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Abstract: The three dimensional (3-D) spatiotemporal variations of forest photosynthetically active
radiation (PAR) dictate the exchange rates of matter and energy in the carbon and water cycle processes
between the plant-soil system and the atmosphere. It is still challenging to explicitly simulate spatial
PAR values at any specific position within or under a discontinuous forest canopy. In this study, we
propose a novel lidar-based approach to estimate both direct and diffuse forest PAR components from
a 3-D perspective. An improved path length-based direct PAR estimation method was developed by
incorporating the point density along a light transmission path, and we also obtained the diffuse
PAR components using a point-based sky view analysis by assuming the anisotropic sky diffuse
distribution. We compared the total PAR modelled using three light path length-based parameters
with reference data measured by radiometers on a five-minute time scale during a daily solar course.
Our results show that, in a discontinuous forest canopy, the effective path length is a feasible and
powerful (R2 = 0.92, p < 0.01) parameter to capture the spatiotemporal variations of total PAR
along a light transmission path with a mean bias of −53.04 µmol·m−2

·s−1(−6.8%). Furthermore,
incorporating point density and spatial distribution factors will further improve the final estimation
accuracy (R2 = 0.97, p < 0.01). In the meantime, diffuse PAR tends to be overestimated by 17% at
noon and underestimated by about 10% at sunrise and sunset periods by assuming the isotropic sky
diffuse distribution. The proposed lidar-based 3-D PAR model will provide a solid foundation to
various process-based eco-hydrological models for simulating plant physiological processes such
as photosynthesis and evapotranspiration, intra-species competition and succession, and snowmelt
dynamics purposes.

Keywords: LiDAR; photosynthetically active radiation (PAR); 3D ray trace model; direct and diffuse
PAR; understory light

1. Introduction

The forest radiation regime is the basic driving factor for most physiological processes such as
photosynthesis and respiration [1,2]. The spatiotemporal distributions of forest photosynthetically
active radiation (PAR, 400~700 nm) in the three dimensional (3-D) space has great effects on sub-canopy
snowmelt dynamics [3,4], understory evapotranspiration [5,6], and the growth and succession of tree
seedlings [7,8]. It is determined by absorbing, scattering, and transmitting processes between solar PAR
and foliage elements as it penetrates through a forest canopy [9,10]. These processes are dominated by
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factors including leaf orientation and morphology, the distribution pattern of foliage elements, solar
position, and topographic conditions [11,12]. Extremely high heterogeneity could usually be observed
for spatiotemporal distributions of forest PAR in both horizontal and vertical dimensions, especially at
a sub-daily scale [13,14].

The spatiotemporal variations of PAR could be conventionally and directly measured by
pyranometers [15,16] and indirectly observed by digital hemispherical photography (DHP) [17–19] at
different locations within a forest plot. However, it is difficult to set up a pyranometer observation
network or to obtain DHPs in large or inaccessible forested areas, and the high spatial heterogeneity
of PAR in complex forest areas cannot be effectively represented by data at specific sampling points.
Therefore, their applications can’t be extended to larger spatial scales. To solve this issue, canopy
light models became a powerful tool to investigate the 3-D spatiotemporal distributions of forest
PAR [20]. The spatially explicit 3-D radiative transfer models have been developed in the past decades
for non-randomly distributed heterogeneous forest canopies. They included the Beer law-based
radiative transfer model [21–23], and the ray tracing model using Monte-Carlo simulation [24–26].
The Beer-Lambert law describes the exponential attenuation of solar radiation, and it is only applicable
to situations where randomly distributed foliage elements can be assumed [27]. The detailed 3-D
structure information of forest canopies is a prerequisite input for these computer-based models. For
example, some models represented the tree crowns using different geometric objects such as a cone
or cylinder, and the direct light could be traced during the daily solar course [28–30]. However, it is
usually extremely time-consuming and labor-intensive to obtain forest canopy structural parameters
such as tree height, diameter at breast height (DBH), crown size, and crown base height [14]. Moreover,
compared with the real 3-D forest scene, the artificially reconstructed forest scene usually fails to capture
the real gap distribution patterns, which makes the modelled radiation at the specific location deviate
from the actual PAR values [31,32]. In addition, previous studies have shown that the estimation
accuracy of aerial laser scanning (ALS)-derived forest canopy structural parameters will decrease
slightly as data point density decreases [33,34]. However, how the point cloud density affects the
accuracy of ALS-based 3-D canopy light models remains unclear.

