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Abstract: This study aimed to delineate the geographic hotspots of negative trends in biomass
productivity in the Lower Mekong Basin countries (Vietnam, Cambodia, Laos, and Thailand) and
identify correlated regional environmental and anthropogenic factors. A long-term time-series
(1982–2015) of Normalized Difference Vegetation Index at a resolution of approximately 9.16 km
× 9.16 km was used to specify the areas with significant decline or increase in productivity.
The relationships between vegetation changes and land attributes, such as climate, population
density, soil/terrain conditions, and land-cover types, were examined. Rainfall time-series maps were
used to identify areas that might have been affected by land degradation from those correlated with
rainfall. Most of the detected potentially degraded areas were found in Cambodia, the Northwest
and the Highland of Vietnam, the Northern Mountains of Thailand and Laos, and the mountainous
border between Laos, Vietnam, and Cambodia. About 15% of the total land area of these four
countries experienced a reduction in biomass productivity during the 34-year study period. The map
of hotspots of changes in productivity can be used to direct further studies, including those at finer
spatial resolution that may support policy makers and researchers in targeting the strategies for
combating land degradation.
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1. Introduction

In addition to climate change and biodiversity loss, land degradation is considered a significant
and far-reaching global problem [1–8]. Land degradation threatens global development goals,
especially those related to global food security and poverty reduction [9,10]. In the tropical countries,
where livelihoods are often agriculture-based, land degradation is a serious problem for food security
and development of society [11–14]. Tropical countries tend to harbor areas where land degradation
and climate change have severe environmental and socioeconomic impacts [15].

Land is defined as a combination of terrestrial ecosystem that includes soil resources, vegetation,
water, other biotas, landscape setting, climate attributes, and ecological processes. Land degradation
is defined as “the temporary or permanent decline in the productive capacity of the land” [16].
The phenomenon of land degradation, therefore, includes the degradation of vegetation functions
and services, usually over time, either within a land-use/cover type (e.g., forest degradation and
yield-degraded cropland), or a conversion of natural productive land-cover type to a less productive
one (e.g., deforestation) [14], often including soil degradation. It has been measured through a loss
of biomass, a loss of actual or potential productivity, or a loss or change in vegetative cover and soil
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nutrients. Soil and vegetation degradation are often linked. Land degradation is caused by both
natural and anthropogenic factors [2,12,17,18]. Typical examples of natural causes of land degradation
are frequent or prolonged droughts, or high rainfall on sloping land. Anthropogenic causes of land
degradation are more complex, including a hierarchy of intermediate causes (e.g., deforestation,
overgrazing, shifting cultivation with shortened fallow periods, and unbalanced fertilizer use) and
underlying causes (e.g., population pressure, unsuitable land tenure regime, and poverty) [2,19,20].
Although anthropogenic (or human-induced) land degradation can be theoretically mitigated, it is a
difficult task [21,22].

The Lower Mekong Basin (LMB) countries in this study include Cambodia, Laos, Thailand,
and Vietnam (Figure 1). The livelihoods of millions of people (specifically in the Lower
Mekong countries) rely strongly on agricultural production [23], and about 22% of the GDP
is based on agriculture [24,25]. Recently, high population growth, the development of the
economies, and modernization–urbanization have created an increased need for land for agricultural
production [26]. A significant issue for the development is land degradation caused by deforestation,
unsuitable land use, and inappropriate land management [27]. Land plays an important role in the
livelihood in this region, but agricultural land per capita is low, and arable land has been rapidly
decreasing [28].Remote Sens. 2019, 11, x FOR PEER REVIEW  4 of 25 
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Figure 1. Location of the study area. Only the mainland is shown in the map.

In the 1990s, the scope of land-degradation research relied on soil-degradation assessment.
The Assessment of the Status of Human-Induced Soil Degradation in South and South East Asia
(ASSOD) [29] can be considered a first attempt to map soil degradation in the region, even though
it has been shown to have significant limitations [30,31]. The limitations are as follow: (i) It was
based only on soil degradation, and it ignored the decline of the other important components of
the land, such as vegetation and biodiversity; (ii) The expert-based assessment could not be used
in periodic quantitative monitoring over time; and (iii) Assessments were not spatially explicit [32].
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Shrestha and Roy [33] assessed land degradation for the Greater Mekong sub-region by using various
remote-sensing-derived indicators to combine into a composite land-degradation status. The results
indicated that there were large portions of land areas severely degraded in LMB countries (10.7% total
land in Cambodia, 18.2% in Laos, 18.7% in Thailand, and 17.9% in Vietnam). However, this assessment
yielded the spatial data of degradation for the LMB countries at a specific time instead of showing the
changes over long periods.

