 2006bis). The number of agreement is the modal value related to the class with the highest
frequency. This map illustrates the stability of predictions from one year to another with a high number
of disagreements in red (high uncertainty) and a low number of disagreements in green (high accuracy).
In many cases, homogeneous green areas are tree plantations of broadleaf species such as Red Oak and
Aspen or Eucalyptus.
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1km

	1							3						5		6							8					10
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Figure 10. Annual classifications of tree species in a mixed forest composed of different conifers and
broadleaf species. Instability was observed in the conifer plantations composed of Black pine, Silver fir
and Douglas fir. This was also the case for Silver birch. Part of the forest (in the north) has was excluded
from the analysis because of changes during the study period (clear-cuts and reforestation).

5. Discussion

In this study, an archive of Formosat-2 time series was used to classify tree species in temperate
forests in nine consecutive years. Each classification was validated using the same spatial leave-one-out
cross-validation approach to remove the test samples that were spatially correlated with the training
samples. To our knowledge, this is the first study to examine the stability of predictions from one
year to another using dense SITS of high spatial resolution with spatially independent validation data.
The present study is a first attempt to assess the robustness of tree species discrimination in multiple
years and to better understand the drivers that affect classification performances.

5.1. Effect of Spatial Autocorrelation: The SLOO-CV Strategy as a Standard

Our results revealed a strong positive bias in validation based on the usual LOO-CV strategy
for splitting reference data. This bias was already suspected in our previous studies when we used
stratified-k-fold but was not quantified [38,58]. Regarding the importance of the overestimation in the
classification accuracy (∆OA > 0.4 between LOO and SLOO-CV), the use of spatially independent
data for validation should no longer be an option but wherever possible, a requirement, in agreement
with the recommendation of [9].

Spatial autocorrelation in the reference data has long been known to affect the classification
and accuracy assessment [39,40,59,60]. Different sampling strategies for data splitting have already
been studied in the literature including spatial [42,55,61,62] and aspatial approaches [61,63–65].
Although the spatial sampling approach is recommended to reduce the spatial autocorrelation effect,
an aspatial (i.e., random, systematic or stratified) sampling strategy assuming independence between
training and test sets is usually used in remote sensing analyses for the sake of simplicity [65].

In this study, the SLOO-CV strategy was used to estimate an unbiased prediction performance,
similar to used in [54]. We measured the spatial dependence between nearby pixels of forests explicitly,
using the Moran’s I, as in [66], and we separated training and validation samples that were located
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geographically too close to one another. In other studies, spatial partitioning was achieved differently,
based on k-means clustering [42,67] or on the definition of patches [68], or blocks related to the spatial
structure [62]. In these approaches, the spatial dependence between training and test sets is supposed
to be removed but this is not verified. Whatever the spatial sampling method used, all the studies
demonstrated larger errors in predictions with lower spatial autocorrelation between training and test
sets, as we observed here. The absence of independence between training and testing samples thus
provides an inflated estimate of classification performances as confirmed by our results.

An important point to note is that we guaranteed complete independence between the training
and test sets but not among the training samples. Thus, spatial autocorrelation still persisted in
the training set. Compared to LOO-CV, the SLOO-CV strategy provides a statistical estimate of
accuracy that fits the quality of the map product better (and hence predictive performance) but in
terms of predictions, the results of classification results are similar. This is illustrated by the number of
agreements between the annual classifications for both LOO-CV and SLOO-CV (Figure 11). With the
exception of some classes (e.g., Maritime and Black pine), the distribution of agreements per class of
species is rather similar.
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(b) SLOO-CV sampling
Figure 11. Distribution per species of the number of agreements between the annual classifications
using all the predicted pixels for both the LOO-CV and SLOO-CV sampling strategies.

