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Abstract: To obtain a high-accuracy vegetation classification of high-resolution UAV images, in this
paper, a multi-angle hyperspectral remote sensing system was built using a six-rotor UAV and a Cubert
S185 frame hyperspectral sensor. The application of UAV-based multi-angle remote sensing in fine
vegetation classification was studied by combining a bidirectional reflectance distribution function
(BRDF) model for multi-angle remote sensing and object-oriented classification methods. This method
can not only effectively reduce the classification phenomena that influence different objects with
similar spectra, but also benefit the construction of a canopy-level BRDF. Then, the importance of the
BRDF characteristic parameters are discussed in detail. The results show that the overall classification
accuracy (OA) of the vertical observation reflectance based on BRDF extrapolation (BRDF_0◦) (63.9%)
was approximately 24% higher than that based on digital orthophoto maps (DOM) (39.8%), and
kappa using BRDF_0◦ was 0.573, which was higher than that using DOM (0.301); a combination
of the hot spot and dark spot features, as well as model features, improved the OA and kappa to
around 77% and 0.720, respectively. The reflectance features near hot spots were more conducive to
distinguishing maize, soybean, and weeds than features near dark spots; the classification results
obtained by combining the observation principal plane (BRDF_PP) and on the cross-principal plane
(BRDF_CP) features were best (OA = 89.2%, kappa = 0.870), and especially, this combination could
improve the distinction among different leaf-shaped trees. BRDF_PP features performed better than
BRDF_CP features. The observation angles in the backward reflection direction of the principal
plane performed better than those in the forward direction. The observation angles associated
with the zenith angles between −10◦ and −20◦ were most favorable for vegetation classification
(solar position: zenith angle 28.86◦, azimuth 169.07◦) (OA was around 75%–80%, kappa was around
0.700–0.790); additionally, the most frequently selected bands in the classification included the blue
band (466 nm–492 nm), green band (494 nm–570 nm), red band (642 nm–690 nm), red edge band
(694 nm–774 nm), and the near-infrared band (810 nm–882 nm). Overall, the research results promote
the application of multi-angle remote sensing technology in vegetation information extraction and
provide important theoretical significance and application value for regional and global vegetation
and ecological monitoring.

Keywords: multi-angle observation; hyperspectral remote sensing; BRDF; vegetation classification;
object-oriented segmentation
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1. Introduction

The vegetation ecosystem is an important foundation for ecological systems [1]. The use of
remote sensing technology has become the main approach for vegetation ecological resource surveys
and environmental monitoring due to the corresponding real-time, repeatability, and wide-coverage
advantages [2–4]. With the development of remote sensing technology, visible light, multispectral,
hyperspectral, and other sensors have been widely used in the remote sensing of vegetation [5,6],
and more hyperspectral and high-resolution information has been obtained than ever before, greatly
improving the accuracy of image classification [7,8].

As one of the current frontiers of remote sensing development, hyperspectral remote sensing
technology has played an increasingly important role in quantitative analyses and accurate
classifications of vegetation due to its ability to acquire high-resolution spectral and spatial data [9–12].
For instance, Filippi utilized an unsupervised self-organizing neural network to perform complex
vegetation mapping in a coastal wetland environment [13]. Fu et al. proposed an integrated scheme
for vegetation classification by simultaneously exploiting spectral and spatial image information to
improve the vegetation classification accuracy [14].

From the perspective of remote sensing imaging, remote sensing vertical photography can
obtain only the spectral feature projection of the target feature in one direction, and it lacks sufficient
information to infer the reflection anisotropy and spatial structure [15]. Multi-angle observations of
a target can provide information in multiple directions and be used to construct the bidirectional
reflectance distribution function (BRDF) [16–18], which increases the abundance of target observation
information; additionally, this approach can extract more detailed and reliable spatial structure
parameters than a single-direction observation can [19]. Multi-angle hyperspectral remote sensing,
which combines the advantages of multi-angle observation and hyperspectral imaging technology,
is projected to become an effective technical method for the classification of vegetation in remote
sensing images.

