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Abstract: High-accuracy indoor positioning is a prerequisite to satisfy the increasing demands
of position-based services in complex indoor scenes. Current indoor visual-positioning methods
mainly include image retrieval-based methods, visual landmarks-based methods, and learning-based
methods. To better overcome the limitations of traditional methods such as them being labor-intensive,
of poor accuracy, and time-consuming, this paper proposes a novel indoor-positioning method with
automated red, green, blue and depth (RGB-D) image database construction. First, strategies for
automated database construction are developed to reduce the workload of manually selecting
database images and ensure the requirements of high-accuracy indoor positioning. The database
is automatically constructed according to the rules, which is more objective and improves the
efficiency of the image-retrieval process. Second, by combining the automated database construction
module, convolutional neural network (CNN)-based image-retrieval module, and strict geometric
relations-based pose estimation module, we obtain a high-accuracy indoor-positioning system.
Furthermore, in order to verify the proposed method, we conducted extensive experiments on the
public indoor environment dataset. The detailed experimental results demonstrated the effectiveness
and efficiency of our indoor-positioning method.

Keywords: visual positioning; indoor scenes; automated database construction; image retrieval

1. Introduction

Nowadays, position information has become key information in people’s daily lives. This has
inspired position-based services, which aim to provide personalized services to mobile users whose
positions are changing [1]. Therefore, obtaining a precise position is a prerequisite for these services.
The most commonly used positioning method in the outdoor environment is the Global Navigation
Satellite System (GNSS). In most cases, however, people spend more than 70% of their time indoors [2].
Therefore, accurate indoor positioning has important practical significance. Although GNSS is a
good choice for outdoor positioning, due to signal occlusion and attenuations, it is often useless in
indoor environments. Thus, positioning people accurately in indoor scenes remains a challenge and
it has stimulated a large number of indoor-positioning methods in recent years [3]. Among these
methods, fingerprint-based algorithms are widely used. Their fingerprint databases include Wi-Fi [4-8],
Bluetooth [9,10], and magnetic field strengths [11,12]. Although these methods are easy to implement,
construction of a fingerprint database is usually labor-intensive and time-consuming. Moreover, it is
difficult for their results to meet the needs of high-accuracy indoor positioning.
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Given that humans use their eyes to see where they are, mobile platforms can also do this with
cameras. A number of visual positioning methods have been proposed in recent years. These positioning
methods are divided into three categories: image retrieval based methods, visual landmarks-based
methods, and learning-based methods.

Image retrieval based methods treat the positioning task as an image retrieval or recognition
process [13-15]. They usually have a database that are augmented with geospatial information,
and every image in the database is described through the same specific features. These methods perform
a first step to retrieve candidate images from the database according to a similarity search, and the
coarse position information of the query image is then obtained based on the geospatial information of
these candidate images. So the first step, similar image retrieval process, is critical. The brute-force
approach, which is a distance comparison between feature descriptor vectors, is often used for similarity
search. Some positioning methods based on feature descriptors [16-18] adopt brute-force comparison
for the similarity search process of image retrieval. However, it is computationally intensive when the
images of a database are described with high-dimensional features, limiting its scope of applications.
Azzi et al. [19] use a global feature-based system to reduce the search space and find candidate images
in the database, then the local feature scale-invariant feature transform (SIFT) [20] is adopted for points
matching in pose estimation. Some researchers try to trade accuracy for rapidity by using approximate
nearest neighbor search, such as quantization [21] and vocabulary tree [22]. Another common way to
save time and memory of similarity search is principal component analysis (PCA), which has been used
to reduce the size of feature vectors and descriptors [23,24]. Some works use correlation algorithms,
such as sum of absolute difference (SAD), for computing similarity between query image and database
images [25,26]. In recent studies, deep learning-based algorithms are an alternative to aforementioned
methods. Razavian et al. [27] use features extracted from a network as an image representation for
image retrieval in a diverse set of datasets. Yandex et al. [28] propose a method that aggregates local
deep features to product descriptors for image retrieval. After a set of candidate images are retrieved,
the position information of the query image is calculated according to the geospatial information of
these candidate images through a weighting scheme or linear combination. However, because this
position result is not calculated by strict geometric relations, it is rough in most cases and difficult to
meet the requirement of high-accuracy positioning.