Information on the hotspots of land degradation is important for policy makers and researchers
to combat land degradation on a regional and national level. The areas of severe degradation
could help policy makers in prioritizing limited budgets and planning strategic interventions [32,34].
At national and regional scales, the main requirement is a view of areas where degradation magnitude
and extent are relatively high for prioritizing the investments on the restoration or reclamation of
degraded land, and focused field-based studies. With the geographic hotspot approach, the expected
output is the map of degradation hotspots that can be seen as the first version of land degradation
map to guide acquisition of the more comprehensive and accurate data in the next series of steps.
However, the approach using the temporal states of soil parameters for assessment at large-scale
is constrained by the lack of soil data for long-term quantitative comparisons [7]. On a continental
or even a regional scale, it is impossible to develop time-series of soil properties that could detect
persistent changes in soil status [12]. With the support of available satellite-driven time-series of
global vegetation data that extends to more than 30 years in the past, an alternative approach
applying the evaluation of changes in vegetation greenness or net primary productivity (NPP) has
been applied [12,35–38]. Maps of land degradation have been developed at different scales, ranging
from local, subnational, country, regional, and global scales, using vegetation indices from satellite
observation [39]. Recently, the Normalized Difference Vegetation Index (NDVI), a relative measure of
greenness and photosynthetic process, has a strong relationship with NPP, serving as an indicator of NPP
and being used as a proxy for long-term biomass productivity decline or improvement [14,34,40–46].
The NDVI [47–49], which was derived from the Advanced Very High Resolution Radiometer (AVHRR)
of the National Oceanic and Atmospheric Administration (NOAA) satellite, is used widely in the
assessment of global or regional vegetation dynamics over a long duration (i.e., more than three
decades) [50–54], and it can be combined with other data on climate, topography, soil, land use, and
human demographics, to allow spatially explicit interpretation and analysis of the underlying processes
of degradation [12,14,55]. Some previous studies [12,56–58] found that the human intervention or
rainfall variations had varying effects on aboveground NPP in most biomes/climate zones. Previous
studies showed that aboveground net primary production (represented by NDVI) has been shown
to increase with increasing annual precipitation [12,57,59], and, indeed, correlation studies between
rainfall and NDVI have been used to differentiate between human-induced and climate-induced land
degradation [42,45,60,61], where any NDVI trends not explained by rainfall dynamics are ascribed
to human actions. Topography affects climatic conditions [62–64], environment [65], and determines
landscape and soil patterns [66–69], and thus affects vegetation cover [70,71]. Soil quality and primary
productivity of standing vegetation have close interlinkages [7]. Thus, the distribution of the hotspots
of land degradation in different soil and terrain conditions can provide some understanding of the
processes that are involved [12]. Land use and vegetation cover is one important indicator of land
degradation [33].

Though the approach based on NDVI time-series for detecting land degradation at a larger
scale has been used in many studies, continuous verification in different geographic regions has been
recommended [32]. For LMB countries, only a single study by Vu et al. [14] assessed land degradation
for Vietnam, using spatiotemporal trend analysis, and found several hotspots of land degradation that
could support policy makers and researchers in targeting the strategies for combating land degradation.
The current study adopted the results from the abovementioned study and expanded it to the regional
scale of several of the LMB countries. This study aimed to do the following: (i) Delineate the map
of land degradation for the Lower Mekong River Basin countries (i.e., Vietnam, Laos, Cambodia,
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and Thailand) over the last three decades, and (ii) Identify the potentially underlying processes of
the attributes of land (i.e., population density, soil/terrain conditions, and land use/land cover) that
affect land degradation. The results of this study may help researchers and policy makers identify the
locations where more detailed actions to prevent land degradation may be required.

In our approach, the decline of long-term trend NDVI was considered as proxy of NPP of the
land, thereby representing past land-degradation hotspots. The decline of NDVI trend may include
not only permanent degradation but also temporary degradation that can recover. It means the
reduction of NDVI may simply be within the resilience of the vegetation, which enables it to recover
from disturbance or stress (e.g., drought and floods) when the stressful conditions are removed [17].
Since we considered land degradation as the long-term reduction in the productive capacity of the
land, both permanent and temporary degradation were taken into account in our study.

2. Materials and Methods

2.1. Study Area

The study area is characterized by a complex physical geography but can basically be separated
into two main geographical zones. The first zone is dominated by low, flat topography in river valleys
and deltas where paddy rice has been cultivated for centuries. The second zone consists of the plateaus
and high mountainous areas dominated by high forest cover and shifting agriculture. The climate
is governed by monsoon climate systems, with the southwest monsoon from May to late September
and the northeast monsoon from November to early March. The annual precipitation ranges from
1000 to 3000 mm, and the mean temperature is around 24 ◦C, dependent on topography. The total
population of the four LMB countries in 2017 was nearly 186 million, of which rural population was
60% (FAOSTAT, http://www.fao.org/faostat/). The total land area is around 1,262,190 km2, with the
total agricultural area being 421,120 km2, and the arable land being 291,330 km2.

2.2. Datasets and Data Processing

The data used in this study were downloaded from different sources with different spatial
resolutions (Table 1).

Table 1. Data used in the study.

Data downloaded Spatial resolution Temporal
resolution Source Access date

GIMMS AVHRR NDVI
(NDVI3g.v1) [72]

1/12 degree (approximately
9.16 km), global

Biweekly,
1982–2015

Global Inventory Monitoring and Modeling
System (GIMMS)

(https://ecocast.arc.nasa.gov/data/pub/gimms/)
30 April 2017

MODIS NDVI Monthly L3
(MOD13A3) [73] 1 km, global Monthly, 2000–2015 Land Processes Distributed Active Archive

Center (LPDAAC) (https://lpdaac.usgs.go)
5 May 2017

Terra/MODIS NPP L4
(MOD17A3) [74] Yearly, 2000–2014

Gridded climate (temp.
& rainfall) of the world

(CRU TS V4) [75]

0.5 degree (approximately
55 km), global 1982–2015 Climate Research Unit (CRU) at the University

of East Anglia (http://www.cru.uea.ac.uk/) 25 May 2017

Updated Köppen-Geiger
climate map [76]

0.1 degree (approximately
11 km), global 2007 https://people.eng.unimelb.edu.au/mpeel/

koppen.html 15 August 2017

Gridded Population of the
World, Version 4 (GPWv4) [77]

2.5 min (approximately
5 km), global

2000, 2005, 2010,
2010, 2015

Center for International Earth Science
Information Network (CIESIN) at Columbia

University (http://sedac.ciesin.columbia.edu/)
15 Aug 2017

SRTM Digital Elevation
Database v4.1 [78,79]

3-arc seconds (approximately
90 m at the equator), global 2003

CGIAR Consortium for Spatial Information
(CSI) (http://www.cgiar-csi.org/data/srtm-90m-

digital-elevation-database-v4-1#download)
15 June 2017

Soil constraints [80] 5 arc-minute (approximately
10 km), global 2002

The International Institute for Applied Systems
Analysis (IIASA) and the Food and Agriculture