The UAV remote sensing platform has emerged due to its flexibility, easy operation, high efficiency,
and low cost; it can efficiently acquire high-resolution spatial and spectral data on demand [20]. The
UAV remote sensing platform has the ability to provide multi-angle observations and thus has become
popular in multi-angle remote sensing [21–24]. Roosjen et al. studied the hyperspectral anisotropy
of barley, winter wheat, and potatoes using a drone-based imaging hyperspectrometer by obtaining
multi-angle observation data for hemispherical surfaces by hovering around the crops [25]. In addition,
Liu and Abd-Elrahman developed an object-based image analysis (OBIA) approach by utilizing
multi-view information acquired using a digital camera mounted on a UAV [26]. They also introduced
a multi-view object-based classification using deep convolutional neural network (MODe) method
to process UAV images for land cover classification [27]. Both methods avoided the salt and pepper
phenomenon of the classified image and have achieved favorable classification results. However,
it is difficult to obtain the continuous spectrum characteristics of the ground objects because of the
fewer wave bands the optical sensors use. Moreover, the research does not fully mine the contribution
difference of multi-angle features. Furthermore, how to use the limited multi-angle observations to
construct the BRDF of ground objects to enrich the observation information of the target is also one of
the difficulties in the application of multi-angle remote sensing.

In this paper, key technical issues, such as the difficulty in distinguishing complex vegetation
species from a single remote sensing observation direction, the construction of the BRDF model
based on UAV multi-angle observation data, and model application for vegetation classification and
extraction, were studied. The purpose of this study was to discuss the role of ground object BRDF
characteristic parameters in the fine classification of vegetation, thereby improving the understanding
of the relationship between the BRDF and plant leaves and vegetation canopy structure parameters,
as well as promoting the application of multi-angle optical remote sensing in the acquisition of
vegetation information.
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2. Date Sets

2.1. Study Area

The research area was in the village of Luozhuang, Changziying town, Daxing District, Beijing, as
shown in Figure 1. The image was acquired on 24 August 2018. The weather was clear and cloudless.
The rich vegetation types included weeds, crops, and tree species, as shown in Figure 2. The crops
included soybean in the flowering and pod-bearing stages, and maize in the powder stage. The tree
species included mulberry, peach, and ash trees. The vegetation grew densely, and shadows greatly
affected the classification results. Therefore, shadows were recognized as a type of object in this paper.
In summary, the land species were divided into eight types: weeds, soybeans, maize, mulberries, peach
trees, ash trees, dirt roads, and shadows.
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Figure 2. Schematic images of the vegetation types in the study area.

2.2. UAV Hyperspectral Remote Sensing Platform

In this paper, a Cubert S185 hyperspectral sensor mounted on a DJI Jingwei M600 PRO (Dajiang,
Shenzhen, China), which is a rotary-wing vehicle with six rotors, was used to obtain research data,
and is shown in Figure 3. The Cubert S185 frame-frame imaging spectrometer (Germeny) [28]
simultaneously captured both low spatial resolution hyperspectral images (50 × 50 pixels) and high
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spatial resolution panchromatic images (1000 × 1000 pixels), and then obtained high spatial resolution
hyperspectral images via data fusion using Cubert Pilot software. The sensor provides 125 spectral
channels with wavelengths ranging from 450 nm to 950 nm (4-nm sampling interval). Table 1 lists the
main performance parameters of the hyperspectral cameras.
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Table 1. Main parameters of the Cubert UHD 185 snapshot hyperspectral sensor (provided by the
manufacturer).