Visual landmarks-based positioning methods aim to provide a six degrees of freedom (DoF) pose of
the query image. Generally, visual landmarks in the indoor environments includes natural landmarks
and artificial landmarks. The natural landmarks refer to the geo-tagged 3D database, which is
represented by feature descriptors or images with poses. This database could have been built thanks
to the mapping module of simultaneous localization and mapping (SLAM) [29,30]. Then the pose
of query image is estimated by means of re-localization module and feature correspondence [31-35].
Although the results of these methods are of good accuracy, it takes a long time to match the
features of query image with geo-tagged 3D database, especially when the indoor scenes are large.
In addition to natural landmarks, there are also positioning methods based on artificial landmarks, e.g.,
Degol et al. [36] proposed a fiducial marker and detection algorithm. In reference [37], the authors
proposed a method to simultaneously solve the problems of positioning from a set of squared planar
markers. However, positioning from a planar marker suffers from the ambiguity problem [38]. Since
these methods require posting markers in the environments, they are not suitable for places such as
shopping malls that maintain a clean appearance.

In addition to the traditional visual-positioning method based on strict geometric relations,
with the rapid development of deep learning in recent years scholars have proposed many learning
based visual-positioning methods [39-41]. The process of these methods are broken down into two
steps: model training and pose prediction. They train models through given images with known pose
information, and the indoor environments are expressed as the trained models. The pose of a query
image is then regressed through the trained models. Some methods even learn the pose directly [42,43].
These methods, which are based entirely on learning, have better performance in weak-textured indoor
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scenes, but are less accurate or have lower generalization ability to large indoor environments than
traditional visual-positioning methods [44]. Therefore, some methods use trained models to replace
modules of traditional visual-positioning methods, such as depth estimation [45-47], loop detection [48],
and re-localization [49]. The method proposed by Chen et al. [50] uses a pre-trained network for image
recognition. It retrieves two geo-tagged red-green-blue (RGB) images from database, and then use
traditional visual positioning method for pose estimation. This method performs well on public dataset,
but its database images are hand-picked, which increases the workload of database construction.
Moreover, the two retrieved geo-tagged RGB images should have favorable geometric configuration
(e.g., sufficient intersection angle) for high-accuracy depth estimation. However, this favorable
configuration is not guaranteed by the existing two-image methods. This is a potential disadvantage of
these methods. Our RGB-D database method directly provides high accuracy depth information from
only one image, this not only ensures high accuracy of positioning, but also improves the efficiency of
image retrieval.

To overcome the limitations of the aforementioned methods, in this paper, a high-accuracy
indoor visual-positioning method with automated RGB-D image database construction is presented.
Firstly, we propose an automated database construction process, making the constructed database
more objective than a hand-picked database and thus reducing the workload. The database is
automatically constructed according to the rules, which reduces the redundancy of database and
improves the efficiency of the image-retrieval process. Secondly, considering the requirement of
real-time positioning, we introduce a convolutional neural network (CNN) model for a robust and
efficient retrieving candidate images. Thirdly, different from aforementioned image retrieval based
positioning methods, we replace rough combination of geospatial information with strict geometric
relations to calculate the position of query image for high-accuracy positioning. Finally and most
importantly, by combining the above three components into a complete indoor-positioning method,
we obtain high-accuracy results in an indoor environment and the whole process is time efficient.

2. Methodology

In this section, the proposed indoor-positioning method consists of three major components:
(1) RGB-D indoor-positioning database construction; (2) image retrieval based on the CNN feature
vector; (3) position and attitude estimation. Detailed processes in each component are given in the
following sub-sections.

2.1. RGB-D Indoor-Positioning Database Construction

In the proposed indoor visual positioning method, RGB-D images are used to build positioning
database in an indoor scene. Since most RGB-D image acquisition devices, such as Microsoft Kinect
sensor, can provide a frame rate of 30 Hz, images acquired over a period of time have redundancies.
Note that a large number of database images need a lot of memory in storage, it takes longer for the
image retrieval and positioning. However, if the images in the database are too sparse, it may not
achieve high positioning accuracy. In order to meet the requirements of precise and real-time indoor
positioning, an automated RGB-D image database construction process is proposed.

Our strategy for RGB-D image database construction is based on the relationships between pose
error (i.e., position error and attitude error), number of matching points and pose difference (i.e.,
position difference and attitude difference). To determine their relationships, we selected several RGB-D
image as the database images and more than 1000 other RGB-D images as the query images. These
images all come from the Technical University of Munich (TUM) RGB-D dataset [51], which provides
ground truth of pose. Figure la,b show an example of RGB-D images. The positions of database
images and ground truth of trajectory are shown in Figure 1c.
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Figure 1. An example of RGB-D image and the positions of database images. (a) RGB image;
(b) corresponding depth image of this RGB image; (c) positions of database images (shown by red

hexagon) and ground truth of trajectory (shown by gray line).