Organization (FAO) of the United Nations
(http://www.iiasa.ac.at/Research/LUC/SAEZ/

index.html)
Land cover map from the

Land Cover Portal of
SERVIR Mekong

1 km, LMB countries Yearly, 2000–2015 SERVIR Mekong
(https://rlcms-servir.adpc.net/en/landcover) 20 August 2017

GIMMS: Global Inventory Monitoring and Modeling System; AVHRR: Advanced Very High-Resolution Radiometer;
NDVI: Normalized Difference Vegetation Index; MODIS: Moderate Resolution Imaging Spectroradiometer; NPP: Net
Primary Productivity; SRTM: Shuttle Radar Topography Mission; LMB: Lower Mekong Basin

http://www.fao.org/faostat/
https://ecocast.arc.nasa.gov/data/pub/gimms/
https://lpdaac.usgs.go
http://www.cru.uea.ac.uk/
https://people.eng.unimelb.edu.au/mpeel/koppen.html
https://people.eng.unimelb.edu.au/mpeel/koppen.html
http://sedac.ciesin.columbia.edu/
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1#download
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1#download
http://www.iiasa.ac.at/Research/LUC/SAEZ/index.html
http://www.iiasa.ac.at/Research/LUC/SAEZ/index.html
https://rlcms-servir.adpc.net/en/landcover
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Since the data used in this study were downloaded from different sources with different spatial
resolutions and types, they were processed to match the same resolution of GIMMS NDVI data (i.e., 1/12
degree or approximately 9.16 km resolution). We applied resampling methods depending on the data
type. To preserve original data values and preserve the spatial consistency, resampling from coarse to
fine resolution was carried out, using the nearest neighbor technique. To resample continuous datasets
from fine to coarser resolution, the bilinear technique was applied. For categorical data, the resampling
method, using the nearest neighbor technique, was carried out [81]. The spatial analyses in this study
were carried out in Geographic Information System (GIS) environment, using ArcGIS software.

2.3. Methods

2.3.1. Proxy for Long-Term Biomass Productivity Decline at the Lower Mekong Basin Region

Long-term trend of NDVI recently used as a proxy for persistent decline or improvement in NPP
of the land, thereby reflecting land degradation [12,34,35,42–45,60,82]. We applied this approach by
using the NDVI derived from AVHRR satellite images, over the period 1982–2015. We aggregated the
original GIMMS NDVI time-series (1/12 degree or 9.16 km pixel size, biweekly, period 1982–2015) to
obtain the time-series of annual mean values as 12-month averages for interannual NDVI trend analysis.
In applying the satellite-derived NDVI to assess biomass productivity, several issues regarding the
NDVI-vegetation productivity relationship needed to be considered (i.e., cloud-cover effects, seasonal
variations, and time-series autocorrelation). To avoid the effect of cloud cover or cloud shade in
the humid tropic, only nonflagged pixels (i.e., flag = 0 indicates a good value of NDVI) were used.
The problems of seasonal variations in vegetation phenology (direct proportion to weather seasonality)
and time-series autocorrelation were minimized by using annual average NDVI and focusing on the
declining “hotspots” where the interannual NDVI trend is most remarkable (i.e., with a statistical
significance at the level of 90% (p < 0.1), which is sufficient for long-term trend analyses of noisy
parameters like NDVI and the absolute trend magnitude greater than 10% of the beginning year over
34 years [12,34]. The recent findings of de Jong et al. [83,84] supported above treatment since they
recognized that differences between the linear trends of annually aggregated GIMMS NDVI and the
seasonal, nonparametric trends of the original GIMMS NDVI time-series (biweekly) were mainly on
areas with weak or nonsignificant NDVI trends, which are not central in our hotspot approach.

To check whether the temporal trend of interannual NDVI could be credibly used as a proxy
of temporal NPP trend, we compared the spatial pattern of GIMMS NDVI trend with MODIS NPP
extracted from Terra MODIS Net Primary Production Yearly L4 Global 1 km (MOD17A3) V055 data
product. The MODIS NPP data were resampled by using the bilinear technique from 1 to 9.16 km
resolution. Two evaluation tests were carried out for overlaid time (2000–2014): (i) evaluation of
the overlap area between the NDVI and NPP trends across the LMB countries and (ii) calculation
of temporal correlation between interannual mean NDVI and NPP for each degraded pixel over the
test period.

To compare GIMMS NDVI with MODIS NDVI, as suggested by Yengoh et al. [85], we extracted
NDVI data from the Terra MODIS Vegetation Indices Monthly L3 Global 1 km (MOD13A3) V006,
and then calculated the annual mean values as 12-month averages for the period 2001–2015. The data
were resampled by using the bilinear technique to match the resolution of 9.16 km; thus, we applied
the same evaluation tests as described in the above paragraph, but for GIMMS NDVI and MODIS
NDVI datasets in the overlap period (2001–2015).

2.3.2. Pixel-Based Temporal Trend of Biomass Productivity

To identify the direction of vegetation variation (decrease or increase) over time, the NDVI
time series was then statistically analyzed by using the linear regression of the period of 1982–2015.
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The trend of biomass productivity for each pixel, i, can be assessed by the slope coefficient (Ai) in the
simple linear regression relationship:

Vi = Ai × t + Bi (1)

where Vi = annual mean NDVI, Ai = long-term trend of NDVI, t = year (count from 1982 to 2015),
and Bi = intercept (an indicator for a possible delay in the onset of degradation). The computed slope
coefficient A for each pixel was tested for statistical significance at the level of 90% (p < 0.1).