Specification Value Specification Value

Wavelength range 450–946 nm Housing 28 cm, 6.5 cm, 7 cm
Sampling interval 4 nm Digitization 12 bit
Full width at half

maximum
8 nm at 532 nm, 25 nm at

850 nm
Horizontal field of view

Cube resolution
22◦

1 megapixel
Channels 125 Spectral throughput 2500 spectra/cube

Focal length 16 mm Power DC 12 V, 15 W
Detector Si CCD Weight 470 g

2.3. Flight Profile and Conditions

The drone mission was implemented from 12:10 to 12:30 on 24 August 2018. Regarding the
sun’s position, the zenith angle was 28.86◦, and the azimuth was 169.07◦. The weather was clear and
cloudless, there was no wind, and the light intensity was stable. The flying height was 100 m, and the
acquired hyperspectral image had a ground sample distance of 4 cm after data fusion. To ensure that
the remote sensing platform obtained a sufficient observation angle for each feature and to improve
the accuracy of the BRDF model construction, the flight adopted vertical photography and oblique
photogrammetry (the angle of the mirror center was 30◦). To obtain more abundant multi-angle
observation data, the image heading and side overlap were both greater than 80%. Moreover, RTK
(real-time kinematic) carrier phase difference technology was used to measure the coordinates of the
ground control points with a planimetric accuracy better than 1 cm. The number of control points was
5, and they were located in areas with clear, distinguishable, and unblocked GPS signals.

2.4. Data Processing

According to the flight mission plan described above, the hyperspectral experimental dataset
was successfully acquired, and the data were processed with Agisoft PhotoScan software Version
1.2.5 (St.Petersburg Russia) to generate a digital orthophoto map (DOM) and digital surface model
(DSM) data for the research area. Data processing included matching according to high definition
digital images and position and orientation system (POS) information at the time of image acquisition
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(latitude and longitude, altitude, flip, and pitch and rotation angle of the UAV flight), detecting the
feature points of photos based on a dynamic structure algorithm, establishing matching feature point
pairs, and arranging photos. A dense three-dimensional point cloud was generated using a dense
multi-perspective stereomatching algorithm, and the ground control points were input for geometric
corrections. Finally, the DSM and DOM of the experimental area were obtained, as shown in Figure 4.
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3. Materials and Methods

This paper proposed a novel vegetation classification method combining an object-oriented
classification method and BRDF. The relationship between BRDF characteristics and plant leaves and
vegetation canopy structure is discussed to promote the development of multi-angle optical remote
sensing in the application field of vegetation remote sensing. First, the method of image segmentation
combining spectral and DSM features was studied to improve the accuracy of the object-oriented
edge and the segmentation of the plaque. Second, multiple hyperspectral data sets were obtained
using vertical and oblique photogrammetry, the acquired multi-angle observation data of the ground
object were used, and then the semi-empirical kernel driver model was used to invert the BRDF model
of each object patch. Third, according to the characteristics of BRDF for each segmentation patch, a
multi-class feature set was constructed. Finally, object-oriented classification was carried out for fine
vegetation classification. The specific research technology route is shown in Figure 5:
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3.1. Image Segmentation

UAV remote sensing technology can acquire DSMs through the acquisition and processing of
multiple overlapping images, and this information can be used as auxiliary information to improve the
image segmentation accuracy. In this study, the DSM and spectral characteristics were taken as basic
information, and the object set of the UAV hyperspectral image segmentation was constructed using
Definiens eCognition Developer 7.0 (München, Germany). A multi-resolution segmentation method
was adopted. A segmentation scale parameter was manually adjusted using a trial and error method
and finally a segmentation scale of 50 was selected, which resulted in visually correct segmentation.
The shape and compactness weight parameters [29] used in the segmentation algorithm were also
found using trial and error, and values of 0.05 and 0.8 were used, respectively.

Next, the extraction of the feature sets for image segmentation patches were discussed, which
were used for vegetation classification.