First, the relationship between pose error and number of matching points is a key criterion of the
proposed process. The pose of each query image was calculated by means of the visual-positioning
process mentioned in Section 2.3. The number of matching points was recorded in this positioning
process. The pose error was obtained by comparing the calculated pose with its ground truth. After
testing all the query images, pose errors and corresponding number of matching points for each
query image were collected and analyzed to determine their relationship (Figure 2). It is found
from Figure 2a,b that both the position error and attitude error fluctuate greatly when the number
of matching points is less than 50. However, when the number of matching points is more than 50,
the pose errors are basically stable at a small value. In other words, our visual-positioning process can
obtain precise and stable results when the number of matching points is more than 50. So we set 50 as

the threshold T}, for the minimum number of matching points.
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Figure 2. Relationship between pose error and corresponding number of matching points. (a) Position
error vs. number of matching points; (b) attitude error vs. number of matching points.

Second, the relationship between number of matching points and pose difference is also an
important criterion in the RGB-D image database construction process. The pose difference was
calculated by comparing the ground truth pose of each query image with corresponding database
image. Then the pose differences of some images were combined with their number of matching points
to fit their relationship. The green fitted curve in Figure 3a shows the fitted relationship between the
number of matching points and position difference. Its expression is described as follows:

fo(x) = 19.43 x x, 042, (1)

Here x,, is position difference, f,(x) is the number of matching points. The blue fitted curve in
Figure 3b shows the fitted relationship between the number of matching points and attitude difference.
Its expression is described as Equation (2):

fa(x) = 8.846 x x, 708503, )

Here x, is attitude difference, f;(x) is the number of matching points. Then we used some other
pose differences and number of matching points of more than seventy images to validate Equations (1)
and (2). As shown in Figure 3a,b, the validation data are distributed near the fitted curve. The root
mean square errors (RMSE) of fit and validation are shown in Table 1.
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Figure 3. Relationship between number of matching points and corresponding pose difference.
(a) Fitted curve of number of matching points vs. position difference; (b) fitted curve of number of
matching points vs. attitude difference.

Table 1. The root mean square errors (RMSEs) of fitted curves and validation data in Figure 3.

Fitted Curves RMSE of Fit RMSE of Validation
Figure 3a 23.73 21.88
Figure 3b 23.96 24.08

We can see that the RMSE of validation data is close to the RMSE of fitted curve, which indicates
that the fitted curves described in Equations (1) and (2) are applicable to different image data in the
same scene. The empirical models are not sensitive to the selection of the query image, the established
relationships are reliable to apply in the same scene.

From the trends of the fitted curves in Figure 3, the number of matched points decreases as
both of the position difference and attitude difference increase. According to the threshold T
for the number of matching points from Figure 2, the threshold of position difference Taposition (i-€-,
the x, in Equation (1)), and the threshold of attitude difference Tauyituge (i-€., the x; in Equation (2)),
were obtained by substituting f,(x) and f;(x) with T,,;,. The results are as follows:

®)

TAposition = 0.1757, unit : m
Taattitude = 0.1304, unit : rad

Based on these three thresholds Tyucn, Taposition and Taatitude, the RGB-D image database
construction process was proposed for indoor visual positioning (Figure 4).
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Figure 4. Flowchart of the proposed indoor positioning database construction process.

As shown in Figure 4, first we need to input a set of RGB-D images with known poses in the
scene where conducting indoor positioning. The RGB-D images can be captured using a Microsoft
Kinect sensor and the ground truth trajectory of camera pose can be obtained from a high-accuracy
motion-capture system with high-speed tracking cameras as in reference [51]. In the database
construction process, the first RGB-D image is considered as a database image and the other images
will be input successively to determine whether they are required to join the database. From Figure 4,
the i-th RGB-D image is compared with the last database image joining the database and then compared
with all the existing database images to calculate the differences in position and attitude. If the
differences meet the preset threshold condition (i.e., Taposition and Taagtituge), the i-th image will be
determined as a new database image. It will be also input into the CNN model mentioned in Section 2.2
to calculate its CNN feature vector for subsequent step of image retrieval. Finally, we add the three
components of the eligible image into the indoor-positioning database, and then move on to the next
RGB-D image until all images are judged.