An accurate description of the tree structure is the key step to simulating the radiation regime of a
forest canopy. With the development of light detection and ranging (lidar) technology, a detailed 3-D
structure represented by lidar-based high-density point cloud data can be acquired efficiently. ALS has
shown great potential for forest ecological applications at the landscape level [35,36]. To investigate the
radiation regime of forest canopies, several ALS-based 3-D canopy light models have been successfully
developed over the past decades [32,37,38]. Most of these models characterize the probability of direct
or diffuse solar radiation penetrating through forest canopies based on various lidar-derived metrics
such as the laser penetration index [39], leaf area density [40], point projection area on the ground
surface [41], number of points around a solar ray [42], and synthetic hemispherical images derived
from projected point cloud data [43,44]. More detailed 3-D canopy light models have been developed
based on terrestrial laser scanning (TLS) to simulate radiation transmittance by voxel-based canopy
reconstruction [45,46]. As a bridge linking ALS and TLS, unmanned aerial vehicle (UAV)-based lidar
systems provide great flexibility in selecting data point density, as well as better delineation to the
upper part of a canopy with top-down scanning [47,48]. However, a 3-D forest canopy radiation model
driven by high-density UAV-based lidar data remains a necessary development.

The PAR arriving at one point in the forest canopy mainly consists of direct components originating
from the transmission and attenuation of beams and diffuse components derived from single and
multiple scattering. Naturally, most canopy light models simulate them separately [12,39]. In terms of
direct solar radiation, the length of the transmission path, defined as the distance between the first
contacted point and the target point [13,30], is a widely used parameter to determine the extent of
its potential attenuation [14,29]. It was found that a path-length based radiation simulation model is
more flexible in terms of reproducing sub-daily and seasonal PAR variations [49]. Moreover, existing
research found that a spatially explicit 3-D ray trace model incorporating path length could simulate
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the spatiotemporal distribution patterns of light intensity in the forest floor and along the vertical
gradient [14]. However, it is usually not good enough to only consider the total path length to accurately
characterize the light attenuation effect along its transmission path due to the non-random distribution
of foliage elements within a forest canopy [50]. The gaps between clumped foliage elements along a
light transmission path will alter their attenuation ability for direct solar radiation. In addition, the
point density and distribution pattern along a light transmission path will also affect the ability of a
direct beam penetrating through a forest canopy [33,51]. However, few studies have incorporated the
gap size information into the path length-based method to characterize the light attenuation, and it is
still unclear whether it is possible to improve the simulation accuracy of the light attenuation effect by
incorporating the point density and distribution information. In terms of diffuse components, most
research treats the diffuse light above the hemispherical sky as an isotropic distribution. The diffuse
solar radiation reaching a specific location in a forest canopy is usually estimated based on the sky
view factor or canopy closure [15,19,49]. To assume the isotropic diffuse solar radiation will affect the
estimated radiation regime in 3-D space [52,53], while the difference remains unexplored.

Therefore, in this study, we aimed to develop a spatially explicit forest canopy radiation model to
investigate the spatiotemporal variations of forest PAR within and under a forest canopy. The specific
objectives of this study are to:

1. Develop and validate a spatially explicit lidar-based 3-D forest canopy PAR simulation model
treating direct and diffuse solar radiation separately;

2. Characterize the attenuation effects of direct solar PAR along its transmission path penetrating
through a forest canopy, and

3. Explore the spatiotemporal variations of forest PAR in 3-D space and the effects of point density
on the estimation accuracy of forest PAR simulation.

2. Materials and Methods

2.1. Study Sites

Our study area is located in the Baima (BM) experimental forest site in the city of Nanjing (119◦11′8”E,
31◦36′51”N), China (Figure 1). The site is a planted forest site with a relatively flat area and different tree
species, densities, and ages. We set up a medium density (0.15 trees / m2) deciduous broadleaf circular
forest plot with a radius of 15 m. The average tree height and crown size of this forest plot are 7 m and
about 2~3 m, respectively. The effective leaf area index (LAIe) is about 1.5. The tree species of this forest
plot is wheel wingnut (Cyclocarya paliurus) with an average spacing of 2 m between tree stems.
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2.2. Data Collection

2.2.1. UAV Lidar Data

We acquired the UAV-based lidar data in the BM site on July 26, 2017 on a clear day with the
DJI M600 pro (DJI Technology Co. Ltd, Shenzhen, China) drone mounted with a Velodyne VLP-16
(Velodyne LiDAR Inc. San Jose, USA) lidar sensor coupled with a high precision inertial measurement
unit (IMU). The scanning field of view (FOV) was set as ±15◦ with the laser wavelength of 903 nm and
beam divergence of 0.18◦ (3.0 mrad) during the flight. The maximum scan rate of the lidar sensor was
300,000 points/s. Two cross flight paths (i.e., East-West and North-South) were designed to acquire
relatively comprehensive forest point cloud data, which resulted in high-density (about 500 points/sqm)
3-D forest point cloud data (Figure 1b).