3.2. Multi-angle Observation Data Acquisition and BRDF Model Construction

First, the maximum inscribed circle of each object patch was obtained as the attribute representative
of the patch. Second, corresponding image points for each pixel inside the inscribed circle were found.
Then, the average value of the reflectances in the corresponding circular area in one image was read
as the reflectivity of the segmented block under different observation angles. At the same time, the
observation angle of each image block with the same name was obtained. Finally, the BRDF model of
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the segmentation block was constructed by using the reflectance of a multi-angle observation. The
specific steps were as follows:

(1) Aerotriangulation and camera attitude parameter solution:
On the basis of multi-angle image data sets with high amounts of overlap acquired through

vertical photography and oblique photogrammetry, control point data obtained using synchronous
field measurements were used to calculate the coordinates of pending points in the study area via
aerotriangulation and then used as control points for multiple images and image correction. In this
method, aerial camera stations were established for the whole network, and the acquired images were
used for point transmission and network construction.

The exterior and interior orientation parameters were obtained via aerotriangulation with control
point data, and the internal camera parameters were obtained via camera calibration. The camera
calibration and orientation was carried out suing the Agisoft Photoscans software. Then, the coordinates
of the known object in three-dimensional space, the corresponding image pixel coordinates, and the
camera interior parameters were used to determine the exterior parameters of the object in a known
space, namely the rotation vector and the translation vector. Finally, the rotation vector was analyzed
and processed to obtain the three-dimensional altitude angle of the camera relative to the spatial
coordinates of the known object by considering the pitch, rotation, and wheel angles.

(2) Search for the corresponding image points:
The corresponding image point refers to the image point of any ground object target point in

different photos [30]. It was obtained by photographing the same object point multiple times at different
photo points during the aerial photography. After calculating the coordinates of the pending points in
the study area and the elements of the internal and external orientations of each image, a collinearity
equation with digital photogrammetry was used to determine the image plane coordinates of the target
point for each image; then, the characteristics of the sensor image were used to determine whether
each coordinate was within the visual threshold range and to search the image for corresponding
image points.

(3) Observation angle and reflectance of points with the same name:
After searching for points with the same name, the zenith angle and observation azimuth of

the object point in each image and points with the same name were calculated using the orientation
relationship between the camera station (projection center) and the object point. In addition, the
reflectance of points with the same name was determined for the selected band image.

(4) Parameter calculation for the semi-empirical kernel driver model:
Algorithm for model bidirectional reflectance anisotropics of the land surface (AMBRALS) [31]

was selected to construct the BRDF. The semi-empirical core-driven model can be expressed using
Equation (1):

R(θ, ∂, σ) = fiso + fvolKvol(θ, ∂, σ) + fgeoKgeo(θ, ∂, σ). (1)

The bidirectional reflectance can be decomposed into the sum of the weights of the three parts of
uniform reflection, bulk reflection, and geometric optical reflection. Therefore, the value of isotropic
reflection is generally equal to 1. In the core-driven model, R represents the bidirectional reflectivity, θ
represents the ray zenith angle, ∂ represents the observation angle of the zenith angle, and σ represents
the corresponding azimuth angle. Kvol and Kgeo are the bulk nuclear reflection and geometric optical
nuclear reflection, respectively. fiso, fvol, and fgeo are constant coefficients that represent the proportions of
uniform reflection, bulk reflection, and geometric optical reflection, respectively. The linear regression
method was used to solve for the optimal parameter values. In addition, the bulk nuclear reflection
and geometric optical nuclear reflection in the formula were calculated using the ray zenith angle,
the observation zenith angle, and the corresponding azimuth angle, and therein, the ray zenith angle
and the azimuth angle were calculated based on the time and date the image was obtained and the
coordinates of the object point.
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3.3. Feature Set Construction Based on the BRDF

To evaluate the application value of the BRDF model for vegetation classification, this study
extracted two types of features from the BRDF model as the basic attributes for the identification of
vegetation species. The first type was bidirectional reflectance factor (BRF) predicted by the BRDF
model, including the maximum (hot spot) and the minimum (dark spot) reflectance values observed in
the backscattering and forward scattering regions, respectively; the multi-angle observation reflectance
in the main plane of the observation (considering the maximum view zenith angle of the remote
sensing sensor, which was set to 60◦); and then the observations in the principal planes beginning from
the 0◦ zenith angle in the forward and backward directions of observation with a 10◦ sampling interval
to obtain the multi-angle observation data. The multi-angle observed reflectance of the main vertical
observation plane (the angular sampling method was consistent with the main plane of observation)
and joint feature set of multi-angle reflectance for the main planes (25) were also considered. Second,
the BRDF model parameters fiso, fvol, and fgeo were considered [25]. Table 2 summarizes the feature sets
used for vegetation species identification.