5.2. Effect of the Size of the Reference Sample

The size of the training sample dataset is known to be a key factor affecting both classification
accuracy and predictive performance [59,69]. In practice, it is hard to adequately judge the optimal
training set size which depend on several factors such as the number of features, the degree of
imbalance in class distribution, and the machine learning algorithm. In this study, we used the SVM
classifier, which is known to be less sensitive to sample size since the decision boundaries rely on only
a few support vectors. We also adjusted class weights to avoid bias due to the uneven distribution of
tree species. Nevertheless, we obtained a slightly significant positive correlation (r = 0.52; p-value = 0.06)
between the average number of pixels used for training (see Appendix D) and the average F1 score
obtained for each species (including all the years), suggesting a potential effect of training set size on
accuracy. We also observed that the least well-identified species were those with a limited number
of forest stands (only three for Silver birch, European ash and Black pine). For these small classes,
the presence of noise on the data (under detected clouds or cloud shadows under-detected, see below)
may have a greater negative impact on their discrimination. However, Willow is an exception, as it
was the least populated species with only 21 samples for training and a total of three forest stands
but obtained the second highest F1 score (average = 0.86) behind Red oak (average = 0.87) with
118 samples (Appendix D).
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More generally, due to the complexity of the learning problem (i.e., partial overlapping between
spectro-temporal signatures of species in the feature space), increasing the size of the training
sample and reducing the degree of imbalance in class distribution should improve the predictive
performance [70]. In a recent study, Bolyn et al. [33] obtained a high degree of accuracy (OA = 88.5%)
when they classified 11 forest classes (including seven tree species) in the entire Belgian Ardenne
ecoregion with only two Sentinel-2 dates. Although this statistical performance may be partially
inflated by spatial autocorrelation, this greater accuracy could also be explained by the large sample
size (from 2589 to 7068 pixels for each class with a minimum of 31 forest stands and a maximum of 64).
An equivalent level of performance (OA = 88.2%) was obtained by [34] when they identified five tree
species in a forest in central Sweden using four S2 images acquired from spring to autumn. However,
in their case study, the sample size was very close to ours (from 27 to 98 pixels per species). Spatial
overfitting is suspected, as in our previous works [38,58].

5.3. Effect of Clouds and Cloud Shadows

When we compared the stability of predictions from one year to another (i.e., the map of
agreements between the annual classifications) with the number of times the pixels were affected
by clouds or cloud shadows, we found no significant correlation. This indicates that disagreements
between the classifications can not be attributed to this factor. We observed that the years most affected
by clouds (2006 and 2007) had the lowest average OA values (52% and 48% respectively, see Table 2).
However, for the other years, the F1 score per species was not always consistent with the extent of
cloud coverage. For instance, in 2008, 11% of the reference pixels for Oak were affected by clouds
(Appendix C) but the F1 score was the highest of all the years. This suggests that when clouds and
cloud shadows are detected by the MACCS processing chain, the gap-filling approach is appropriate
to correct noisy pixels. This procedure is currently used in the French production center THEIA
(https://theia.cnes.fr) for Landsat, VENµS and Sentinel-2 level2A products.

An in-depth visual analysis of the map products in fact revealed that misdetections of clouds
and cloud shadows had a major effect on classification performances. When the forests were partially
affected by clouds and cloud shadows or when these were under detected (which is what happened in
the case of slight fog), spectral signatures were skewed and confusion between species was likely. This
issue is illustrated in Figure 12 which shows changes in the reflectance values of an Oak pixel in 2006.
On most of the dates, the pixel was free of clouds and shadows (green dots). In some cases, clouds
or cloud shadows were found and the pixel values were gap-filled by linear interpolation (orange
dots). But on certain dates, clouds or cloud shadows were not detected (red dots) and this influences
the spectro-temporal signature. These dates had erroneous values but also had a negative impact on
nearby gap-filled values since the dates are considered to be valid (e.g., see the 10th image in Figure 12).
Another example showing an erroneous spatial pattern in a forest stand due to undetected clouds
is provided in Appendix A3. This noise may influence the training step through the addition of
inadequate support vectors, as well as the validation step, if the reference pixel to be tested is impacted
by noise but the training pixels are not.

An alternative to the gap-filling approach to reduce noise could be the use of smoothing methods
applied to the whole time series and not only to a limited temporal window (i.e., the cloudy and shady
pixels). Non-parametric methods such as Whittaker smoother [71] or splines [72] may be appropriated.
Another way to limit the effect of noise could be reducing the number of features [73]. Limiting the
number of features in the classification protocol could help remove noise but also prevent the Hughes
phenomenon [74] (i.e., a decrease in accuracy with the addition of new features after an initial increase).
In theory, the Hughes effect should not be observed with the SVM classifier which is robust to the
dimensionality of data [75]. However, a previous study demonstrated a positive role of feature
selection on classification results with SVM, particularly when the training set used is small [76].

https://theia.cnes.fr
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Figure 12. Influence of undetected clouds in the time series, an example with the reflectance evolution
of a Oak tree pixel in 2006. If the dot is red in the infrared time series, it means the pixel is in a cloud or
in a shadow but this was not detected by the algorithm. So this pixel is taken as a valid pixel to be used
to gap-fill nearest missing data.