2.2.2. TLS Data

In the meantime, we also collected terrestrial lidar data using the Leica Scan Station 2 (Leica
Geosystem AG, St. Gallen, Switzerland) at five different scanning locations with one center position
and four corner positions, respectively. At each station, we scanned the plot using hemispherical mode
(i.e., horizontal: 0~360◦; vertical: −45~90◦) by setting sampling spacing as 1 cm @ 10 m (1 cm at 10 m
away from TLS station) with the laser wavelength of 532 nm. All TLS data from five different stations
were registered into a comprehensive forest plot TLS point cloud.

2.2.3. Lidar Data Pre-Processing

In this study, we filtered ground points for both UAV and TLS lidar data using the tool ‘CSF’
in the ‘CloudCompare’ software package (version 2.6.2) (GPL software and available from http:
//cloudcompare.org). Then, the digital elevation model (DEM) and canopy height model (CHM) with
the spatial resolution of 0.1 m were interpolated in ArcGIS software using ground points from UAV
lidar data. In addition, after removing the noise points of TLS data, we removed all points lower than
each PAR observation location to estimate the sky view factor for diffuse solar radiation calculation
purposes. Accurately locating the observation points in 3-D both UAV- and TLS-based lidar data is
a key step to assure the effectiveness of comparison between the lidar- and field-based PAR values.
All nine observation locations were precisely captured by TLS data. By visually selecting two control
points in both UAV- and TLS- lidar data space, we first calculated distances from each observation
location to these two control points. Then, by using the distance intersection method we successfully
located nine observation locations in the UAV-lidar data space (Table 1).

Table 1. Locations of nine observation points in the experimental forest plot and calibration coefficients
for each pyranometer at the corresponding location.

Location
Number

TLS Coordinates ALS Coordinates Height
(m)

Calibration Coefficients

X Y X Y a b c

1 −1.345 −4.365 705589.46 3499268.53 0.36 0.60097 0.04742 −0.000033
2 −5.668 −0.948 705584.46 3499266.03 0.21 0.51498 0.02754 0.000025
3 5.183 4.881 705584.29 3499278.50 0.33 −1.30682 −0.00527 −0.000076
4 −9.307 2.416 705579.89 3499264.47 0.32 −0.59397 −0.14066 0.000002
5 −0.368 1.468 705584.65 3499271.91 0.75 1.00826 −0.07162 0.000014
6 −1.909 −0.590 705586.14 3499269.84 0.12 −1.19734 −0.04765 −0.000072
7 4.066 −4.846 705592.75 3499273.31 0.38 6.77510 0.07835 0.000033
8 3.422 0.422 705587.54 3499275.07 0.73 0.24188 0.00924 0.000024
9 −6.873 −7.958 705590.59 3499261.92 0.11 −0.63143 −0.02538 −0.000011

2.2.4. Field-Based PAR Measurements

Nine different light quantum sensors recorded photosynthetic photon flux density (PPFD)
(µmol·m−2

·s−1) with the average logging time interval of 5 minutes and heights of 1~2 m above the

http://cloudcompare.org
http://cloudcompare.org
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ground at different locations at the BM site from July 27 to July 28, 2017. In the meantime, we also
measured the total (PPFDtotal) and diffuse PAR (PPFD0,di f ) above forest canopy using the BF-5 sunshine
sensor (Delta-T Devices Ltd., Cambridge, UK) placed on a roof 20 meters above the ground. By doing
so, we obtained the direct PAR (PPFD0,dir) by subtracting PPFD0,di f from PPFD0,total.

2.2.5. PAR Measurements Normalization

To compare the PAR measurements from nine different light sensors, we conducted the data
calibration process using a standard reference light quantum sensor (LI-190R, LI-COR, Inc., Lincoln,
Nebraska) under the same light condition and indoor environment. By sampling the PAR readings from
the to-be-calibrated sensor with the reference one at a step of 50 µmol·m−2

·s−1 within the range from 0
to 2500 µmol·m−2

·s−1, we calculated the difference between two readings. The quadratic polynomial
statistical model best explains the variations of reference PAR measurements with the to-be-calibrated
measurements with significant correlations (R2 = 0.99 and P < 0.01) and is expressed as:

∆PARi = ai + biPARLI−COR + ciPAR2
LI−COR

(1)

where ∆PARi is the difference of PPFD between the i-th pyranometer and LI-190R, PARLI−COR is the
corresponding PPFD of LI-190R, and ai, bi and ci are calibration coefficients for the i-th pyranometer as
shown in Table 1.