Table 2. Feature set construction using the BRDF for object-oriented classification.

Explanatory Variable Abbreviation

Commonly Used Reflectance obtained from DOM DOM

BRDF Characteristics
(1) Modeled bidirectional
reflectance factors (BRFs)

Vertical observation angle BRDF_0◦

Hot and dark spots reflectance signatures BRDF_HS_DS
Observation angles on principal plane BRDF_PP
Observation angles on cross-principal plane BRDF_CP
Observation angles on principal and cross planes BRDF_PP+CP

(2) Model parameters fiso, fvol and fgeo BRDF_3f

3.4. Vegetation Classification and Accuracy Assessment

After obtaining the noise attribute information for each object according to the above scheme,
the C5.0 decision tree [32] method was used to construct the vegetation species recognition model.
The decision tree algorithm has a structure similar to the tree structure shown in the flow chart. This
structure can intuitively display the classification rules, and the classification algorithm has a fast speed,
high accuracy, and simple generation mode. This study used the SPSS Clementine V16.0 software
(IBM, Chicago, USA) to achieve a fine classification of vegetation based on the C5.0 decision tree. To
verify the effectiveness of the method, the image segmentation results were taken as samples, and the
number of each sample was summarized, as shown in Table 3. Sixty percent of the samples were used
as model training samples, and the remaining 40% were used as verification samples.

Table 3. Samples of vegetation types.

Types Dirt Roads Weeds Soybeans Maize Mulberries Peach Trees Ash Trees Shadows

Number 36 26 17 29 25 38 26 38

The quantitative evaluation of the classification results mainly included the following index
factors [33]: confusion matrix (overall accuracy, producer’s accuracy, and user’s accuracy) and the
kappa coefficient. The overall accuracy is essentially tells us out of all the reference sites, what
proportion were mapped correctly. The producer’s accuracy is the map accuracy from the point of
view of the map maker (the producer). This is how often real features on the ground are correctly
shown on the classified map or the probability that a certain land cover of an area on the ground is
classified as such. The user’s accuracy is the accuracy from the point of view of a map user, not the
map maker. It essentially tells the user how often the class on the map will actually be present on the
ground. This is referred to as the reliability. The kappa coefficient is a statistical measure of inter-rater
agreement or inter-annotator agreement for qualitative (categorical) items.
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4. Image Classification Results

According to the set of classification feature parameters listed in Table 2, an image classification
based on C5.0 was performed. A quantitative evaluation of the classification results is shown in Table 4.
The overall classification accuracy based on BRDF_0◦ (63.9%) was approximately 24% higher than that
based on the DOM. Two principal plane reflectance feature sets (BRDF_PP+CP) were used for the fine
classification of vegetation, and the best results were obtained. The overall accuracy of classification
(89%) was greatly improved by 39%, and the kappa coefficient (0.870) was increased by 0.438. The
classification results for the study area based on BRDF_PP+CP are shown in Figure 6.

Table 4. Classification accuracy based on a feature set construction with the BRDF (overall accuracy
(OA) and kappa).