The three components of the indoor positioning database B = {I, Pose, F} are listed as follows.
The first one is the RGB-D database images I = {RGB-Djy,...,RGB-D;,...,RGB-D,} that meet the
requirements. The second one is the corresponding pose information Pose = {Posey, ..., Pose;, ..., Pose;}
of database images. The Pose; here includes 3D position {x;, y;, z;} and quaternion form of attitude
{qxi, qY;,9%; qwi}. The last one is the CNN feature vector set F = {Fy, ..., Fj, ..., F,} of database images.

2.2. Image Retrieval Based on Convolutional Neural Network (CNN) Feature Vector

After building the indoor positioning database, it is important to know which RGB-D image in the
database is the most similar to the input query RGB image acquiring by the mobile platform. The query
RGB image and its most similar RGB-D image will be combined for conducting the subsequent visual
positioning. In this sub-section, the CNN model and CNN feature vector-based image-retrieval
algorithm were used in our indoor positioning method. We adopted the CNN architecture proposed in
reference [52], the main component of which is a generalized vector of locally aggregated descriptors
(NetVLAD) layer and it is readily pluggable into standard CNN architecture. The best performing
network they trained was adopted to extract image deep features, i.e., CNN feature vector, for image
retrieval in this study.

Figure 5 shows the process of image retrieval based on CNN feature vector. With this process,
the RGB-D database image, which is the most similar to the input query image, and its pose information
were retrieved. First, in Section 2.1, we have calculated and saved the database CNN feature vector set
F={Fy,...,Fj,...,Fy}in the indoor positioning database. When a query color image C, with the same
size as the database images is input, the same CNN model is used to calculate its CNN feature vector.
This output CNN feature vector F; of query image has the same length with the feature vector F; of the
database image. In this research, the size of CNN feature vector is 4096 X 1.Then the distance between
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F; and each feature vector of F = {Fy,...,Fj,...,Fy} is calculated to represent their similarity, which is
defined as follows:
D, = (Fi—Fy)" - (Fi— Fp). )

RGB-D
image
; = N Indoor
/\\ch.urcd L) CNN Ly LNN positioning ) R_ank.cd Py Ly Output top
RGB image model feature similarity score rank
database
Image
pose

Figure 5. Process of the convolutional neural network (CNN) feature-based image retrieval.

The set of distances is D = {qu, o, Dig, o, an}. Finally, we output a retrieved RGB-D database
image RGB-D; and its pose information Pose,, which has the minimum distance D,; with the query
color image.

2.3. Position and Attitude Estimation

After retrieving the most similar RGB-D database image with an acquired query RGB image, the
visual positioning was achieved by estimation of the position and attitude of the query image based on
the retrieved database image and its pose information (Figure 6).

Image pose

3D points in 3D points in

Recognized image space world

—

database coordinate coordinate
RGB-D image frame frame
|E : ORB feature s I Output
b K . Eliminate false pose of Pose :
ot | point extraction — . L . P indoor
\ B matching points acquired optimization ———t
and matching N Position
RGB image
Acqu.lred 2D points of
query Image ‘= acquired
RGB image
oy
| D

Figure 6. Process of the pose estimation.

In Figure 6, feature point extraction and matching between the acquired query image and the
retrieved database image is the first step in the visual-positioning process. The ORB algorithm was
adopted in our method to extract 2D feature points and calculate binary descriptors for feature
matching. Then, the fundamental matrix constraint [53] and random sample consensus (RANSAC)
algorithm [54] were used to eliminate some false matching points. After that, two sets of good matching
points pts, and pts, in the pixel coordinate frame were obtained. Figure 7 shows the result of good
matching points between the acquired query image and the retrieved database image.
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Figure 7. Good matching points of the acquired query image and the retrieved database image.

Second, 3D information in the world coordinate frame of the matching points was obtained by
the retrieved RGB-D database image and its image pose. A feature point p,(u, v) belonging to pts, in
the retrieved database image is a 2D point in the pixel coordinate frame. Its form in the image plane
coordinate frame p,(x, y) is obtained by Equation (5):

x=(u—-cy)/fx
{y—@—cy)/fy | ©

Here fy, fy, ¢y and Cy belong to the intrinsic parameters K of camera, which was calculated
through camera calibration process. Through the depth image of the retrieved RGB-D database image,
we obtained the depth value d . ,) of p;(x, y). Therefore, the 3D point P,(X’,Y’,Z’) in the image space
coordinate frame is obtained by Equation (6):

X =xx d(x,y)
Y = Yy X d(x,y) . 6)
2" =dyy)