2.3. Model Development

We developed a lidar-based radiation model based on the following assumptions: (1) The total
solar radiation (PPFDtotal) reaching a specific location within or under a forest canopy in 3-D space
consists of both the direct PAR (PPFDdir) and diffuse PAR (PPFDdi f ) components. (2) The solar radiation
reaching a specific location is mainly determined by the non-random distributions of foliage elements
within the 3-D space of a forest canopy which is represented by UAV-lidar data in this study. The solar
radiation absorbed by leaves was ignored in this study. We calculated the direct PAR (PPFDdir), diffuse
PAR (PPFDdi f ) and scattering PAR (PPFDdir,scat) components separately.

2.3.1. Direct PAR Estimation Model

In the current study, we developed a lidar-based approach to characterize the attenuation of direct
solar radiation along their transmission path as penetrating through a forest canopy. As shown in
the Figure 2, for a given direct light beam l with the zenith (Z) and azimuthal (A) angles reaching
a given target point P′(xi, yi, zi), we could build a 3-D cylindrical buffer (S) region around the light
beam l with the radius of r as it penetrates through a forest canopy. The radius r was determined by
the sensitivity analysis in Section 2.4. The 3-D cylindrical buffer could be either occupied by points
(i.e., “vegetation cluster”) or empty (i.e., “gaps”) resulting from non-random distribution of foliage
elements. We projected each point within the buffer S onto the light beam l and computed their
one-dimensional distances between each projected point and point P′ along l (dp′). The point with
the longest dp′ was considered as the first contact point between light beams and forest canopy (P0).
We then applied the K-Means++ algorithm [54] to group the vegetation points and identify the gaps
between foliage elements within the buffer S. The initial number of clusters (k) was set as half of the
total number of points (N) within S, and the buffer was considered as an empty one if N was less
than 2. Two clusters would be merged if the distance between their boundaries was less than 0.5 m
determined by measuring the mean gap size manually. By iteratively clustering all points within the
buffer S, we obtained five “vegetation clusters” (G1~G5) and five “gaps” with varied sizes in the buffer
S, respectively.
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Figure 2. The 3D canopy ray-tracing model. (a) The straight dashed line l indicates a direct sunbeam
reaches the target point P′within a 3-D cylindrical buffer S after penetrating through a forest canopy.
(b) Details in the spatial ray path buffer S. According to the distance of each point in S along l to the
point P′ (dp′ ), S can be separated into five vegetation clusters (G1~G5) and five gaps. The effective
path length of light passing through the canopy (PLe) is the sum of LG1~LG5, and the total path length
(PLtotal) is the distance from P′ to P0 along l. The cross-sectional view of point distribution in vegetation
clusters G5 along the ray direction is displayed in the right. The relative point distribution coefficient of
G5 (RF5) is calculated by the point-to-ray distance (d5, j) of each point within G5.

The direct PAR values at the point P′ could be obtained if the attenuation effects of direct light
beams could be characterized as they penetrate through a forest canopy. By removing the gaps from
the buffer S whose total path length is PLtotal, we computed the effective total path length (PLe) as:

PLe =
5∑

i=1

LGi (2)

where LGi is the length for the i-th vegetation cluster cylinder; PLtotal is the total path length of direct
light beam starting from the first contacted point within forest canopy (P0) to the target point P′. As
for the value of LGi, it could be computed as:

LGi = max(dp′,i) −min(dp′,i) (3)

where dp′,i is the distance of each point within the i-th vegetation cluster between its projected point
and the target point P′ along l, and max(dp′,i) and min(dp′,i) are the maximum and minimum distances,
respectively. To better characterize the non-distribution pattern of foliage elements along the light
transmission path, besides the path length, we also proposed another parameter named the point
density-based length (PLk) to characterize the light attenuation effect by incorporating the point density
and spatial distribution pattern within vegetation clusters. The relative volume point density (RDi) of
the i-th separated vegetation cluster Gi is computed as:

ADi =
ni

πr2LGi
(4)
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RDi =
ADi

AD
(5)

where AD is the average point density of tree crowns in the study area with the unit of points/m3,
ni is the total number of points contained in Gi, r is the radius of the cross-sectional circle of the
cylindrical buffer S, and LGi is the length of the vegetation cluster Gi. We determined the value of AD
by averaging the point volume density of 50 randomly selected spheres with a radius of 0.5 m within
tree crowns. For the vegetation clusters with extremely high or low densities along all possible direct
beams reaching the target point P′, we plotted the histogram of all ADi values during a daily solar
course and replaced abnormal (i.e., extremely large or small) ADi values using the ones at the point of
95% confidence interval.