Explanatory Variable OA Kappa

Commonly Used DOM 39.8 0.301

BRDF Characteristics
Modeled bidirectional

reflectance factors (BRFs)

BRDF_0◦ 63.9 0.573
BRDF_0◦+HS+DS 77.1 0.728

BRDF_PP 85.5 0.828
BRDF_CP 78.3 0.740

BRDF_PP+CP 89.2 0.870

BRDF model parameters BRDF_0◦_3f 78.3 0.739

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 

Table 4. The overall classification accuracy based on BRDF_0° (63.9%) was approximately 24% 

higher than that based on the DOM. Two principal plane reflectance feature sets (BRDF_PP+CP) 

were used for the fine classification of vegetation, and the best results were obtained. The overall 

accuracy of classification (89%) was greatly improved by 39%, and the kappa coefficient (0.870) was 

increased by 0.438. The classification results for the study area based on BRDF_PP+CP are shown in 

Figure 6. 

Table 4. Classification accuracy based on a feature set construction with the BRDF (overall accuracy 

(OA) and kappa). 

 Explanatory Variable  OA Kappa 

Commonly Used  DOM 39.8  0.301  

BRDF Characteristics Modeled bidirectional 

reflectance factors (BRFs) 

BRDF_0° 63.9  0.573  

BRDF_0°+HS+DS 77.1  0.728  

BRDF_PP 85.5  0.828  

BRDF_CP 78.3  0.740  

BRDF_PP+CP 89.2  0.870  

BRDF model parameters BRDF_0°_3f 78.3  0.739  

 

 

Figure 6. Classification results: (a) the reference map, (b) the map produced using DOM, and (c) the 

map produced based on multi-angle reflectance characteristics of the observed principal planes and 

cross-principal planes. 

From Figure 6, the object-oriented vegetation classification method based on the multi-angle 

reflectance characteristics achieved good mapping results with clear boundaries and an accurate 

location distribution. BRDF_PP+CP feature sets helped to improve the recognition accuracy of the 

junction of different tree species, as shown in the blue rectangle in Figure 6. This was because the 

observation data from different angles could reflect the difference in tree structure, and the tree 

species could be identified well using multi-angle difference features. In addition, it could improve 

the accuracy of the division of corn and field roads, as shown in the yellow rectangle in Figure 6. 

However, although the BRDF_PP+CP greatly improved the identification accuracy for shadows, it 
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cross-principal planes.

From Figure 6, the object-oriented vegetation classification method based on the multi-angle
reflectance characteristics achieved good mapping results with clear boundaries and an accurate
location distribution. BRDF_PP+CP feature sets helped to improve the recognition accuracy of the
junction of different tree species, as shown in the blue rectangle in Figure 6. This was because the
observation data from different angles could reflect the difference in tree structure, and the tree species
could be identified well using multi-angle difference features. In addition, it could improve the
accuracy of the division of corn and field roads, as shown in the yellow rectangle in Figure 6. However,
although the BRDF_PP+CP greatly improved the identification accuracy for shadows, it performed
poorly regarding the distinction between shadows and weeds with a low height, as shown in the black
area of Figure 6. The spectral vegetation types under shadow coverage in the study area were various,
and the spectral characteristics of shadow were similar to those of weeds with a low height.
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5. Discussion

5.1. Applicability Assessment of BRDF Characteristic Types

For promoting the realization of the relationship between the BRDF and plant leaves and vegetation
canopy structure parameters, the following subsections are given to discuss the role of the ground
object BRDF characteristic parameters in the fine classification of vegetation.

(1) Performance of BRDF_0◦:
Table 4 shows that compared with the classification results based on the DOM, the classification

accuracy based on BRDF_0◦ was greatly improved. Figure 7 shows the producer’s accuracy and user’s
accuracy of each type of land feature using two classification features.
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Figure 7 indicates that BRDF_0◦ was instrumental in the distinction among different objects. The
vertical reflectance data of DOM were obtained using statistical methods. However, the method of
using a semi-empirical model to construct the BRDF and invert the vertically observed reflectance
combines the advantages of an empirical model and a physical model. Although the model parameters
are empirical parameters, they have certain physical significance. Consequently, the observation angle
of the ground objects is unified with the vertical observations through the BRDF model, which weakens
the reflection characteristics of the same type of vegetation affected by the observation angle difference.
Compared with the classification results obtained using DOM data, the classification accuracy obtained
using BRDF_0◦ was greatly improved, but the recognition accuracy of dirt roads, peach trees, and ash
trees was still very low. The producer’s accuracy of weeds, soybeans, and maize improved to greater
than 90%, but the user’s accuracy improved only slightly, which indicates that the results for these
three types of land features were overclassified.