Next, the input pose information Pose, of the retrieved image is used to translate P,(X’,Y’,Z’)
into the world coordinate frame. The Pose, here includes 3D position {x;, ,, z;} and quaternion form of
attitude {qxr, qY,,92,, qwr}. Usually Pose, is expressed as a transformation matrix T, from image space
coordinate frame to world coordinate frame by Equation (7):

R t
Twr = |: SW z{)r ]/ (7)
where Ry and tyr =[x, Yy, zr]T are the rotation and translation parts of Ty, respectively. Ry, is defined
as follows:

1-2qy,% — 2qz,> 2qx, X qyr — 2qwy X qz; 29X, X qz; + 2w, X gy,
Rur = | 29%; X qyr + 2qw; X gz, 1-2gx2% — 29z,% 2qyy X gz, — 2qw, X qx, | 8)
2qxy X qzy — 2qwr X qYr  2qYr X g2y + 2wy X qxy 1-2g9%,2 - 2qy,>

Then Ty is used to transform P,(X’,Y’,Z’) into the world coordinate frame Py (X, Y, Z):

X X’ X’
Y o Y’ o Ruwr  Tuwr Y’
z |7z |7 [ 0 1 7' ®
1 1 1
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So the relationship between a 3D point Py (X, Y, Z) in the world coordinate frame and its 2D point
pr(u,v) in the pixel coordinate frame is expressed as follows:

fr 0 o
. [ RTZU trw :|. (10)

=K-Tr Po=| 0 f; ¢ o
0 0 1

>
_ Q2
- N =X

(1:3)

Here, matrices Try, Ry and t,, are the inverse of matrices Ty, Ry and t,,r respectively. By using
the relationship described in Equation (10), we calculated a set of 3D points Pts,, in the world coordinate
frame corresponding to the set of 2D points pts; in the retrieved image. Because pts, and pts; are two
sets of matching points, Ptsy, is also corresponding to pts;.

Third, according to the 2D matching points and their 3D points in the query image, the efficient
perspective-n-point (EPnP) method [55] was adopted to estimate the initial pose Ty, of the query
image. The Levenberg-Marquardt algorithm implemented in g20 [56] was then used to optimize the
camera pose iteratively. This process can be described as follows:

v 1 2
{wa/ tqw} = argman(“Pi 7 K- (qu : Pi)(1:3)” ) (1)
i

qwrtqw i=1

Here p; is the i-th 2D point of pts; and P; is the i-th 3D point of Pts;,. The number 7 is the length of
ptsy. The poses got from the EPnP method were used as the initial values of Tgy.

Through iteration, an optimized pose result Tgy, of the query image was obtained. And we inverted
Tqw to get Ty, because Ty, is more intuitive, from which we can directly get the pose of the query
image. Finally, Ty, was saved in the form of Pose; = {xq, Yq:29, 9%, 9Yq, 924, qwq}, where {xq, Yq, zq} and
{qxq, qYq, 924 qwq} are the position and attitude of the query image respectively.

With this process, the precise and real-time position and attitude of the acquired query color
image were estimated. In the following experimental section, we performed abundant experiments to
verify the accuracy of our indoor-positioning method in common indoor scenes.

3. Experimental Results

We have conducted a series of experiments to evaluate the effectiveness of the proposed indoor
positioning method. The first sub-section describes the test data and computer configuration we used
in the experiments. In the second sub-section, we evaluate qualitatively the proposed RGB-D image
database construction strategy of our indoor positioning method. And the results are reported in the
third sub-section. For a complete comparative analysis, the results of our indoor positioning method
are also compared with an existing method in reference [50].

3.1. Test Data and Computer Configuration

In order to better evaluate the proposed indoor positioning method, six sequences of the public
dataset TUM RGB-D were adopted as the test data. Every sequence of the dataset contains RGB-D
images, i.e., RGB and depth images, captured by a Microsoft Kinect sensor at a frame rate of 30 Hz.
The size of the RGB-D images was 640 x 480.

Figure 8 shows the six sequences of TUM RGB-D dataset. These six sequences can well represent
the common indoor scenes in daily life. And the intrinsic parameters of the Microsoft Kinect sensor
were found in reference [51].
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freiburgl_plant freiburgl_room

freiburg?_360_hemisphere

freiburg?_flowerbouquet

]

Figure 8. Six sequences of the TUM RGB-D dataset

Before the procedure of RGB-D image database construction, it was important to determine the
availability of these sequences. If the associated depth image of a RGB image was missing, then the
RGB image was discarded. After that, the remaining test images were used in the experiments of
database construction and pose estimation. Then the database images corresponding to the query
images with large pose errors were checked manually. If they were motion blur or poorly illuminated
images, they were removed from the database. The number of test images in each of these six sequences
is shown in Table 2.