In addition, the 3-D spatial distribution patterns of all points within each Gi also affect the
attenuation effects of direct solar beams. By assuming that the ability to intercept direct solar radiation
was inversely related with the distances of each point to the axis of 3-D cylindrical buffer S, we
proposed a parameter named “relative point distribution factor (RFi)” to characterize the spatial
distribution pattern of points within vegetation clusters. In each vegetation cluster Gi, the value of RFi
was computed as:

DFi =

ni∑
j=1

r−di, j
r

ni
(6)

RFi =
DFi

DF
(7)

where di, j is the distance of the j-th point within the i-th vegetation cluster Gi to the axis of cylindrical
buffer S and ni is the total number of points within Gi. We obtained the average value DF based on all
possible values of DFi for all direct beams reaching nine observation points during a daily solar course.

ADi and DFi are the absolute volume point density and the absolute point distribution factor for
the i-th vegetation cluster, respectively. Statistically, they approximately show a normal distribution
with AD or DF as the mean value, so the values of RDi and RFi exhibit a positively skewed distribution
with the mode of 1. When both RDi and RFi are equal to 1, we call it the standard case. A RDi value
greater than 1 indicates that more foliage elements exist in the cluster Gi, enhancing its attenuation
effects compared to the standard case. Meanwhile, a RFi value greater than 1 indicates that more
foliage elements are located closer to the light path in the cluster Gi and has the same effects as RDi.
Finally, we computed the value of point density-based path length (PLk) weighted by the point volume
density and point spatial distribution pattern as:

PLk =
5∑

i=1

LGiRDiRFi (8)

In terms of the direct PAR reaching the target point P′, we applied an exponent-based direct light
attenuation model as:

PPFDdir = PPFD0,dir
a

exp(bPLi + c) + d
(9)

where a, b, c and d are unknown coefficients for the exponent statistical model and PLi is one of the
three light path length-based parameters (PLtotal, PLe, PLk). To determine the unknown parameters, we
conducted the non-linear regression analysis based on the No. 5 and No. 6 pyranometer measurements
in the field to fit the exponential model between PLi and direct light transmittance (PPFDdir/PPFD0,dir).
We obtained the observed PPFDdir by subtracting the PPFDdi f and PPFDdir,scat from the pyranometer
readings during a daily solar course.
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2.3.2. Diffuse PAR Estimation Model

The sky diffuse distributes ununiformly in the upper hemisphere under a clear sky condition
and it was controlled by the solar position. In this study, we incorporated our diffuse sky model
with an anisotropic sky diffuse distribution model [52]. The model describes the variation of relative
contributions of sky diffuse irradiance in each zenith-angle zone to horizontal irradiance with the
various solar positions under clear sky conditions. We divided the upper hemisphere into nine
zenith-angle zones with a 10◦ zenith angle interval, and their relative contributions varying with the
solar zenith angle are shown in Figure 3.
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irradiance on a horizontal surface varied with solar zenith angle under a clear sky condition.

The angular gap fraction is defined as the proportion of partial or whole hemispherical sky not
obscured by foliage elements of a forest canopy when viewed upwards from a specific location [55].
To calculate PPFDdi f , the gap fraction of each annulus zone needs to be obtained, which can be
estimated as follows. Firstly, all points above the target location and within a radius of R were cut
out of the original point cloud and then projected onto a plane using a stereographic projection [56].
All projected points are distributed in a circle with a unit radius as shown in Figure 4. Secondly, the
unit circle was divided into nine concentric annulus rings with 10◦ zenith angle (Figure 4). A specific
zenith angle interval (∆θ) and azimuth angle interval (∆ϕ) were selected to divide each annulus
ring into several trapezoidal facets. Due to the geometric distortion of stereographic projection, the
point density of rings with higher zenith angles is much larger than those with lower zenith angles.
Therefore, different values of ∆θ and ∆ϕ should be applied to each annulus ring. The ∆θk and ∆ϕk for
the k-th (k = 1 ~ 9) annulus ring were determined by the sensitivity analysis in Section 2.4. Thirdly, we
could obtain the index (ik, jk) of the trapezoid that contained point (θ,ϕ) in the k-th annulus ring as:

ik = int(
θmod10◦

∆θk
) (10)

jk = int(
ϕ

∆ϕk
) (11)

where θ and ϕ are zenith angle and azimuth angle of each projected point. Considering that the area
of facets near zenith is smaller than that adjacent to the horizontal plane, it is necessary to perform
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sinusoidal weighting on each facet [57]. The weight value assigned to the trapezoid with index (i, j) in
the k-th annulus ring (ωk

i, j) could be calculated as:

ωk
i, j = sin(10

◦

(k− 1) +
2ik + 1

2
∆θk) (12)

Then, we defined lki, j as a flag indicating whether the trapezoid with index (i, j) in the k-th annulus
ring contained no projected points (empty) or not (non-empty), and the empty one was denoted as 1
while the non-empty one as 0. Finally, the angular gap fraction of the k-th annulus ring (Pgap(θk)) was
calculated as the weighted ratio of the number of empty trapezoids to the total number of trapezoids
in that annulus ring:

Pgap(θk) =

10/∆θk∑
i=0

360/∆ϕk∑
j=0

lki, jω
k
i, j

10/∆θk∑
i=0

360/∆ϕk∑
j=0

ωk
i, j

(13)
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Figure 4. The stereographic projection for lidar data. (a) The projected points of UAV lidar point cloud
centered at the No. 5 observation location with a radius of 30 m. (b) The synthetic image derived from
the TLS point cloud at the same location. The circle with a unit radius and the synthetic image were
divided into 9 annulus rings for comparison.

