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Abstract: Temporal analysis of synthetic aperture radar (SAR) time series is a basic and significant
issue in the remote sensing field. Change detection as well as other interpretation tasks of SAR images
always involves non-linear/non-convex problems. Complex (non-linear) change criteria or models
have thus been proposed for SAR images, instead of direct difference (e.g., change vector analysis)
with/without linear transform (e.g., Principal Component Analysis, Slow Feature Analysis) used in
optical image change detection. In this paper, inspired by the powerful deep learning techniques, we
present a deep autoencoder (AE) based non-linear subspace representation for unsupervised change
detection with multi-temporal SAR images. The proposed architecture is built upon an autoencoder-like
(AE-like) network, which non-linearly maps the input SAR data into a latent space. Unlike normal AE
networks, a self-expressive layer performing like principal component analysis (PCA) is added between
the encoder and the decoder, which further transforms the mapped SAR data to mutually orthogonal
subspaces. To make the proposed architecture more efficient at change detection tasks, the parameters
are trained to minimize the representation difference of unchanged pixels in the deep subspace. Thus,
the proposed architecture is namely the Differentially Deep Subspace Representation (DDSR) network
for multi-temporal SAR images change detection. Experimental results on real datasets validate the
effectiveness and superiority of the proposed architecture.

Keywords: Differentially Deep Subspace Representation (DDSR); AutoEncoder-like (AE-like)
network; SAR; Unsupervised Change Detection

1. Introduction

Change detection with remote sensing images is the process of identifying and locating differences
in regions of interest by observing them at different dates [1]. It is of great significance for many
applications of remote sensing images, such as rapid mapping of disaster, land-use and land-cover
monitoring and so on. Wessels et al. [2] use optical images with the reweighted multivariate alteration
detection method to identify change areas, and then update the land-cover mapping. A multi-sensor
change detection method between optical and synthetic aperture radar (SAR) imagery is proposed in [3]
for earthquake damage assessment of buildings. Taubenbock et al. [4] propose a post-classification
based change detection using optical and SAR data for urbanization monitoring. Multi-temporal
airborne laser data is used to monitor forest change in [5]. In this paper, we tackle the issue of
change detection using SAR images. Unlike optical remote sensing images, SAR images can be
acquired under any weather condition at day or night; however, there usually are more challenges
(i.e., non-linear/non-convex problems) for SAR image visual and machine interpretation due to the
coherent imaging mechanism (speckle).
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For change detection using remotely sensed optical images, the most widely used criterion
is difference operator [1] (for single channel images) or change vector analysis [6–8] (for
multi-band/spectral images). Due to the temporal spectral variance caused by different atmospheric
conditions, illumination and sensor calibration, image transformation has been widely used to
yield robust change detection criteria. The core idea of the image transformation is to transform
the multi-band/spectral image into a specific feature space, in which the unchanged temporal
pixel pairs have similar representations while the changed ones differ from each other. Principal
component analysis (PCA) [9–11] is one of the state-of-the-art operators for modeling temporal spectral
difference of unchanged pixels. Beyond PCA, Kauth-Thomas transformation [12], Gram-Schmidt
orthonormalization process [13,14], multivariate alteration detection [15,16] and slow feature
analysis [17,18] theories have been used for optical image change detection. However, these algorithms
are mainly designed for optical images and usually fail to deal with SAR images with speckle.

Given SAR images, we may meet a more complex situation in which the multi-temporal images
are in different feature spaces and changed/unchanged pixels are linearly non-sparable, due to the
coherent imaging mechanism. Two main approaches have been developed in the literature: coherence
change detection and incoherent change detection. The former uses the phase information of SAR
time series to study the coherence map, which has strict limitations for the input multi-temporal SAR
images [19]. The incoherent change detection more relies on the amplitude or intensity values of SAR
data, for instance, the amplitude ratio or log-ratio [20]. Improvements have been proposed thanks
to automatic thresholding methods [21] and multi-scale analysis to preserve details [22]. Lombardo
and Oliver [23] propose a generalized likelihood ratio test given by the ratio between geometric and
arithmetic means for SAR images. Quin et al. [24] extend the SAR ratio to more general cases with an
adaptive and nonlinear threshold, which can be applied to not only SAR image pairs but also long-term
SAR time series. Beyond change detection, Su et al. [25] propose a generalized likelihood ratio test
based spectral cluster for temporal behaviours analysis of long-term SAR time series. Obviously,
non-linear change criteria have been widely used for SAR images in the literature. However, these
change criteria usually have noisy results due to the SAR speckle, or face a trade off between spatial
resolution and smoothness of detecting results.