5.4. Effect of the Available Dates in the SITS

We hypothesized that time series data improve the identification of tree species compared to the
use of only one date or a couple of images due to phenological differences in spring or autumn. Using
several dates should be better than using one date, whatever the year, as demonstrated in [30,31,34].
However, because of the variation in the dates available from one year to another, the differences
in cloud and shadow contamination, and the potential Hughes effect, it is difficult to give a clear
answer concerning the most appropriate time windows to separate species. When we examine the
relationships between the classification performances and the number of dates acquired during the key
seasons, we find no evidence of a positive effect. For example, classification accuracy in the year 2008
was statistically equivalent to that in the year 2014 when there was comparable cloud coverage (<5%)
whereas we only had one available image in spring 2008 versus five in 2014. Similarly, classification
performance in the year 2009 was statistically identical to that in other years including in 2006bis.
However, in autumn 2009, no images were available from end of October to the middle of December
and only a very limited number of images were available in spring compared to 2006bis which had
four dates in spring and six dates in autumn (Figure 2).

In order to better evaluate the most relevant dates for classification and to assess the sensitivity
of our results to the Hughes effect, an additional analysis was carried out using a feature selection
approach following the SLOO-CV strategy. Feature selection was based on the simple Sequential
Forward Selection (SFS) algorithm which adds at each iteration, the most important feature (sensu OA)
in the pool of selected ones, starting with an empty set [77]. Each feature is permanently conserved
after selection and the process is repeated until all the features are included. Here, the feature selection
approach was applied for each year, using all the spectral bands of the available dates. However,
to reduce the computation time, we considered as a feature a single-date acquisition composed of four
spectral bands.

Globally, this analysis confirmed the difficulty to draw robust conclusions about the tangible
contribution of seasonal variations in species discrimination. The most important dates were highly
variable from one year to another because of the irregular acquisition dates. For instance, compared
to 2008, the maximum classification accuracy of 2011 (OA = 0.62) was statistically equivalent, for the
same number of dates (5 dates) after feature selection. However, the image ranking was quite different
with more dates selected in autumn in 2008 compared to 2011 (Figure 13a,b). In 2013, the first two most
important dates enabling to reach a similar level of accuracy (OA ≈ 0.62) were acquired in winter and
summer which is still different in 2014 (Figure 13c,d; see Appendix E for full results). What appears to
be constant in this additional analysis is the limited number of dates (around five) to reach maximum
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accuracy and the decrease in accuracy using all the dates. The identification of tree species is improved
with the use of multitemporal images compared to single-date image but in a most effective way
when feature selection is applied before training. The use of fewer features that contain the maximum
discrimination information about the tree species classes is better than the use of all the features of
which many of them could be correlated or irrelevant because of noise. These results confirms that the
Hughes effect can occur using SVM, as already observed by [76]. This is also in line with the Zhu and
Liu’s recommendations of selecting the most discriminative features before classifying forest types
using dense time series [24].
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Figure 13. Ranking-based feature selection of image dates for single-year classification of 2008 (a),
2011 (b), 2013 (c), 2014 (d).

In a study, a combination of three aerial images acquired in spring (March 17th), summer
(July 16th) and autumn (October 27th) provided the highest classification accuracy compared to all
possible combinations based on five dates [30]. When only one image was selected, autumn appeared
to be the best period to distinguish between common Oak, English Oak, Field Maple, Silver birch,
Aspen and small-leaved Elm. In other recent studies based on Sentinel-2 data, the optimal single date
was found in May [33,34]. The same observation was made when discrimating deciduous tree species
in a multitemporal image dataset acquired with an unmanned aerial system [31]. When more images
were combined, the best datasets included data acquired in different seasons (spring, early summer
and autumn) in accordance with [30].

5.5. Differences between Species

We found more difficulty to separate conifers than broadleaf species as previously highlighted in
other studies when multitemporal data are used [13,26,34,38,78]. Seasonal changes are less pronounced
which induces higher overlapping between spectro-temporal profiles. Pine species were the harder
to identified (in particular Corsican and Black pines). Among broadleaf species, European Ash and
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Silver birch were the most confused (contrary to [13]). The best agreements were obtained for Red
Oak, Eucalyptus, Willow and Aspen, in line with [31] for the latter species.

The evergreen phenology of Eucalyptus explains its high rate of agreements among 9 years
despite a medium F1-score (average of all years OA = 65%). Because of differences in morphological
and anatomical traits, optical properties also differ from those of conifers. The Red oak phenology
is also specific, in particular in autumn when leaves turn red due to the production of anthocyanins.
This gives a spectral characteristic which help to recognize them among the other species. For Willow,
stands are located in well-suited humid areas sometimes waterlogged. The variable moisture
conditions associated with a partially recovering canopy provide them a weaker reflectance in the
near-infrared band compared to the other broadleaf species which may explain the good classification
accuracy. For other species that cannot easily be separated, various factors may be involved, in addition
to close spectral signatures. Forest managing practice is one of them. Stand age, density and the
existence of understory vegetation are others. Spectral disparity for a given species (intra-species
variability) may also influence the classification [31].