A significant decline of the annual mean NDVI was determined when a pixel had (1) a negative
NDVI slope (Ai < 0) with a statistical significance (p < 0.1) and (2) meaningful magnitude of the NDVI
decline (relative NDVI annual reduction ≥10%/34 years [12,34].

2.3.3. Isolation of Rainfall Impacts

The stepwise analyses were used to find the areas where land productivity dynamics are highly
correlated with rainfall change. NDVI trends in these areas can be explained by rainfall dynamics,
and the remaining areas are most likely due to human actions. Rainfall data were obtained from
the website of the Climatic Research Unit (CRU) [75]. The original data include grids of monthly
rainfall and temperature data at a spatial resolution of 0.5◦ in the 1901–2015 period. Annual rainfall
values for the period 1982–2015 were computed as 12-month averages. To isolate the impacts of
rainfall, we applied two methods, the trend-correlation stepwise [12,34] (Trend-Correlation) and
residual trend analysis [42,45,60] (RESTREND). For details of each method, readers are referred to Vu
et al. [14]. Though the main limitation of the RESTREND method is that precipitation is considered
as the unique driver of vegetation productivity in the analysis [50], the RESTREND method with the
precipitation-alone technique was applied in the present study because the method has been most
widely used for assessing the long-term changes in vegetation over the last few decades [42,45,59],
and in the terrestrial ecosystems in tropics precipitation, it is still considered to be one of the main
factors controlling the net primary production (NPP) [86]. Pixels with urban and industrial areas,
based on the land-cover map from the SERVIR Mekong, were excluded from all spatial analyses. For
Trend-Correlation method, if the pixel had a significantly negative NDVI trend (negative Ai, p < 0.1)
and a strongly positive vegetation–rainfall correlation (R2 > 0.5; R > 0; p < 0.05), we concluded that
the NDVI decline at the location was mainly determined by the rainfall factor. Otherwise, the NDVI
decline could have been caused by human activities. For the RESTREND method, the NDVI was
regressed from annual precipitation, and then the residuals—the difference between observed NDVI
and NDVI as predicted from precipitation—were calculated (Figure 2). If there is a significant temporal
trend of residual, then the declining biomass production may have been caused by factors other than a
decline in precipitation. This method and other ones were well discussed in Rishmawi and Prince [87].
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Results of the land-degradation areas delineated by both methods were compared. We merged
the degraded areas by both methods to have the final land-degradation areas, as each method may be
able to identify some degraded areas that may not successfully be detected by the other [14].

2.3.4. Relational Analyses of Potential Underlying Processes

In order to understand the relationship of land degradation and potential causes, the LMB
countries in this study were divided into 3 major climate zones based on the Köppen–Geiger climate
map [76]: tropical monsoon (Am), tropical savanna (Aw), and humid subtropical (Cwa). The climate
zones of LMB were overlaid with the land-degradation map to obtain a map of degradation in
climate zones.

First, to determine the relationship between population and land degradation, the mean population
densities of each pixel were calculated by averaging 2000, 2005, 2010, and 2015 data. The mean
population densities were overlaid with the map of degradation in climate zones, and then they were
classified into three levels, as low density (less than the mean), very high density (greater than twice
the mean), and high density (between the above two), as suggested by Vlek [12]. Those classes were
used to differentiate the degraded pixels of the respective climate zones.

Second, land degradation in different climate zones was associated with soil and terrain conditions.
We differentiated between the areas of land degradation by the topographic and soil-based suitability
of the land for agriculture by using FAO and United States Geological Survey (USGS) databases.
The terrain and soil constraints were considered with respect to agriculture production in all areas
of LMB region. Soil-constraint classes were derived from the FAO-IIASA Global Agroecological
Assessment for Agriculture [80] dataset by aggregation as follows: No/slight constraint (FAO class 1,
2, 3), Moderate constraint (FAO class 4 or 5), and Severe/Very severe constraint (FAO class 6, 7, or 8)
(Table S1 in Supplementary Materials). Terrain constraints (i.e., slope and elevation) were extracted
from SRTM (Shuttle Radar Topography Mission) elevation data. The three classes of terrain constraints
were classified: No/slight constraint (0◦ ≤ slope ≤ 15◦ and elevation ≤ 3500 m above sea level—a.s.l.),
Moderate constraint (15◦ < slope ≤ 25◦ and elevation ≤ 3,500 m a.s.l.), and Severe/Very severe constraint
(slope > 25◦ or elevation > 3,500 m a.s.l.). The combinations of soil and terrain constraints are shown in
Supplementary Materials (Table S2).

Land and vegetation cover is one important indicator of land degradation [33]. To examine the
regions affected by land-degradation processes under different land-cover types, the land-cover map in
2015 were taken into account for analyses. As resolution of this regional study (i.e., 9.16 km pixel) and
the patchy land-cover patterns in the region, some classes of land cover from SERVIR Mekong were
combined, we used 6 land-cover types (i.e., mangrove, deciduous forest, evergreen broadleaf, mixed
evergreen and deciduous, cropland, and others) for interpreting the hotspots of land degradation
(Table S3 in Supplementary Materials).

3. Results

3.1. Proxy for Long-Term Biomass Productivity Decline

Our evaluation indicated consistency between the temporal dynamics of GIMMS NDVI and
MODIS NPP. During the period 2000–2014, about 54% of the land area exhibited consistency in the
direction between NDVI and NPP (increase of both NDVI and NPP or decrease of both NDVI and
NPP) (Figure 3a). About 77% of the land area showed a positive correlation between interannual mean
NDVI and NPPs (Figure 3b).