Recently, deep learning techniques have been experiencing a rapid growth and have achieved
remarkable success in various fields. Given change detection issue using remotely sensed data, a large
number of deep network architectures have been proposed. Improved UNet++ [26] is proposed to
solve the error accumulation problems in the deep feature based change detection. Ji et al. [27] apply a
Mask R-CNN based building change detection network with self-training ability, which does not need
high-quality training samples. Dual learning-based Siamese framework in [28] can reduce the domain
differences of bi-temporal images by retaining the intrinsic information and translating them into each
other’s domain. A set of convolutional neural network features [29] have been used to compute the
difference indices. Similarly, a spare autoencoder is applied in [30] to extract robust SAR features for
change detection.

In this paper, we propose a differentially deep subspace representation (DDSR) for multi-temporal
SAR images. The proposed network consists of a non-linear mapping network followed by a linear
transform layer to deal with the complex patterns of changed and unchanged pixels in SAR images.
The non-linear mapping network is built upon an autoencoder-like (AE-like) deep neural network,
which can non-linearly map the noisy SAR data to a low-dimensional latent space. Contrary to
normal autoencoder (AE) network, the proposed architecture is trained to minimize the representation
difference of unchanged pixel pairs, instead of reconstruction error of the decoder. To better separate
the unchanged and changed pixels in the latent space, a single-layer self-expressive network linearly
transform the mapped SAR data into a mutually orthogonal subspace. In the transformed subspace,
the unchanged pixel pairs have similar representation, while the temporally changed ones are
comparatively different from each other. Changed pixels are finally identified by an unsupervised
K-Means clustering method [31]. Note that a similar idea has been proposed in [32], in which the slow



Remote Sens. 2019, 11, 2740 3 of 18

feature analysis [18] is applied to perform the linear transform, instead of our self-expressive network
with the back propagation algorithm.

This paper is organized as follows. Section 2 briefly recalls the non-linear/linear subspace
approaches. The proposed network is presented in Section 3, which is followed by the evaluation
(Section 4) and the conclusion (Section 5).

2. Related Work

To deal with the nonlinearities in SAR change detection task, the proposed DDSR maps the
bi-temporal SAR data into a subspace using a non-linear AE-like network followed by a linear
self-expressive layer. The change criterion is computed by the DDSR difference of the input bi-temporal
SAR images. Similar ideas have been proposed in the literature.

2.1. Deep Subspace Clustering

Ji et al. [33] propose a deep autoencoder framework for subspace clustering, in which a
self-expressive layer has been introduced between the encoder and the decoder to learn the pairwise
affinities of the input data through a standard backpropagation procedure. Figure 1a gives a brief
illustration of this deep subspace clustering network. It provides an explicit non-linear mapping
for the complex input data that is well-adapted to the subspace clustering, which yields significant
improvement over the state-of-the-art subspace clustering solutions. A structured autoencoder in [34]
introduces a global structure prior into the non-linear mapping.

(a) (b)

Figure 1. Deep networks in related works. (a) Deep subspace clustering [33]. (b) Deep slow feature
analysis [32].

These deep subspace approaches mainly focus on the clustering or recognition problems, in which
the network weights are well trained to exploit the similar information among the input data, instead
of the differential information used for change detection task. Even though these approaches can
be easily adapted to change detection task, the performance might not be optimal. In this paper,
the proposed architecture discards the decoder network and redesigns the network loss to adapt the
SAR image change detection.