6. Conclusions

This study based on temperate forests in France is the first to explore the stability of tree species
classification over nine consecutive years using dense high spatial resolution SITS with spatially
uncorrelated validation data. The study was based on surface reflectance products derived from
Formosat-2 optical time series acquired at irregular intervals from 2006 to 2014. Despite close statistical
results in terms of classification accuracy, we observed high spatial disparities from one year to
the next reflecting the moderate ability to predict tree species at the pixel level because of various
disturbing factors.

Based on our findings, several conclusions can be drawn:

1. Spatial autocorrelation within validation data drastically overestimates the classification accuracy.
In our context, an average optimistic bias of 0.4 of OA is observed when spatial dependence
remained (LOO-CV strategy vs SLOO-CV). In further studies, we recommend adapting the
data-splitting procedure to systematically reduce or eliminate spatial autocorrelation in the
validation set in order to provide more robust conclusions about the true predictive performance.

2. Noise in the time series (i.e., undetected clouds and shadows) affects the SVM based
classification performances. Despite accurate masks of clouds and shadows and a gap-filling
approach to correct invalid pixels, residual noise impacts the learning and prediction processes.
Feature selection is a good option to ignore noisy data, reduce data dimension, and to find the
optimal subset of images for classification. There is a clear benefit (+0.08 of OA in average) of using
fewer images containing the maximum discrimination information about the tree species classes.

3. The use of multitemporal images improves the tree species discrimination compared to
single-date image. However, there is no clear evidence that the positive effect is really due
to phenological differences between species. The most important dates varied from one year to
another with no strong preference for images acquired at the key seasons.

4. The monospecific broadleaf plantations of Aspen, Red Oak and Eucalyptus are the easiest to
classify. Conifers are the most difficult. The lowest accuracy was obtained for Silver birch,
European ash and Black pines for which only a few forest stands were available.

Perspectives of this study are twofold. The first one is the use of S2 time series to confirm the
results and assess the contribution of additional spectral bands such as the red-edge to separate tree
species for the same in situ dataset and area. With its 5-day revisit time, S2 provides many more data
in one year. These new time series should help better identify the best combination of multitemporal
images and check that the combination is consistent with phenological events of the tree species
concerned. Work is in progress to collect ground phenological observations on the study site. S2 also
offers the possibility to work at a larger scale and will thus give us more reference pixels to reduce the
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bias due to the spatial autocorrelation. The second is related to the Formosat-2 time series. Annual
datasets could be combined to reconstruct a synthesized multiyear time series based on all cloud-free
images to combine all the phenological events of the species into one representative year.

In order to reproduce this study or to have tree species ground references suitable for remote
sensing, our reference samples are publicly available at Zenodo, the Open Science platform at the
CERN Data (https://doi.org/10.5281/zenodo.2581400). An interactive web version of the predicted
species map using the 10 SITS with the Spatial Leave-One-Out cross-validation method (SLOO-CV) is
available online (https://dynafor1201.github.io/publications/maps/treespeciesformosat2/).
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Appendix A. Tree Species Map
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Figure A1. Map of the most predicted species using the 10 SITS with the Spatial Leave-One-Out
cross-validation method (SLOO-CV).
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Figure A2. Map of the most predicted species using the 10 SITS with the Leave-One-Out cross-validation
method (LOO-CV).

Appendix B. Significance Tables for Prediction between Years

Table A1. Wilcoxon signed-rank test significance table for SLOO-CV computed from the overall
accuracy of the 50 predictions for each single-year SITS. In bold, where p < 0.05.

2006 2006bis 2007 2008 2009 2010 2011 2012 2013 2014

2006 nan 244 242 255 302 354 313 194 193 309
2006bis 244 nan 198 551 335 407 307 556 384 459

2007 242 198 nan 143 112 90 208 120 57 144
2008 255 551 143 nan 349 345 365 433 275 257
2009 302 335 112 349 nan 288 299 348 173 229
2010 354 407 90 345 288 nan 382 284 215 384
2011 313 307 208 365 299 382 nan 315 166 250
2012 194 556 120 433 348 284 315 nan 356 451
2013 193 384 57 275 173 215 166 356 nan 360
2014 309 459 144 257 229 384 250 451 360 nan
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Table A2. Wilcoxon signed-rank test significance table for LOO-CV computed from the overall accuracy
of the 50 predictions for each single-year SITS. In bold, where p < 0.05.