Figure 4 shows the results of evaluation tests between GIMMS NDVI and Terra MODIS NDVI
for the period of 2001–2015. The results showed that, during the period 2000–2015, about 71% of the
land area exhibited consistency in the direction between GIMMS NDVI and MODIS NDVI (increase of
both datasets or decrease of both datasets). The statistics of the results from the map of the correlation
coefficient (Figure 4b) indicate that about 91% of the land area exhibited a positive correlation between
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interannual mean GIMMS NDVI and MODIS NDVI. These results indicated good consistency between
the temporal and spatial changes of GIMMS NDVI and MODIS NDVI datasets.
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3.2. Temporal Trend of Biomass Productivity

The areas of significant improvements in biomass productivity were mainly found in the Red River
Delta and Mekong River Delta of Vietnam, and the central plain and plateaus (Thailand) (Figure 5)
consisting of 49% (629,368 km2) of total land of four countries. The areas that have experienced
long-term biomass decline over the last 34 years were distributed in many areas of Cambodia;
the Northwest, the Mekong Delta, and the Highland of Vietnam; the Northern Mountains of Thailand
and Laos; and the mountainous shared border between Laos, Vietnam, and Cambodia (Figure 5).
These areas occupied about 15% (186,298 km2) of total land of four countries. Differences between
the area from FAO statistics in Methods, Section 2.3, and the area calculated from the maps shown in
Results, Section 3, are due to the edge errors.Remote Sens. 2019, 11, x FOR PEER REVIEW  10 of 25 
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3.3. Isolation of Rainfall Variation Effect

To isolate the biomass productivity decline from the annual precipitation-driven signals over the
last decades, we examined the correlation between green productivity (NDVI) and rainfall across LMB
over the 35-year period. The Pearson’s correlation coefficient (R) for the period 1982–2015 for each pixel
was measured to find the relationship between interannual NDVI and rainfall dynamics (Figure 6a).
The results showed that the correlation coefficient ranged from +0.72 to –0.68. The regions where
vegetation correlated positively with rainfall changes from year to year (the red colors in Figure 6a)
covered mainly the flat area in Thailand and the Central Highland and Mekong River in Vietnam.
The blue areas showed the negative correlation between NDVI and rainfall were located mainly
in the border area shared by Vietnam, Laos, and Cambodia, and the North of Laos and Thailand.
The correlation coefficient of every pixel was tested for statistical significances at the level of 95%
(p < 0.05). Most of the degraded area showed the neutral correlation (i.e., –0.5 < R < 0.5 and/or not
significant at p < 0.05), indicating that almost all degraded areas across the LMB countries have not
been associated significantly with interannual variations in rainfall.
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We isolated the degraded regions where rainfall has had a dominant impact on vegetation
productivity from areas of degradation by applying the Trend-Correlation and RESTREND methods.
A comparison of the results obtained from using the two methods is shown in Figure 6b. The areas
of biomass productivity decline by the Trend-Correlation and RESTREND methods are 2,217 and
2,075 pixels, respectively. The degraded area shared by both methods is very high (i.e., 174,300 km2

or 94% of the total degraded area), demonstrating a high confidence level for the used methodology.
Merging the results from both methods yielded the area of 186,228 km2 (15% of the total land area of
four countries) that has been degraded after eliminating rainfall-driven pixels.

The results of the nationwide analyses of land degradation show that Cambodia had the highest
rate of land degradation (32.6% of total national landmass). The percentage of land degradation in
Vietnam was also high (about 16.9% of total national landmass), but it was lower than the result found
in the previous study (i.e., 19%) [14]. The spatial distribution of degraded areas in Vietnam was found
mainly in the Northwest, the Mekong River Delta, the Central Highland, and the Southeast, which were
comparable with four priority regions mentioned in the National Action Programme to Combat
Desertification for the Period 2006–2010 and the Orientation to 2020 (NAP 2006), and the same with
results found by Vu et al. [14]. Laos and Thailand had the lowest rate of land degradation, about 13.7%
and 7.4%, respectively. The rate of land degradation found in our study could not be compared directly
to previous studies because of the differences in approach, datasets, and variables for assessment.
However, if doing a comparison with results found by Shrestha and Roy [33], our assessment shows a
bit lower proportion for Laos and Thailand, in line for Vietnam, but higher rate for Cambodia (Table 2).

Table 2. Distribution of degradation area in each LMB country compared with previous study
(in percent).

Country % of Country’s Area

This study Shrestha and Roy (2008) *

Laos 13.7 18.2
Thailand 7.4 18.7
Vietnam 16.9 17.9
Cambodia 32.6 10.7

* Severe degradation
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3.4. Relational Analyses of Potential Underlying Processes

3.4.1. Climate Zones

Results from overlaying the climate zone map with land degradation showed that 64% of degraded
area belonged to tropical savanna, including nearly the entirety of Thailand and Cambodia, as well
as half of Laos and Vietnam. There were 19% of degraded area located in tropical monsoon, which cover
mainly the middle part of Vietnam, the south of Laos, and some parts in the south of Thailand and
Cambodia. The remaining area (17%) situated in humid subtropical covering almost the North of
Vietnam and a small area of the Northeast of Laos.

3.4.2. Land Degradation in Relation to Population Density

When overlaying population density of the period 2000–2015 with the degraded area, the mean
population densities were 110, 253, and 105 persons km−2 for the tropical monsoon, tropical
savanna, and humid subtropical, respectively. Three classes of each climate zones were then created
(i.e., low density, high density, and very high density) and used to differentiate the degrading pixels of
the respective climate zones. Figure 7 shows the land degradation in different climate zones in relation
to population density. Most of the land-degradation areas were located in places with a low population
density (Table 3). Only some areas in the Mekong River Delta, the cities in the Northwest of Vietnam,
and the areas near Bangkok, Thailand, show the land degradation with high population.
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3.4.3. Land Degradation in Relation to Soil and Terrain Constraints and Population Densities

The result of the land-degradation areas classified by terrain and soil suitability for agriculture is
shown in Figure 8 and Table 3. The areas that are severe/very severe constraints for agriculture comprise
about 20,580 km2, or 11% of the total degraded area. Most of these pixels were found in regions with
relatively low population density in the tropical savanna and humid tropical regions (Table 3). Only in
the tropical monsoon-prone regions of Vietnam and Thailand were the degraded pixels with very
severe soil/terrain constraint located in the very high population densities. The moderate soil/terrain
constraint covered the largest area of land degradation (112.476 km2 or 62%). Similar to severe/very
severe constraint, most of these pixels were found in regions with a low population density. The areas
of no/slight soil/terrain constraint included about 275% total degraded area and were found mainly in
tropical savanna and monsoon zones, and only 3% of this type of constraint was located in places with
a very high population density.