2.2. Deep Slow Feature Analysis Network

In [32], Du et al. present a slow feature analysis (SFA) theory based deep neural network for optical
remote sensing change detection. This network non-linearly maps the input bi-temporal data into a
higher dimensional space, as shown in Figure 1b. The classic slow feature analysis (SFA) algorithm is
then applied to suppress the unchanged components and highlight the changed components of the
mapped data. In our work, the non-linear mapping is our DDSR network, which performs a sparse
autoencoder, which compacts the input data to lower dimensional space. In addition, compared with
the SFA based linear transformation, the self-expressive layer can be trained to adapt well to the given
task and the given dataset by the backpropagation algorithm.
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3. Differentially Deep Subspace Representation (DDSR) for Change Detection

As far as we are concerned, the non-linear transformation for change detection generally
outperforms linear ones, which can handle the complex patterns of the input data. Non-linear kernel
based methods have also been proposed [35–37]; however, it is not clear whether the pre-defined
kernels are suitable for SAR image change detection tasks. In this work, our goal is to learn an explicit
mapping that makes the changed and unchangded pixel pairs more separable in the transformed
subspaces. This section builds our architecture namely differentially deep subspace representation
(DDSR) based on the classic autoencoder network. As shown in Figure 2, the non-linear part (the
AE-like network) first maps the input bi-temporal SAR data into a low-dimensional latent space.
The linear part (the self-expressive layer) further transforms the mapped SAR data to a subspace.
Contrary to minimization of the reconstruction error, the proposed architecture is trained to compact
unchanged pixel pairs and explode the changed ones in the subspace.

Figure 2. The differentially deep subspace representation for synthetic aperture radar (SAR)
image change detection. The network consists of an encoder with 3 layers (non-linear mapping),
a self-expressive layer (linear transform) and a classic K-Means clustering.

3.1. AE-Like Network Based Non-Linear Mapping

Basically, the encoder of the AE network is a classical multi-layer deep neural network. Each layer
consisting of an input layer, a hidden layer and a output layer can non-linearly transform the input
data to latent features. Given a pair of pixels {x, y} ∈ {R1,R1}, X ∈ R

√
N×
√

N and Y ∈ R
√

N×
√

N are
corresponding patches with pixel x and y as center, respectively. In the proposed AE-like network,
I ∈ RN×1, H ∈ RM×1 and Z ∈ RM×1 (N > M) denote the input, hidden and output layer of the neural
networks. At the first stage, the patch pair {X, Y} corresponding to pixel pair {x, y} are reshaped to
form input vector I (i.e., IX and IY). The hidden layer can be computed by

H = f (WHI + BH) , (1)

where WH ∈ RM×N denotes the weight matrix of the hidden layer, BH ∈ RM denotes the bias and f
denotes the activation function performing the non-linear mapping. At the second stage, the latent
feature H is mapped to the output by

Z = g(WOH + BO) . (2)

where WO ∈ RM×M denotes the weight matrix of the output layer, BO ∈ RM is the bias and g denotes
the activation function. Finally, the weights WAE = {WH, BH, WO, BO} of the AE-like network are
learned by minimizing the target loss with the backpropagation algorithm. The so-called representation
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of the input data is the hidden layer. Generally, as the number of layers increases, the learning features
are more abstract and more robust. The encoder with a different number of hidden layers are shown
in Figure 3.

The classic AE networks are designed to extract efficient representation of the input data; thus,
the reconstruction error of the decoder is one of the key minimization targets. However, in our work,
the AE network trained by minimizing the reconstruction error may lose the efficiency of the change
detection purpose, since the key information for the reconstruction might not be useful for the change
detection tasks. Consequently, our DDSR architecture only keeps the encoder part that can non-linearly
map the input bi-temporal SAR data to the low-dimensional space, and discards the decoder part
including the reconstruction error in the loss.

(a) (b)

Figure 3. The encoder network diagram. (a) A simple encoder network consists of only an input layer,
a hidden layer and an output layer. (b) A multi-layer encoder network including input layer, two
hidden layers, output layer.