2006 2006bis 2007 2008 2009 2010 2011 2012 2013 2014

2006 nan 0 0 0 0 0 0 0 0 6
2006bis 0 nan 6 20 18 30 29 30 10 7

2007 0 6 nan 4 10 0 6 5 0 6
2008 0 20 4 nan 22 27 25 42 4 5
2009 0 18 10 22 nan 30 11 32 16 11
2010 0 30 0 27 30 nan 16 30 0 12
2011 0 29 6 25 11 16 nan 16 6 7
2012 0 30 5 42 32 30 16 nan 4 13
2013 0 10 0 4 16 0 6 4 nan 7
2014 6 7 6 5 11 12 7 13 7 nan

Appendix C. Effect of Clouds and Cloud Shadows
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Figure A3. Example of misclassified forest stand (for European ash, in the north) due to under-detected
clouds in 1 September 2019. In the cloud mask, pixels in black are cloud and shadow free. Pixels in
white are cloudy or shady.
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Table A3. Percent of reference pixels affected by clouds or shadows detected by the MACCS algorithm
for each species and each year.

Species 2006 2006bis 2007 2008 2009 2010 2011 2012 2013 2014

Silver birch 26 0 17 1 9 0 0 0 4 0
Oak 24 0 20 11 6 5 1 0 2 0

Red Oak 21 0 11 0 1 6 3 0 0 0
Aspen 29 0 8 0 0 1 4 3 0 0

European Ash 22 0 11 6 5 1 0 0 3 1
Black locust 25 0 11 1 0 0 5 0 2 0

Willow 27 0 6 2 2 0 6 2 0 0
Eucalyptus 23 0 7 0 0 5 4 0 2 0

Corsican Pine 16 0 16 11 2 5 5 0 1 4
Maritime Pine 25 0 9 9 3 3 2 0 0 0

Black Pine 30 0 17 5 10 1 0 0 2 0
Silver Fir 28 0 17 5 8 5 0 0 3 0
Douglas 26 0 10 9 5 4 4 0 0 0

Appendix D. Training Size per Species

Table A4. Number of training pixels for each cross-validation method. For both methods, value per
species is the mean from the 50-folds. The split between test and train set is exactly the same for
each year.

Species SLOO-CV LOO-CV

Broadleaf
Silver birch 35 35

Oak 97 97
Red oak 118 118
Aspen 142 142

European ash 50 50
Black locust 50 50

Willow 21 21
Eucalyptus 85 85

Conifer
Corsican pine 33 33
Maritime pine 79 79

Black pine 26 26
Silver fir 54 54

Douglas fir 46 46

Total 836 836

Appendix E. Ranking-based feature selection of Image Dates for Each Single-Year Classification
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Figure A4. Ranking-based feature selection of image dates for single-year classification.

References

1. Thompson, I.D.; Okabe, K.; Tylianakis, J.M.; Kumar, P.; Brockerhoff, E.G.; Schellhorn, N.A.; Parrotta, J.A.;
Nasi, R. Forest Biodiversity and the Delivery of Ecosystem Goods and Services: Translating Science into
Policy. BioScience 2011, 61, 972–981. [CrossRef]

2. Bunker, D.E.; Declerck, F.; Bradford, J.C.; Colwell, R.K.; Perfecto, I.; Phillips, O.L.; Sankaran, M.; Naeem, S.
Species loss and aboveground carbon storage in a tropical forest. Science 2005, 310, 1029–1031. [CrossRef]
[PubMed]

3. Thompson, I.D.; Mackey, B.; McNulty, S.; Mosseler, A. Forest resilience, biodiversity, and climate change.
In A synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems; Technical Series No. 43;
Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2009.

4. Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers? Science 2009,
325, 573–574. [CrossRef] [PubMed]

5. Gamfeldt, L.; Snäll, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.; Fröberg, M.;
Stendahl, J.; Philipson, C.D.; et al. Higher levels of multiple ecosystem services are found in forests with
more tree species. Nat. Commun. 2013, 4, 1340. [CrossRef]

6. Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr,
M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402.
[CrossRef]

7. Boyd, D.S.; Danson, F. Satellite remote sensing of forest resources: Three decades of research development.
Prog. Phys. Geogr. 2005, 29, 1–26. [CrossRef]

8. Walsh, S.J. Coniferous tree species mapping using LANDSAT data. Remote Sens. Environ. 1980, 9, 11–26.
[CrossRef]
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