Therefore, PPFDdi f under anisotropic clear sky diffuse distribution (PPFDdi f ,ani) was estimated as:

PPFDdi f ,ani = PPFD0,di f

9∑
k=1

Pgap(θk)CRk (14)
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where PPFD0,di f is the sky diffuse PAR above the canopy, Pgap(θk) and CRk are the gap fraction and sky
diffuse proportional contribution of the k-th annulus ring, respectively. Furthermore, PPFDdi f under
an isotropic sky diffuse distribution (PPFDdi f ,iso) was estimated through the sky view factor (SVF):

SVF =

9∑
k=1

10/∆θk∑
i=0

360/∆ϕk∑
j=0

lki, jω
k
i, j

9∑
k=1

10/∆θk∑
i=0

360/∆ϕk∑
j=0

ωk
i, j

(15)

PPFDdi f ,iso = SVF · PPFD0,di f (16)

2.3.3. Scattering PAR Estimation Model

This part of PAR originates from multiple scattering of direct PAR inside the canopy, and it can be
calculated as a function of the elemental scatter magnitude of PPFD0,dir and two canopy structural
parameters [58,59]:

PPFDdir,scat = αPPFD0,dir(1.1Ωθ − 0.1PAIe)e−cosθs (17)

where α is the elemental scattering coefficient of broad-leaved forest leaves in the PAR band and
specified as 0.15, Ωθ is the clumping index, PAIe is the plant area index of forest stands, and θs is solar
zenith angle. Ωθ describes the non-random distribution of canopy elements, which is closely related to
canopy structure and tree species [10]. In this study we adopted values retrieved using TLS data for
the same study area [60]. PAIe can be calculated using Beer’s law [27,61]:

Pgap(θ) = exp(−
G(θ)PAIe

cos(θ)
) (18)

where G(θ) is the mean projection of unit leaf area on the plane perpendicular to beam direction. If we
divide the upper hemisphere into n annulus rings, then PAIe will be retrieved by:

PAIe = −
n∑

k=1

cosθk
ln Pgap(θk)

G(θk)
/n (19)

where θk is the central zenith angle of the k-th annulus ring. The calculation of G(θ) requires leaf angle
distribution, in this study a simple method was used [62]:

G = cos(θL) (20)

where θL is the mean leaf inclination angle. According to the result based on TLS data for the same
study area [33], 66◦ was used.

2.4. Model Parameters Determination

There are four parameters required to be set manually in the model. They are the radius of the
spatial ray path buffer (r), the radius around the target location for cutting the point cloud (R), the
zenith angle interval (∆θk), and the azimuth interval (∆ϕk) for each annulus ring. Sensitivity analysis
was conducted to determine their optimal values. In terms of r, equidistant values with 2.5 cm interval
ranging from 5~25cm were selected to calculate the values of PLtotal, PLe and PLk at two calibration
observation locations during a daily solar course. Then, we fitted Equation (9) with these values.
The buffer radius with which the model fitted best was taken as the optimal value of r. Values of 2,
3, 5 m, and every 5 m thereafter up to 70 m were selected for R. Values of 0.1◦, 0.2◦, and every 0.1◦

thereafter up to 1◦ along with 2◦, 3◦ and 5◦ were considered for ∆θk. In addition to the above, 10◦,
15◦, 20◦, 25◦, and 30◦ were also considered for ∆ϕk. By using all combinations of R, ∆θk and ∆ϕk,
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we calculated Pgap(θk), SVF and PAIe for each annulus ring at all observation locations [63]. TLS
data of nine plots were projected using stereographic projection and binarized to produce synthetic
images (Figure 4b). The resolution was determined by measuring the mean distance between adjacent
projected points. We used these synthetic images to calculate the angular gap fraction of each annulus
ring at the corresponding observation point with in Digital Hemispherical Photography software
(Natural Resources Canada, Canada Centre for Remote Sensing, Canada) as the reference value for
Pgap(θk). The combinations of R, ∆θk and ∆ϕk with which the root mean square error (RMSE) between
calculated Pgap(θk) and reference values reaches minimum were taken as the optimal values.