3.2. Self-Expressive Layer Based Linear Transformation

As shown in Figure 2, the main motivation of the self-expressive layer is based on the PCA
and SFA theories. However, unlike PCA or SFA, the linear transformation of our DDSR is learned
by the backpropagation algorithm, instead of the classic or generalized eigenvalue decomposition.
The data-driven strategy can make the self-expressive aspects more adaptive to the given datasets
than PCA and SFA. Let Z ∈ RM×1 and Z′ ∈ RM×1 denote the input (i.e., the output of the AE-like
network) and the output of the self-expressive layer.

Z′ = WSEZ, s.t. diag (WSE) = 0 (3)

where WSE ∈ RM×M denotes the weights of the self-expressive layer. To form a mutually orthogonal
subspace, each row vector in WSE has to be orthogonal to any other row vector in WSE.

3.3. Network Architecture of DDSR

Since the pixel-wise change detection is strongly affected by the speckle, patch-wise strategy has
been applied in this paper, i.e., a square image patch formed by a pixel and its surrounding pixels. Each
patch pair {IX, IY} with center pixel {x, y} is reshaped to vector X ∈ RN×1 and Y ∈ RN×1 (N = 5× 5
in this paper), as shown in Figure 2. Through the AE-like network (Section 3.1), the input bi-temporal
SAR patches X and Y are non-linearly mapped to a lower dimensional latent space, denoted by
ZX ∈ RM×1 and ZY ∈ RM×1 (where N > M). ZX and ZY are then linearly transformed to Z′X and Z′Y
by the self-expressive layer. The change criterion r between pixel x and y can be calculated by

r = ‖Z′X − Z′Y‖ . (4)
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To identify the changed pixels, an unsupervised K-Means cluster is applied to classify {r} into
the changed and unchanged groups.

3.4. Training Strategy

As shown in Figure 2, the classic AE network is adapted to handle the change detection task.
The whole network is trained by minimizing the loss computed from the differential representation of
the bi-temporal SAR patches.

{WAE, WSE} = min
WAE,WSE

Loss(Λ, WAE, WSE, Z′X, Z′Y) , (5)

where the loss can be calculated by

Loss(Λ, WAE, WSE, Z′X, Z′Y) = ‖Z′X − Z′Y‖2
2 + λ1Norm

(
Z′X , Z′Y

)
+ λ2Regl (WAE, WSE) . (6)

‖Z′X − Z′Y‖2
2 denotes the representation differential, Norm (Z′X , Z′Y) is the data constraint term and

Regl (WAE, WSE) is the weight regularization term. The weights Λ = {λ1, λ2} control the balance
terms in the loss function. The data constraint term ensures that the output of DDSR has significant
information (avoiding a meaningless solution, i.e., WAE = 0, WSE = 0).

Norm
(
Z′X , Z′Y

)
=

∣∣∣∣Var(Z′X)− E
∣∣∣∣2

2 +
∣∣∣∣Var(Z′Y)− E

∣∣∣∣2
2

(7)

where E ∈ RM×1 denotes the is a column vector whose elements are all 1. Note that theoretically the
non-zero variance constraint is enough. However, for the sake of simplification, the unite-variance
constraint is used in the paper. The weight regularization term is calculated by

Regl (WAE, WSE) = ||WAE||22 + ||WSE||22 + ∑ Cor(wi
SE, wj

SE), s.t. i 6= j (8)

where ||WAE||22 and ||WSE||22 are classic regularization term. The third term controls the orthogonality
of WSE, in which Cov(wi

SE, wj
SE) is the correlation coefficient between the i-th row vector and the

j-th row vector of WSE. Theoretically, the self-expressive layer performs like a PCA or SFA approach,
for which the orthogonality is needed to have a complete and non-redundant representation. Without
this orthogonality term, the output of DDSR will be a vector of a constant number.