Table 3. Area (km2) of soil/terrain constraint classes calculated for land degradation in different climate
zones, in relation to population density.

Degradation Class by Climate Zone
and Population Density

Soil/Terrain Constraint (km2) *

Total Area ** No/Slight Moderate Severe/Very Severe

Tropical monsoon 34,356 11,172 19,824 3360
Low density 24,276 9408 14,364 504
High density 4956 1428 2856 672

Very high density 5124 336 2604 2184

Tropical savanna 116,928 32,844 68,964 15,120
Low density 107,016 31,248 63,924 11,844
High density 4200 1176 1596 1428

Very high density 5712 420 3444 1848

Humid subtropical 29,904 4116 23,688 2100
Low density 22,848 1848 19,488 1512
High density 5628 1428 3612 588

Very high density 1428 840 588 0

Total 181,188 48,132 112,476 20,580

* Soil/Terrain constraint classes can be found in Table S2, Supplementary Materials. ** Differences between the total
degraded area shown in this paper are due to the edge errors caused by different spatial data sources.

3.4.4. Land Cover and Land Degradation Processes

Table 4 shows the area of the regions affected by land degradation processes under different
land-cover types. The area of cropland that degraded is 65,352 km2 (36% total degraded area). Of the
20,664 km2 that are not suitable for agriculture (i.e., severe/very severe soil/terrain constraint in
Table 4), 8988 km2 are actually being farmed (cropland). These regions were found mainly in the
Central Highland (Vietnam), the Northwest (Cambodia), and near Bangkok (Thailand) (Figure 8).
The remaining 56,364 km2 of cropland belonged to the areas that are suitable for agriculture (no/slight
or moderate soil/terrain constraint). Mangrove is dominated in the tropical monsoon, so it is the most
affected in this climate zone (about 70%). In the tropical savanna, different forest cover types are
the most affected because they are predominant there (61,992 km2), of which about 6000 km2 are not
suitable for agriculture and suffering by degradation processes. There are many areas of degradation
which have agricultural potential but are used mainly for the forest (Figure 8).
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Table 4. Area of land degradation in aggregated land-cover types calculated for each climate zone
across soil/terrain constraints.

Degradation Class by Climate Zone
and Soil/Terrain Constraint

Area of Land Cover (km2)

Total Man-Grove Decid-Uous Forest Ever-Green
Broad-Leaf

Mixed Ever-Green and
Decid-Uous Crop-Land Other

Tropical monsoon
No/slight constraint 11,172 84 1932 1680 3276 3612 588
Moderate constraint 19,824 84 2940 4704 2184 8820 1092

Severe/very severe constraint 3444 588 168 0 168 1260 1260
Tropical savanna

No/slight constraint 32,844 0 5796 4200 7980 13,692 1176
Moderate constraint 68,964 252 17,976 7728 12,348 27,720 2940

Severe/very severe constraint 15,120 84 2436 672 2856 7644 1428
Humid subtropical

No/slight constraint 4116 0 756 336 2352 588 84
Moderate constraint 23,688 0 16,464 168 4704 1932 420

Severe/very severe constraint 2100 0 1512 252 252 84 0

Total * 181,272 1092 49,980 19,740 36,120 65,352 8988

* Differences between the total degraded area this table and Table 3 are due to the edge errors. The error of total
degraded area is 1 pixel (84 km2/pixel), which represents the “Severe/very severe constraint” category.

4. Discussion

4.1. New Methods

This study presented an NDVI-based biomass productivity degradation assessment by using a
multi-aspect approach. First, we checked whether interannual GIMMS NDVI trends could indicate
the temporal trend of NPP. Many previous studies by Herrmann et al. [60], Helldén and Tottrup [82],
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and Vlek et al. [12], which assessed biomass productivity degradation by using NDVI time-series,
supposed a strongly positive relationship between NDVI and NPP trends, without validating. We found
that the land area with a positive correlation between the annual mean NDVI and NPPs was about
77%. Vu et al. [14] identified the correlation between the temporal dynamics of GIMMS NDVI and
MOD17 NPP in the period of 2000–2006 for Vietnam and also found about 75% of the NDVI declining
area showed a positive correlation. The findings also agree with other previous studies [40,88,89]
and confirm that the AVHRR-NDVI trend can be used as a proxy for land productivity. In our study,
the consistency between the spatial patterns of interannual trends of the two variables was evaluated
as suggested by Wessels [90], instead of analyzing the relationship between mean annual NDVI and
NPP through space.

Second, we evaluated the consistency between GIMMS NDVI and MODIS NDVI datasets.
A number of studies evaluating the consistency between above datasets [91,92] concluded that both
the datasets agreed well, but should be confirmed in future assessments of vegetation activities [93].
Using MODIS NDVI as a benchmark of GIMMS NDVI, as suggested by Yengoh et al. [85], we found
consistency between temporal and spatial changes of GIMMS and MODIS NDVI datasets over the
period of 2001–2015. The findings were similar to another study by Tucker et al. [94]. The study carried
out by Gallo et al. [93] also showed that there was a strong correlation (R > 0.9) when comparing
AVHRR and MODIS NDVIs for different land-cover types. Du et al. [95] found that about 82% of
Qing-Hai-Tibet Plateau area was characterized by a strong consistency between GIMMS and MODIS
NDVI at the pixel scale. Fensholt [96] assessed the accuracy of GIMMS by using MODIS NDVI
(2000–2010), which indicated that overall trends of GIMMS and MODIS NDVIs were in acceptable
agreement. Our findings agreed with those assessments and indicated that GIMMS NDVI could be
used as a proxy indicator for biomass productivity analyses in the next steps.