In order to further analyze how the location of annulus rings influence the optimal angular
intervals, we enlarged the unit projection circle and assumed a radius of 90m. The mean area of facets
formed by ∆θk and ∆ϕk in the k-th annulus ring was approximated by the following equation:

Ak = (10k− 5)∆θk∆ϕk (21)

where the unit of ∆θk is ◦ and the unit of ∆ϕk is rad.

2.5. UAV Lidar Data Thinning

To investigate the effects of point densities on parameter optimization and further the estimation
accuracy of the forest PAR model, we conducted a sensitivity analysis by changing the neighboring
point distance (NPD) from 2.5 cm to 25 cm with an interval of 2.5 cm. The NPD was defined as the
regular and minimum distance between two neighboring points of a forest lidar data [33]. By doing
so, we can also investigate the applicability of the proposed forest PAR model to the aerial lidar data
acquisition system which usually has a higher (> 1,000 m) flight altitude and low cloud point density.

2.6. Spatiotemporal Variations of Forest PAR

The model was evaluated qualitatively by comparing modelled total PAR with the measurement at
each observation location. The solar position at each logging time of measured PAR was calculated [64]
and the total PAR was modelled using optimal values for the direct light attenuation model and the
diffuse PAR model. Then the mean absolute error (MAE) between modelled and measured total PAR
at 7 verification locations during a daily solar course was calculated. The MAE is less influenced by
large outliers than RMSE and is a robust estimate of the error. Furthermore, taking the central part of
the plot as an example, we mapped the spatial patterns of PAR in the forest floor at 14:00 and 16:00 on
July 27, 2017, as well as 8:00, 10:00 and 12:00 on July 28, 2017 at local time. We also mapped the spatial
patterns of PAR at different vertical gradients (1, 3, 5, 6, and 7 m above the forest floor) at 12:00 on July
28, 2017. In order to visually understand the PAR regime inside the canopy, the spatial patterns of total
PAR in the longitudinal profiles along the solar principal plane (SPP) and its perpendicular cross-plane
(PCP) were also mapped.

3. Results

3.1. Determined Parameters of Direct Light Attenuation Model

In the direct PAR model, we adopted the value of 294.68 points/m3 and 0.3342 as the average point
density AD in Equation (5) and the average point distribution factor DF in Equation (7), respectively.
Figure 5a shows the fitting results of the direct light attenuation model (Equation (9)) using direct
PAR transmittance and three light path length-based parameters (PLtotal, PLe and PLk) calculated from
original data with various buffer radius (r). PLk showed the best result and PLe was a little worse,
while PLtotal showed a much worse performance. All three parameters gave poor performances when
a small r was used. As r increased, their performances improved significantly. After r reached 12.5 cm,
the fitting residual sum of squares (RSS) and adjusted R2 remained stable. When r was assigned 15.0
cm, the fitting RSS had a minimum of 92.47, 113.1 and 343.85 (µmol·m−2

·s−2)2 while adjusted R2 had a
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maximum of 0.88, 0.84 and 0.51 for PLtotal, PLe and PLk, respectively. Therefore, 15 cm was chosen as
the optimal value of r for the original data. Figure 5b shows the scatter plot between PLk calculated
with optimal r and direct PAR transmittance at two calibration locations during a daily solar course,
in which direct PAR attenuates to zero rapidly with the increase of PLk. Transmittance and PLk were
exponentially correlated (R2 = 0.88, p < 0.01).
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3.2. Determined Parameters of Sky Diffuse PAR Model

The analysis on the sensitivity of estimated SVF and PAIe to varied R shows that 35 m is the optimal
plot radius for cutting the UAV-lidar data. Table 2 shows the optimal values of ∆θk and ∆ϕk for each
annulus ring to calculate angular gap fraction using data with different NPDs. In general, the optimal
angular intervals become larger as point density decreases and become smaller as the zenith angle of
the annulus ring increases, despite some exceptions when ∆θk and ∆ϕk are considered individually.

Table 2. The optimal value of zenith angle interval (∆θk) and azimuth angle interval (∆ϕk) for
calculating angular gap fraction (Pgap(θk)) of first eight annular rings using data with different NPDs.