3.5. Implementation Details

Since no labeled data is needed in the training stage, our DDSR is unsupervised. However,
DDSR makes an assumption that the unchanged pixel pairs are much more than changed ones, since
theoretically only unchanged pixel pairs meet the minimization of the proposed loss (Equation (6)).
A similar assumption has also been used in slow feature analysis (SFA) based unsupervised change
detection approach in [18]. In addition, this assumption might not hold when the given bi-temporal
SAR images have a very long time interval (changed pixels/regions are more than unchanged
ones). However, one can easily discard this assumption by introducing a pre-detection strategy
(e.g., the classic log-ratio change detection approach) providing some unchanged pixel pairs as training
samples. A similar strategy has been used in [30].

Since the proposed network focuses on the change detection task instead of the representation of
the classic AE network, the network parameters are firstly initialized randomly, not by a pre-trained
AE network. In the training stage, all the patch pairs are fed into the DDSR network. The Adam
optimization algorithm is applied to minimize the loss (Equation (6)) and obtain the optimal parameters
WAE and WSE with 0.1 learning rate. The number of iterations is 1500. In the testing stage, the change
criterion r (Equation (4)) is computed pixel by pixel. The classic K-Means clustering method is then
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performed on {r} to group pixel pairs into two groups, in which the group with lower magnitude of
cluster center |r̄| is the unchanged group.

4. Experiment

In this section, we investigate the effectiveness of the non-linear part (i.e., AE-like network) and
test our DDSR network with different parameters, e.g., number of hidden neurons, weights in the loss.
Four real SAR datasets are tested in the experiment to evaluate the superiority and advantage of our
proposed method.

4.1. Datasets and Evaludation Metrics

There are 4 SAR datasets in this experiment. (1) Huangshi dataset as shown in Figure 4a, Sentinel-1
SAR images in Huangshi Hubei, China acquired on 8 October 2014 and 19 December 2014. The spatial
resolution is 5 m and image size is 1024 × 1024. (2) Daye dataset in Figure 4b, Sentinel-1 SAR images
in Daye Hubei, China acquired on 8 October 2014 and 19 December 2014 with image size of 1024 ×
1024. (3) San Francisco dataset in Figure 4c, TerraSAR images in San Francisco, America acquired on 5
December 2007 and 16 December 2007. The spatial resolution is 1m and image size is 1024 × 1024. (4)
Guangdong dataset in Figure 4d, TerraSAR images in Guangdong, China acquired on 24 May 2008
and 19 December 2008 with image size of 1024 × 1024. The corresponding ground truth maps are
labeled manually, as shown on the right of Figure 4.

In order to verify the validity of our proposed method, five metrics are computed to quantitatively
investigate the detection results, i.e., Precision (P), Recall (R), Overall accuracy (OA), Kappa coefficient
and F1.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

F1 =
2PR

P + R
(11)

OA =
TP + TN

TP + TN + FP + FN
(12)

Kappa =
OA− pe

1− pe
(13)

where TP, FP, TN and FN denote the number of true positives, the number of false positives,
the number of true negatives and the number of false negatives respectively, as defined in Table 1.

Table 1. Confusion matrix of change detection results.

0 (Unchange, Prediction) 1 (Change, Prediction)

0 (unchange, ground truth) TP FN
1 (change, ground truth) FP TN
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(a)

(b)

(c)

(d)

Figure 4. Datasets tested in the experiments. (a) Huangshi dataset. (b) Daye dataset. (c) San Francisco
dataset. (d) Guangdong dataset. From left to right, the bi-temporal SAR images and the corresponding
reference change maps. In the reference change maps, the unchanged and changed pixels are gray and
white respectively (black is not defined).
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4.2. Analysis of Parameter Setting

As described in Section 3, the hyperparameters are selected before performing the proposed
network, i.e., the number of hidden neurons in the AE-like network, the number of layers of the
AE-like network and the weights in the loss. The efficiency of learning features may be affected by
the number of hidden neurons and the number of hidden layers. The weights in the loss function
can reflect the influence of the relation between different constraints and objective functions on the
detection results. Thus, comparison experiments have been launched here to investigate the proper
hyperparameter setting. Besides, there is a strong link between patch size and image resolution or the
size of changed regions. Considering the SAR datasets tested in our exeriments, we choose the patch
size as 5×5 by some comparative experiments and keep this patch size in the following experiments.