Table 2. The number of test images in each of these six sequences of TUM RGB-D dataset.

Six Sequences of TUM RGB-D Dataset The Number of Test RGB-D Images
freiburgl_plant 1126
freiburgl_room 1352

freiburg2_360_hemisphere 2244
freiburg?_flowerbouquet 2851
freiburg2_pioneer_slam3 2238

freiburg3_long_office_household 2488

We employed a computer with an Intel Core i7-6820HQ CPU @ 2.7 GHz and 16 GB RAM to conduct
all the experiments. The procedure of image retrieval based on CNN feature vector was accelerated by
a NVIDIA Quadro M2000M GPU. The details of the experimental results are described below.

3.2. Results of RGB-D Database Construction

According to the RGB-D database construction process described in Section 2.2, we got the
constructed databases of six sequences shown in Figure 9. The gray lines represent the ground truth
of trajectories when recording RGB-D images. The red hexagonal points on the gray lines are the
positions of indoor-positioning database images. As can be seen from Figure 9, more database images
are selected using the proposed database construction method at the corners where the position
and attitude differences between neighboring recorded images change greatly. In these areas with
smooth motion, the database images selected by our method are evenly distributed. After selecting
the database images from the test images of six sequences, the remaining images were used as query
images to conduct the subsequent visual-positioning experiments.
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Figure 9. The results of RGB-D database construction for six sequences: (a) freibuigl_plant,

(b)  freiburgl_room, (¢)  freiburg2 360_hemisphere, (d) freiburg2_flowerbouquet,
(e) freiburg2_pioneer_slam3 and (f) freiburg3_long_office_household.

Considering the redundancy of the RGB-D test images and the efficiency of the visual positioning
process, most methods are implemented by selecting representative database images manually, as in
reference [50]. The method of hand-pick is subjective and time-consuming. The quality of the database
images depends largely on experience. When the number of captured images is large, the workload
increases. In contrast, the database images selected by the proposed RGB-D image database construction
process are not too redundant or sparse. The database image directly provides high accuracy depth
information, this not only ensures high accuracy of positioning, but also improves the efficiency of
image retrieval. Therefore, the proposed method can reduce the workload of selecting representative
database images and meet the requirements of highly accurate and real-time indoor positioning.

The hand-picked database images of reference method [50] are used for comparison. The numbers
of selected database images and used query images in the reference method and the proposed method
are shown in Table 3. It can be seen from Table 3 that the number of query images used in our method
is about twice the number of query images used in the reference method. This is because the proposed
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method automatically selects the database images and then takes the remaining images as query
images, eliminating the workload of manually selecting images.

Table 3. The numbers of selected database images and query images in the reference method and the

proposed method.

Six Sequences of TUM Images in the Reference Method Images in the Proposed Method
RGB-D Dataset Database Query Database Query
freiburgl_plant 115 456 158 968
freiburgl_room 91 454 193 1159

freiburg2_360_hemisphere 273 1092 253 1991
freiburg2_flowerbouquet 149 1188 104 2747
freiburg2_pioneer_slam3 128 1017 173 2065

freiburg3_long_office_household 130 1034 152 2336

After building the RGB-D indoor-positioning database, we input query images of each sequence in
turn. Through the process of image retrieval based on the CNN feature vector, we selected a database
RGB-D image with pose information that is most similar to the input query image. Then we performed
the visual-positioning process to estimate the position and attitude of each input query image.

3.3. Quantitative Analysis of Positioning Accuracy

In this part, the performance of pose estimation in the proposed indoor-positioning method was
evaluated by comparing it with the reference method mentioned in the previous section. The estimated
pose results of each sequence was saved in a file. The mean pose error and median pose error of
these two methods were obtained by comparing the estimated poses with the ground truth trajectory.
In addition, both position error and attitude error were calculated as an evaluation of six DoFs.

The pose estimation results of each sequence using the reference method and proposed method are
shown in Table 4. As can be seen from the results of the proposed method in Table 4, the mean values
and median values of position errors are both at the half-meter level. As for attitude errors, the mean
errors are within 5 degrees and the median errors are within 1 degree. These results demonstrate that
the database we built in Section 3.2 meets the requirements of high-accuracy visual positioning well.
By comparing the results of the reference method and the proposed method, we can see that most
of the mean and median pose errors of our method are smaller than those of the reference method.
This also indicates that the database constructed by our method can achieve or surpass the accuracy of
the hand-picked database to some extent.