(2) Hot and dark spot reflectance signatures:
Six feature sets were used to classify vegetation, namely, the vertical observation direction

(BRDF_0◦); hot spot observation direction (BRDF_HS); dark spot observation direction (BRDF_DS);
vertical observation direction and hot spot direction (BRDF_0◦+HS); vertical observation direction and
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dark spot direction (BRDF_0◦+DS); and vertical observation direction, hot spot direction, and dark
spot direction (BRDF_0◦+HS+DS). The overall classification accuracy and kappa coefficients of the six
feature sets are shown in Figure 8. The classification accuracy of BRDF_0◦+HS+DS was the highest at
about 77%. The classification effect of vegetation types using BRDF_DS was slightly worse than that
using BRDF_0◦, while the classification effect of vegetation types using BRDF_HS was better than that
using BRDF_0◦. The results show that the hot spot reflectance signature had an excellent effect in the
recognition of complex vegetation types. This was because the reflection characteristics of different
objects in the direction of dark spots were lower than those in the direction of hot spots, and the hot
spot effects between crops and tree species were quite different. The producer and user accuracies of
each type of land feature are shown in Figure 9.
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Figure 9. Producer’s accuracy and user’s accuracy for each vegetation type based on hot and dark
spot characteristics.

From Figure 9, the combined application of dark spot and hot spot directional reflectance features
improved the classification accuracy. The classification results for soybean, peach trees, mulberry trees,
and ash trees using BRDF_HS were more accurate than those using BRDF_DS. In contrast, the ground
objects with a high accuracy included dirt roads and shadows based on the reflection features in the
dark spot direction. The research shows that the tree structure features had a high sensitivity in the hot
spot direction.

(3) Multi-angle reflectance characteristics of the observed principal plane and cross-principal plane:
Four feature sets were used to classify the vegetation, namely the reflectance values from the

vertical observation direction (BRDF_0◦), principal plane (BRDF_PP), cross plane (BRDF_CP), principal
and cross planes (BRDF_PP+CP). The corresponding classification results are shown in Figure 10. The
classification accuracy using BRDF_PP+CP was the highest (OA = 88%). The reflectance characteristics
from the principal plane were more conducive to the classification of complex vegetation species than
those in the vertical main plane. The producer’s accuracy and user’s accuracy of each type of land
feature are shown in Figure 11.
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Figure 11. Producer’s accuracy and user’s accuracy of each vegetation type based on the multi-angle
reflectance characteristics for the observed principal plane and cross-principal plane.

Figure 11 shows that the combined application of reflectance characteristics from the principal and
cross planes could improve the classification accuracy. The joint classification results for the reflectance
characteristics in the two main planes show that the producer’s accuracy of other land features was
greater than 90%, the producer’s accuracy of peach seedlings was approximately 52%, and the peach
seedlings were misclassified as soybean and ash trees.

(4) BRDF model parameters:
Three feature sets were used to classify vegetation, namely the reflectance from the vertical

observation direction (BRDF_0◦), BRDF model parameters (BRDF_3f), and reflectance from the vertical
observation direction and BRDF model parameters (BRDF_0◦+3f). The corresponding classification
results are shown in Figure 12. The classification accuracy of BRDF_0◦+3f was the highest (OA =

78%). The proportions of uniform reflection, bulk reflection, and geometric optical reflection were
expressed as parameters. The addition of model parameters increased the descriptive information for
the physical structure of vegetation, which contributed to the classification. The producer’s and user’s
accuracies of each type of land feature are shown in Figure 13.
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5.2. Importance Evaluation of the Observation Angle and Band Selection