4.2.1. Number of Hidden Layers and Hidden Neurons

We argue that the number of hidden layers and the number of hidden neurons interact with each
other. To choose the parameters of the network, we adopt a grid search method to avoid blindness
and randomness, i.e., the number of hidden layers {0, 1, 2, 3} and the number of hidden neurons
{10, 25, 50, 100}. The weights in the loss function are λ1 = 1.0, λ2 = 1.0. The results are evaluated by
Kappa and F1.

The change detection performance against the number of non-linear hidden layers and hidden
neurons in the AE-like network is shown in Figure 5. It can be seen that the detection accuracy
significantly increases with the introduce of the non-linearly mapping by the AE-like network.
In addition, the accuracy of change detection gradually increases with the increasing layers. It can
be seen that the number of neurons in the hidden layers has a slight effect on the detection results.
Consequently, in the following experiments, we perform the AE-like network with 3 hidden layers
and 25 hidden neurons by balancing the detection accuracy and the computation complexity.

(a) Huangshi

(b) Daye

Figure 5. Cont.
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(c) San Francisco

(d) Guangdong

Figure 5. The influence of the number of non-linear layers and hidden neurons in the AE-like network
on the change detection results. The vertical axis represents the Kappa and F1 metrics of the detection
results. One horizontal axis denotes the proposed network without the autoencoder (AE)-like network
and with the AE-like network containing 1, 2 or 3 hidden layers, the other horizontal axis denotes
the number of hidden neurons. Different colors denote different number of hidden layer. (a) Change
detection results on Huangshi dataset. (b) Change detection results on Daye dataset. (c) Change
detection results on San Francisco dataset. (d) Change detection results on Guangdong dataset. The
left represents kappa metrics and the right denotes F1 metrics.

4.2.2. Weights in the Loss

The proposed loss in Equation (6) consists of the representation differential term, the data
normalization term and the weight regularization term. The weights Λ = {λ1, λ2} control the balance
among these terms. We test the DDSR network with λ1 = {10.0, 1.0, 0.1, 0.01} and λ2 = {10.0, 1.0, 0.1, 0.01}.

Tables 2–5 list the Kappa and F1 of change detection results on dataset Huangshi, Daye, San
Francisco and Guangdong. It can be found that λ1 and λ2 have great influence on the change detection
results. Extremely small λ1 tends to neglect the variance constraints, which leads to failure of the
network training (output the zero weights WAE = 0, WSE = 0). Extremely small λ2 stands for
despising the covariance constraints. There will be lots of redundancy information among the channels
of the output. The change detection results may drop up to 5% in terms of Kappa and F1, given
unbalanced settings of λ1 and λ2. However, this dropping only takes place at the extreme cases,
e.g., {λ1 = 10, λ2 = 0.01} and {λ1 = 0.1, λ2 = 10}. λ1 = 1.0 and λ2 = 1.0 thus have been chosen in
the proposed experiments.
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Table 2. Change detection results of Huangshi dataset with different weights in the loss function.

Weights λ2 = 10.0 λ2 = 1.00 λ2 = 0.10 λ2 = 0.01

Kappa F1 Kappa F1 Kappa F1 Kappa F1

λ1 = 10.0 0.8656 0.8901 0.8694 0.8940 0.8378 0.8689 0.8618 0.8877
λ1 = 1.00 0.8651 0.8898 0.8822 0.9040 0.8503 0.8772 0.8347 0.8643
λ1 = 0.10 0.8602 0.8860 0.8167 0.8493 0.8176 0.8504 0.8617 0.8864
λ1 = 0.01 - - - - - - - -

- denotes fail of the network training.

Table 3. Change detection results of Daye dataset with different weights in the loss function.