Third, we examined ‘convergent validity’, to isolate declining biomass productivity from the
climate-driven signals. According to Scholz and Tietje [97], convergent validity can be established
if two different methods to evaluate the same issue yield to highly correlative results. Our analyses
found that Trend-Correlation and RESTREND methods resulted in a high consistency between the
degraded areas. This suggests a good convergent validity for our assessment of biomass productivity
degradation based on long-term time series of NDVI and rainfall.

Four, the findings were compared with qualitative and spatially inclusive information created by
other studies in the region. For Vietnam, the National Action Programme to Combat Desertification
for the Period 2006–2010 and the Orientation to 2020 [98] and Vu et al. [14] indicated that
four regions experienced land degradation (i.e., the Southeast, Mekong River Delta, Northwest
Mountains, and Central Highlands). Our results in this study were similar to those mentioned above.
Comparisons between the spatial pattern of temporal NDVI trends with regional reports and studies of
deforestation [99,100], forest degradation [101], and agricultural intensification [102] also show good
matches with our results.

4.2. Contextualization of the Empirical Findings

Analyzing the trend identified the slope in the linear regression equation of annual mean NDVI
over 34 years showed that the major areas of significant improvement were mainly found in the flat
areas that are the rice bowls of Thailand and Vietnam. For The Red River and Mekong River Deltas in
Vietnam, from the Era of Renovation (Doi Moi in 1986), the intensification of rice-based agriculture has
increased significantly [103–105]. As estimated, from this economic reform (1985–1994), the compound
growth rates of rice production was around 2.02%, 3.04%, and 5.13% per annum in terms of area,
yield, and production, respectively [103]. For Thailand, rice agriculture has developed dramatically
in the central plain, lower north, and northeast areas from the 1980s [106]. In 1981–1985, the rice
area and production annual growth rates of Thailand were 1.11% and 3.45%. Some areas showed the
NDVI declines in the Mekong River Delta in Vietnam and the coastal line in the south of Thailand
are in agreement with the fact that mangrove forest and swamp vegetation were converted to rice
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paddies and/or aquaculture farms in the 1990s and 2000s [107–109], and mangroves were overexploited
as timber for construction and charcoal in the 1980s and early 1990s [110,111]. In 1940, the area of
mangrove forest in Vietnam was about 400,000 ha, but this area decreased to around 250,000 and
70,000 ha in 1980 and 2002, respectively [107]. Percentages of mangrove loss for 2000–2012 in Thailand
and Vietnam were 1.36% and 0.25%. The NDVI declines are spatially distributed in a spotty fashion in
many mountainous regions and could be attributed to deforestation and land conversion for agriculture
on sloping areas [112–114]. Many areas of the NDVI declines found in Cambodia could be explained
by the forest losses from the beginning of 2000s to the present [115]. The study by hansen et al. [116] on
mapping global forest loss from 2000 to 2012 also indicated that Cambodia was one of the top countries
that experienced a great percentage of loss of forest cover. A recent report by WWF [99] showed that
Cambodia, Vietnam, Laos, and Thailand have now lost a third of their dense forest cover compared to
1970s, and this region is one of the top 11 deforestation hotspots in the world.

Our findings showed that the most extensive areas of severe land degradation (i.e., many areas in
Cambodia, the Northwest and the Highland of Vietnam, the Northern Mountains of Thailand and
Laos, and the mountainous shared border between Laos, Vietnam, and Cambodia) were characterized
by low population density. The results are consistent with the results from previous studies [12,14,35].

It could be explained by different reasons. The areas where LMB countries are located are mainly
in the monsoon tropical climate and humid tropical zones, which are are mountainous, making them
fragile and giving them a low carrying capacity for hosting a human population [12,117,118]. Moreover,
poor land enforcement and land use management, due to a lack of manpower, lead to unsustainable
land-use activities, such as forest clearance, logging, and widespread slash-and-burn cultivation on
steep areas [119]. Cambodia is a typical case since significant declining biomass productivity may be
caused by forest clearance and logging that were consequences of unsuitable land acquisition [115].
Cambodia, Vietnam, Laos, and Thailand were the top countries with deforestation due to poor
management [99]. Land rehabilitation is limited by low economic development, poor access to
knowledge and conservation technology, and low social incentives for forest and soil conservation.
Lastly, the remote and low-populated regions can be affected by a distance-effect (i.e., effects taken
over a far distance) created by high demand of agricultural and timber products from the cities and
exportation [120,121].

4.3. Limitations and Lesson Learned

One of the limitations is that this study conceptually and practically focused only on the “primary
productivity” aspect of land degradation. The other important aspects of land degradation, such as
soil/water pollution and biodiversity, which do not necessarily correlate with primary productivity,
are still out of the scope of this study.

We assessed the spatial time-series data based on the implicit assumption that vegetation changes
gradually and linearly over a long period of time. This linearity assumption of the phenomenon is one
of limitations, even though it has been applied in many other studies on land-productivity assessment,
using remote sensing and climate time-series [12,34,35,82,122]. The use of the linear method is simple
and easy to implement. The linear trend statistics may not be able to capture persistent changes, but can
capture convex, concave changes or other trajectories in annual mean NDVI in the long-term [14].
Recently, nonlinear trend analysis techniques have been used [123–125]; therefore, applying spatial
nonlinear trend analysis for each pixel of land productivity would be a potential research topic for
future studies on land degradation. The segmented regression [126] that enables the detection of
different types of changes occurring in time series can also be applied in follow-up studies, to overcome
the seasonal and abrupt changes.