Table 4. The results of position error and attitude error of the six sequences using the reference method
and the proposed method. Each term contains a mean error and a median error. The numbers in bold
indicate that these terms are better than those of the other method.

Six Sequences of TUM Pose Error of the Reference Method Pose Error of the Proposed Method
RGB-D Dataset Mean Median Mean Median
freiburgl_plant 0.38 m 3.37° 0.12 m 0.01° 0.02 m 0.61° 0.01 m 0.44°
freiburgl_room 0.43 m 4.82° 0.17 m 0.54° 0.02 m 1.14° 0.01 m 0.50°

freiburg?2_360_hemisphere 0.38 m 6.55° 0.05 m 0.16° 0.22 m 2.77° 0.03 m 0.36°
freiburg2_flowerbouquet 0.15m 5.32° 0.07 m 0.12° 0.04 m 1.57° 0.02 m 0.51°
freiburg2_pioneer_slam3 0.34 m 8.80° 0.13m 0.13° 0.18 m 4.10° 0.02 m 0.43°
freiburg3_long_office_household 0.36 m 3.00° 0.15m 0.21° 0.01 m 0.37° 0.01 m 0.31°

In order to demonstrate the pose estimation results of all the query images intuitively, cumulative
distribution function (CDF) was adopted to analyze the positioning accuracy of the proposed method.
Figure 10 shows the CDF of position error. From these CDF curves we can see that nearly 95% of the
query images have a position error within 0.5 m. Furthermore, the position errors of all query images
in sequence freiburg3_long_office_household are within 0.1 m, as shown in Figure 10f. These results
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show that the proposed method is able to localize the position of a query image well and achieve a

high accuracy of better than 1 m in most cases.
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Figure 10. Cumulative distribution function (CDF) of position error in the (a) freibuigl_plant,

(b)

(e) freiburg2_pioneer_slam3 and (f) freiburg3_long_office_household sequence.

freiburgl_room, (c)

freiburg2_360_hemisphere,

(d) freiburg2_flowerbouquet,
The green

line of each sub-figure represents the CDF curve. The vertical coordinate represents the cumulative

probability of position error.

In addition to CDF of position error, CDF of attitude error was also calculated as an evaluation
of six DoFs. Figure 11 shows the CDF of attitude error. The blue line of each sub-figure represents

the CDF curve. Similarly, we can see that the attitude errors of all query images in sequence
freiburg3_long_office_household are within 3 degrees, as shown in Figure 11f. For the rest of the
sequences, almost 95% of the query images have an attitude error within 5 degrees. These results show
that the proposed method is able to calculate the attitude of a query image well with an accuracy of

better than 5 degrees in most cases.



Remote Sens. 2019, 11, 2572 15 of 20
= ' g '~
E 0.8 Error 1.4 E 0.8 Error 2
-[és Probability 0.95 %s Probability 0.95
8. 0.6 506
G.) j#}
Z 04 ] g 04 ‘ 1
= | CDF of attitude error | = | CDF of attitude error ‘
g 02 g 02
3 3
O O
2 4 6 8 10 2 4 6 8 10
Attitude error (unit: deg) Attitude error (unit: deg)
(a) (b)
g’ 1 g ! —
% 0.8 Ehrerc. ;?;: 0.8 Error 3.7
< Probability 0.95 2 Probability 0.95
£ 06 £.06
: :
504 CDF of attitud 1 5 04 1
=5 | ol attitude error| = ‘—CDF of attitude error|
£ 0.2 E 0.2 T
E EI
v O
2 4 6 8 2 4 6 8 10
Attitude error (unit: deg) Attitude error (unit: deg)
() (d)
i) 1 ) = 1
%‘ 0.8 Error 4.9 % 0.8 2 29
£ Probability 0.95 £ itz
506 £.06
£ 0.4 1 5 0.4
-g‘ . | CDF of attitude err0r| é’ ' CDF of attitude error ‘
§ 02 € 02
o | | | | o ‘ | | |
0 2 4 [¢] 8 1 2 3 4 5
Attitude error (unit: deg) Attitude error (unit: deg)
(e) (f)

Figure 11. Cumulative distribution function (CDF) of attitude error in the (a) freibuigl_plant,
freiburg2_360_hemisphere, (d)
(e) freiburg2_pioneer_slam3 and (f) freiburg3_long office_household sequence.