Weights λ2 = 10.0 λ2 = 1.00 λ2 = 0.10 λ2 = 0.01

Kappa F1 Kappa F1 Kappa F1 Kappa F1

λ1 = 10.0 0.8780 0.9315 0.8039 0.8931 0.8189 0.9027 0.8726 0.9307
λ1 = 1.00 0.8513 0.9188 0.8613 0.9237 0.8520 0.9189 0.8433 0.9116
λ1 = 0.10 0.8398 0.9118 0.8618 0.9229 0.8614 0.9222 0.8811 0.9338
λ1 = 0.01 - - - - - - - -

- denotes fail of the network training.

Table 4. Change detection results of San Francisco dataset with different weights in the loss function.

Weights λ2 = 10.0 λ2 = 1.00 λ2 = 0.10 λ2 = 0.01

Kappa F1 Kappa F1 Kappa F1 Kappa F1

λ1 = 10.0 0.9170 0.9474 0.9159 0.9462 0.9135 0.9452 0.9317 0.9564
λ1 = 1.00 0.9150 0.9458 0.9377 0.9601 0.9278 0.9538 0.9366 0.9595
λ1 = 0.10 0.9157 0.9465 0.9379 0.9603 0.9333 0.9574 0.8882 0.9295
λ1 = 0.01 - - - - - - - -

- denotes fail of the network training.

Table 5. Change detection results of Guangdong dataset with different weights in the loss function.

Weights λ2 = 10.0 λ2 = 1.00 λ2 = 0.10 λ2 = 0.01

Kappa F1 Kappa F1 Kappa F1 Kappa F1

λ1 = 10.0 0.7722 0.8661 0.7912 0.8776 0.8159 0.8924 0.7943 0.8796
λ1 = 1.00 0.8181 0.8935 0.8156 0.8915 0.8247 0.8974 0.8231 0.8964
λ1 = 0.10 - - - - - - - -
λ1 = 0.01 - - - - - - - -

- denotes fail of the network training.

4.3. Parameter Setting and Comparison Methods

In order to verify the superiority and efficiency of our proposed method, different change detection
approaches are tested as reference methods in this experiment, i.e., (1) the classic mean ratio operator
(MR) [1], (2) NORCAMA [25], a generalized likelihood ratio test based change criterion, (3) SAE +
FCM + CNN [30], deep features based change detction. In our proposed approach, we convert each 5
× 5 patch into a vector as the input of our network. The number of neurons in the 3 non-linear AE-like
network is 25. Consequently, the number of neurons in the self-expressive layer is 25 as well. The
weights in the loss are λ1 = 1.0 and λ2 = 1.0.

4.4. Experimental Results

The change detection maps are shown in Figure 6–9 and the quantitative metrics are presented
in Tables 6–9. From the results, we can find that the classic MR has noisy detection results and the
corresponding detection accuracy is lower than other approaches. NORCAMA with the help of
pre-denoising operation yields less noisy detection results, however, its detection accuracy is highly
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depending on the pre-denoising performance. SAE + FCM + CNN achieves a balance between the
precision and the recall, which has less noise than the classic MR. However, it heavily relies on the pseudo
labels, which may make the final detection accuracy very low when the pre-detection/classification results
are poor. The edges of the detection results are very indistinct. Generally, our DDSR network outperforms
the reference methods with higher detection accuracy, smooth detection results and clear edges.

(a) MR

(b) NORCAMA

(c) SAE + FCM + CNN

(d) Our proposed approach

Figure 6. Change detection results of Huangshi dataset by (a) mean ratio (MR), (b) NORCAMA,
(c) SAE + FCM + CNN, (d) Our proposed approach. The left represents detection result with ground
truth mask. The right denotes detection result without ground truth mask.
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(a) MR

(b) NORCAMA

(c) SAE + FCM + CNN

(d) Our proposed approach

Figure 7. Change detection results of Daye dataset by (a) MR, (b) NORCAMA, (c) SAE + FCM + CNN,
(d) Our proposed approach. The left represents detection result with ground truth mask. The right
denotes detection result without ground truth mask.
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(a) MR