The RESTREND technique to differentiate between human-induced and climate-induced land
degradation has been popularly used, but there are some problems that may cause misinterpretations.
As this approach is based on linearity between rainfall and vegetation productivity, it works well
for pixels with a high linear correlation between annual NDVI and annual rainfall. However, for a
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given pixel with a weak relation between annual NDVI and annual rainfall, this approach is of little
use [42,60], as the uncertainty caused by estimating the NDVI residuals increases proportionally [127].
In this exploratory study, we have addressed the issue by considering only the pixels that satisfied the
statistical requirement of a significant correlation between precipitation and vegetation productivity.

In this study, we showed the results of analyzing precipitation alone in the relationship with
NDVI, and we included the map showing the relationship between temperature and NDVI trends in
Supplementary Materials (Figure S1). It is a limitation of this study, since normalization by rainfall
alone misses other potentially important climate factors. Rishmawi et al. [128] found that variations
in NDVI were overall better explained by precipitation, humidity, atmospheric pressure, incident
solar radiation, and temperature than by precipitation alone. In the follow-up studies, other potential
climate factors should be considered, in order to examine their effects on the variations in NDVI.

Another limitation is that we have not validated the findings in this study with the ground-truth
data. Wessels [122] suggested that the maps of land degradation should be validated before they can
be used for important policy and management decisions. The validation in this study was based on
indirect reference NPP, NDVI data (MODIS), and qualitative judgments, using precedent national
publications and regional reports. The follow-up studies of land degradation should be focused on
ground-based data as a source for validating the hotspots. Since these validations are time-consuming
and can be carried out only at a local-landscape level [14], well-justified geographic foci for area
selection become important. The spatial map of degradation hotspots that resulted from this study
provides an overview for researchers and policy makers in identifying those areas in an effective way.
However, validation of the results with surface conditions is probably not possible, given the spatial
resolution differences. The results from this study are yielded by analyzing the coarse resolution
AVHRR data, but, in fact, the human activities (e.g., agricultural production, deforestation, land use,
and land management) are generally at a finer scale, so it is important to recognize these differences in
validation. For comparison, we need a ground site that has uniform degradation, and it should be big
enough to match the pixel resolution. This is a difficult task. Alternative validation could include a
visual comparison with Google Earth, which provides imagery at the scale of human activities, as done
by Noojipady et al. [129]. The follow-up studies at the field and local-landscape scales can also provide
the detailed vegetation data for those helping in the identification of the effects of changes in vegetation
structure (e.g., life-form spectrum and species composition) on the NDVI–NPP relationship. This is
lacking in our study.

The land attributes (i.e., population density, land cover, and soil/terrain constraints) used in
this study were associated with the identified hotspot areas. The limitation is that these data were
static. As there were no long-term spatial data available for the study region, we could not do the
trend analyses for them. These potential processes showed some ties to land degradation but have
not yet been proven to be causal factors. This is another limitation. Other socioeconomic factors
should be considered in the follow-up studies, in order to examine the causes of land degradation.
At the regional scale, the socioeconomic data are hard to collect. Even though some data are available,
the problems still exist since each country has its own data with different temporal and spatial scales;
therefore, they cannot be used easily. Moreover, other important processes (e.g., soil erosion and
nutrient depletion) have not yet been analyzed in the relationships of land degradation, and these
should be the subject for follow-up studies. However, Vu et al. [14] indicated that such analysis requires
research methods such as the assessment and modeling of soil erosion, nutrient leaching, crop yield
dynamics, and nutrient balances in different agroecosystems that demand new datasets be collected at
landscape and farm scales. At the regional scale of LMB, these detailed studies are likely impractical
and beyond the scope of this envisioned assessment.

Since the data resolution is too coarse to capture the detail of degradation, there may be some
degraded areas outside of the detected hotspots, and some areas within the hotspots may not be
severely degraded. However, the areas of severe degradation are spatially explicit and could help
policy makers in prioritizing limited budgets and planning strategic interventions.
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5. Conclusions

Using long-term trends (1982–2015) in interannual AVHRR NDVI as a proxy for measuring the
decline or improvement in biomass productivity, we delineated the land-degradation hotspots for LMB
countries. Areas of productivity decline were differentiated from those in which the decline is driven
by rainfall dynamics, through examining the temporal correlation between NDVI time-series over the
last 34 years and rainfall factor. We found that about 15% (186,228 km2) of the total land mass of four
countries experienced land degradation over the last 34 years. The largest degraded areas were mainly
found in Cambodia, the Northwest, the Highland of Vietnam, the Northern Mountains of Thailand
and Laos, and the mountainous border between Laos, Vietnam, and Cambodia. By relating these
hotspot areas of land degradation in LMB with different attributes of the region, such as population
density, soil/terrain conditions, and land-cover types, we found that deforestation, conversion of land
use, and pressure of population in urban areas are the potential processes that play important roles
in degradation. Our analyses provided a broad overview of land degradation for LMB countries,
based on biomass productivity. The results of these analyses suggest the need for more detailed studies
at field and landscape levels to be considered in future research and governance approaches to better
combat land degradation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/23/2796/s1.
Table S1: Reclassification of the FAO/IIASA’s severity scale for soil constraints. Table S2: Combination of soil
constraint and terrain constraint classes. Table S3. Main land cover types aggregated from the original classes of
the SERVIR Land Cover map of LMB countries in 2015. Figure S1. Inter-annual NDVI-temperature correlation
in the area of NDVI decline. About 90% of degraded area across the LMB countries has not been associated
significantly with temperature reduction.
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