(b)  freiburgl_room, () freiburg?_flowerbouquet,
The blue
line of each sub-figure represents the CDF curve. The vertical coordinate represents the cumulative

probability of attitude error.

The cumulative pose errors of the reference method and the proposed method were compared,
as shown in Table 5. It was found that most of the results using our method outperformed those
using the reference method. As can be seen from the cumulative accuracy of the reference method,
90% of the query images in each sequence are localized within 1 m and 5 degrees. The 90% accuracy of
position error of our method is within 0.5 m and the attitude error is within 3 degrees, both of which
are nearly half the pose error of the reference method. Specifically, all the cumulative position errors of
the proposed method are better than those of the reference method. The cumulative attitude errors
of the proposed method are better or comparable with those of the reference method. These good
performances of the proposed indoor visual-positioning method also indicate the validity of the
proposed database construction strategy.
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Table 5. The cumulative pose errors of the reference method and the proposed method in six sequences.
Each term contains a mean error and a median error. The unit of position error is meter and the unit
of attitude error is degree. The numbers in bold indicate that these terms are better than those of the
other method.

Six Sequences of TUM RGB-D 90% Accuracy of the Reference 90% Accuracy of the Proposed

Dataset Method Method
freiburgl_plant 0.45m 1.95° 0.04 m 1.09°
freiburgl_room 0.71 m 4.04° 0.03 m 1.29°

freiburg2_360_hemisphere 0.38 m 1.08° 0.21 m 1.94°
freiburg2_flowerbouquet 0.26 m 2.54° 0.06 m 2.76°
freiburg2_pioneer_slam3 0.66 m 1.54° 0.10 m 2.75°
freiburg3_long_office_household 0.41 m 2.05° 0.02 m 0.65°

All the experiments were conducted by a laptop with an Intel Core i7-6820HQ CPU @ 2.7 GHz
and 16 GB RAM. In the experiment, it takes about 0.4 s on average to implement the RGB-D database
image-retrieval process in selecting the most similar database image with the input query image.
The pose estimation process of one query image takes about 0.2 s on average. Considering that the
RGB-D indoor positioning database is built offline, the time it costs is not taken into account. Therefore,
our indoor-positioning program will take about 0.6 s to complete the two processes of image retrieval
and pose estimation. Specifically, if we use a mobile platform to capture query image at a resolution
of 640 x 480 and upload it into the laptop using 4G network, the process takes about 0.3 s. As for
returning the location result from the laptop to the mobile platform, it takes about 0.1 s. Therefore,
the whole procedure, which starts with capturing a query image by the mobile platform and finally
obtains the position result from the laptop, takes about 1 s. In other words, the indoor-positioning
frequency of the proposed method is about 1 Hz. This also shows that the proposed method has the
ability of real-time indoor positioning while satisfying the need for high accuracy.

4. Conclusions

In this study, a novel indoor-positioning method with automated RGB-D image database
construction was presented. @ The proposed method has two main innovations.  First,
the indoor-positioning database constructed by our method can reduce the workload of manually
selecting database images and is more objective. The database is automatically constructed according
to the preset rules, which reduces the redundancy of the database and improves the efficiency
of the image-retrieval process. Second, by combining automatic database construction module,
the CNN-based image retrieval module, and strict geometric relations based pose estimation module,
we obtain a highly accurate indoor-positioning system.

In the experiment, the proposed indoor positioning method was evaluated with six typical indoor
sequences of TUM RGB-D dataset. We presented the quantitative evaluation results of our method
compared with a state-of-the-art indoor visual-positioning method. All the experimental results show
that the proposed method obtains high-accuracy position and attitude results in common indoor scenes.
The accuracy of the proposed method attained is generally higher than that of the reference method.

In the next version of our indoor-positioning method, we plan to combine the semantic information
of the sequence to reduce the search space of visual positioning in large indoor scenes.
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Abbreviations

The following abbreviations are used in this manuscript:

RGB-D red, green, blue and depth

GNSS Global Navigation Satellite System
SIFT scale-invariant feature transform

PCA principal component analysis

SAD sum of absolute difference

DoFs degrees of freedom

SLAM simultaneous localization and mapping
CNN convolutional neural networks

TUM Technical University of Munich

RMSE root mean square errors

NetVLAD vector of locally aggregated descriptors
RANSAC random sample consensus

EPnP efficient perspective-n-point method
CDF cumulative distribution function
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