(b) NORCAMA

(c) SAE + FCM + CNN

(d) Our proposed approach

Figure 8. Change detection results of San Francisco dataset by (a) MR, (b) NORCAMA, (c) SAE +
FCM + CNN, (d) Our proposed approach. The left represents detection result with ground truth mask.
The right denotes detection result without ground truth mask.
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(a) MR

(b) NORCAMA

(c) SAE + FCM + CNN

(d) Our proposed approach

Figure 9. Change detection results of Guangdong dataset by (a) MR, (b) NORCAMA, (c) SAE + FCM
+ CNN, (d) Our proposed approach. The left represents detection result with ground truth mask.
The right denotes detection result without ground truth mask.
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Table 6. Change detection results of Huangshi dataset (The bold denotes the best results).

TP FN FP TN OA Kappa P R F1

MR 14153 161 3988 3987 0.8139 0.5468 0.4999 0.9612 0.6578
NORCAMA 18023 1240 118 2908 0.9391 0.7755 0.9610 0.7011 0.8107

SAE + FCM + CNN 17506 816 635 3332 0.9349 0.7814 0.8399 0.8033 0.8212
Proposed approach 17773 423 368 3725 0.9645 0.8822 0.8980 0.9101 0.9040

Table 7. Change detection results of Daye dataset (The bold denotes the best results).

TP FN FP TN OA Kappa P R F1

MR 5897 153 1733 6029 0.8635 0.7304 0.7767 0.9753 0.8647
NORCAMA 6863 882 767 5300 0.8806 0.7581 0.8736 0.8573 0.8654

SAE + FCM + CNN 6873 1361 757 4821 0.8467 0.6870 0.8643 0.7798 0.8199
Proposed approach 7122 440 508 5742 0.9314 0.8613 0.9187 0.9288 0.9237

Table 8. Change detection results of San Francisco dataset (The bold denotes the best results).

TP FN FP TN OA Kappa P R F1

MR 6594 5 746 4007 0.9338 0.8611 0.8430 0.9988 0.9143
NORCAMA 7333 474 7 3538 0.9576 0.9048 0.9980 0.8819 0.9364

SAE + FCM + CNN 5399 0 1941 4012 0.8290 0.6629 0.6739 1.00 0.8052
Proposed approach 7103 89 237 3923 0.9713 0.9377 0.9430 0.9778 0.9601

Table 9. Change detection results of Guangdong dataset (The bold denotes the best results).

TP FN FP TN OA Kappa P R F1

MR 37412 7262 16287 35749 0.7565 0.5171 0.6870 0.8312 0.7522
NORCAMA 45422 11957 8277 31054 0.7908 0.5727 0.7896 0.7220 0.7543

SAE + FCM + CNN 52679 8173 1020 34838 0.9049 0.8043 0.9716 0.8100 0.8834
Proposed approach 52325 7313 1374 35698 0.9102 0.8156 0.9629 0.8300 0.8915

5. Conclusions

In this paper, we present a differentially deep subspace representation (DDSR) for bi-temporal
SAR images change detection. The proposed architecture consists of an autoencoder-like (AE-like)
non-linear mapping network, a self-expressive linear transforming layer and a K-Means cluster.
Contrary to the deep subspace clustering algorithms, our DDSR representation focuses on the change
detection task (the comparison of two input image patches) instead of the efficient representation
of the input data. The classic AE network has been modified to an AE-like architecture by training
to minimize the differential representation of the unchanged pixel pairs without the traditional
reconstruction error, i.e., the decoder has been discarded. The input bi-temporal SAR data is first
non-linearly mapped to a lower-dimensional latent space by the proposed AE-like network. To better
distingue the changed and unchanged pixels, a self-expressive layer has been applied to linearly
transform the mapped SAR data to a subspace. The final change criterion is the difference between
the subspace representations of the two temporal images. The classic K-Means is applied to identify
the changed pixels. The experimental results have demonstrated that our proposed method yields
better performance in terms of detection accuracy on the real SAR datasets than the reference methods.
Future work could focus on the extensions of our DDSR to optical and SAR image change detection.
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