Figure 14 shows the variation in the classification accuracy (overall accuracy and kappa coefficient)
based on a single observation angle feature in the main observation plane and main vertical plane. The
angle feature in the main plane was observed. The angle feature located in the backward reflection
direction (zenith angle between −10◦ and −20◦) was associated with the optimal overall accuracy
and kappa coefficient. In the main vertical observation plane, the classification accuracy exhibited a
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symmetrical phenomenon with the angle distribution, and the variation in amplitude was lower than
that in the main observation plane.
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Figure 14. Observation angle importance analysis for the main plane. The blue/red dotted lines
represent the classification results using DOM data.

Hyperspectral remote sensing has the advantage of providing hundreds of spectral channels
of data to obtain the spectral curves to reflect the attribute differences of the object. It also provides
convenience for the study of the band sensitivity of different vegetation types. Figure 15 shows the
top 10 bands in terms of feature importance when only the multiband dataset for the observation
zenith angle was used for classification in the main observation plane, where the diameter of the circle
represents the importance degree of the band. The importance of features were calculated using SPSS
Clementine software, and the indicators included the sensitivity and information gain contribution.
The results show that in the main plane of observation, the blue band (466–492 nm), green band
(494–570 nm), red band (642–690 nm), red edge band (694–774 nm), and near-infrared band (810–882
nm) were of high importance, among which the blue light band, red light band, and red edge band
were the most important.
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6. Conclusions

In this paper, the application of UAV multi-angle remote sensing in the fine classification of
vegetation was studied by combining a constructed multi-angle remote sensing BRDF model with an
object-oriented classification method. High-resolution image classification extraction with a UAV was
the objective, and the importance of ground object BRDF characteristic parameters was discussed in
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detail. In addition, considering the spectral segmentation advantage of hyperspectral data and the
importance of features from the two principal planes, the observation angles and band conditions of
the participating classifications were further analyzed. The main conclusions are as follows.

(1) The overall classification accuracy (63.9%) based on the BRDF vertical observation reflectance
characteristics was approximately 24% higher than that of traditional UAV orthophoto-based
classification. The combined application of the reflection features from the main observation plane and
main vertical plane yielded the best classification results, with an overall accuracy of approximately
89.2% and a kappa of 0.870.

(2) The reflectance characteristics near the hot spots were favorable for distinguishing between
corn, soybean, and weeds. The combined application of the reflectance characteristics from the main
observed plane could improve the classification accuracy of trees with different leaf shapes.

(3) The viewing angle characteristics in the retroreflective direction of the principal plane were
better than those in the forward reflection direction. The observation angles associated with zenith
angles between −10◦ and −20◦ were the most favorable for vegetation classification (sun position:
zenith angle 28.86◦, azimuth 169.07◦).

(4) Bands of high importance for the fine classification of vegetation included the blue band
(466–nm), green band (494–570 nm), red band (642–690 nm), red edge band (694–774 nm), and
near-infrared band (810–882 nm), among which the blue, red, and red edge bands were the
most important.

Due to the UAV hyperspectral image with a centimeter spatial resolution, when the research
target size was larger than the image resolution, the introduction of an object-oriented analysis method
can make the work of target recognition more accurate and efficient. Additionally, combining the
construction of a multi-angle remote sensing BRDF model with an object-oriented classification method
is very conducive to the study of the BRDF characteristics of canopy level vegetation. The research
results provide a methodological reference and technical support for BRDF construction based on
UAV multi-angle measurements, which promotes the development of multi-angle remote sensing
technology in vegetation information extraction. The study provides important theoretical significance
and application value for regional to global vegetation remote sensing applications. In this paper,
only two classification characteristics of the reflectance and model parameters were proposed for the
BRDF model. Research on the application of index characteristics, such as the vegetation index and
BRDF shape index in vegetation classification, along with an evaluation of different classifiers, will be
developed in future work.
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