NPD
(cm)

0◦~10◦ 10◦~20◦ 20◦~30◦ 30◦~40◦ 40◦~50◦ 50◦~60◦ 60◦~70◦ 70◦~80◦

∆θ1 ∆ϕ1 ∆θ2 ∆ϕ2 ∆θ3 ∆ϕ3 ∆θ4 ∆ϕ4 ∆θ5 ∆ϕ5 ∆θ6 ∆ϕ6 ∆θ7 ∆ϕ7 ∆θ8 ∆ϕ8

(◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦)

origin 0.3 15 3 0.6 3 0.3 1 0.7 0.9 0.5 0.7 0.5 0.4 0.6 0.8 0.2
2.5 0.3 15 3 0.6 3 0.3 1 0.7 0.9 0.5 0.7 0.5 0.4 0.6 0.8 0.2
5 5 1 3 0.6 3 0.3 1 0.7 0.7 0.7 0.7 0.5 0.4 0.6 0.8 0.2

7.5 3 2 3 0.7 3 0.3 1 0.8 0.5 1 0.7 0.6 0.4 0.7 0.8 0.2
10 3 2 3 0.8 3 0.4 0.3 3 0.7 0.9 0.6 0.8 0.4 0.8 0.6 0.3

12.5 3 3 3 1 3 0.5 3 0.4 1 0.7 0.7 0.8 0.5 0.7 0.5 0.4
15 3 3 0.7 5 3 0.6 2 0.7 1 0.9 0.7 1 0.5 0.9 0.8 0.3

17.5 0.6 20 0.8 5 3 0.7 2 0.8 0.6 2 0.9 1 0.6 0.9 0.4 0.7
20 3 5 3 2 3 0.9 0.4 5 0.7 2 0.5 2 0.7 1 0.8 0.4

22.5 0.8 20 3 2 3 1 3 0.9 0.6 3 0.6 2 2 0.4 0.4 0.9
25 0.8 25 3 3 0.7 5 3 1 4 5 3 0.5 1 0.9 0.5 0.9

Figure 6 shows the comparison of angular gap fraction at each observation location estimated
using data with several NPDs and corresponding optimal parameters (Table 2) with reference values
retrieved from TLS-derived synthetic images. Obviously, nine observation locations can be divided
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into two categories according to the change of angular gap fraction with varied zenith angle. In
terms of the first seven annular rings, with an increase of zenith angle, the angular gap fraction firstly
increased and then decreased at locations 1, 3, 5, and 8, and consistently decreased at other locations.
The figure manifests that data with a large range of NPDs resulting in a similar angular gap fraction,
which is consistent with the reference value.
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Figure 6. Angular gap fraction at nine observation locations estimated with NPDs varying from origin
to 25 cm and corresponding optimal parameters (Table 2). Reference values based on TLS-derived
synthetic images are also given. Reference values for SVF and PAIe are shown in the upper left and
upper right corner of each panel respectively.

3.3. Comparisons between the UAV- and Field-Based PARs

Based on the optimal value of R, ∆θk, and ∆ϕk, we calculated PPFDtotal arriving at seven verification
locations at each logging moment. The model was evaluated by the mean value of MAE and bias of
modelled PPFDtotal against measurements with various buffer radius (Figure 7a). PLk produced the
highest accuracy, followed by PLe. PLtotal produced a much higher deviation of modelled PPFDtotal
from the measured values. After r reached 15 cm, the means of MAE and bias approached minimums
of 136.85 and −40.99 µmol·m−2

·s−1 for PLk, 164.97 and −53.044 µmol·m−2
·s−1 for PLe, 62.41 and −203.76

µmol·m−2
·s−1 for PLtotal, respectively. Figure 7b shows the scatter plot between modelled PPFDtotal

using PLk with r of 15 cm and observed total PAR at seven verification locations. Modelled and
observed PAR are positively correlated (R2 = 0.97, p < 0.01). The modelled values are slightly lower
than the observations. The models using PLe and PLtotal resulted in R2 of 0.92 and 0.54 (scatter plots are
not shown). Based on PLk and all optimal values of r, R, ∆θk and ∆ϕk, we estimated the dynamic trend
of direct, diffuse, and total PAR at each observation location during a daily solar course and showed
them in Figure 8. The model can capture the dominating variation tendency of total PAR over most of
the time period but may cause some errors when the PAR fluctuates dramatically in a short period
of time.
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Figure 7. Evaluation results of the canopy radiation model using three light path length-based
parameters at seven verification locations. (a) Variations of the mean value of MAE and bias between
modelled and measured PAR with varied spatial buffer radius. (b) Scatter plot of modelled (y) total
PAR based on PLk with 15cm of r and observed (x) total PAR. The red line indicates the fitting equation
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Figure 8. Variation trends of estimated direct, diffuse, total PAR and observed total PAR at each
observation locations during one daily solar course.

3.4. Spatiotemporal Distribution Patterns of Forest PAR

Figure 9 shows the spatial patterns of PAR in the forest floor at 14:00 and 16:00 on July 27, 2017 as
well as 8:00, 10:00 and 12:00 on July 28, 2017 at local time. It is shown that not only the intensity of PAR
but also the distribution patterns of shadowed and lighted ground changed obviously. In addition,
Figure 10 shows the spatial patterns of PAR at different vertical gradients (1, 3, 5, 6, and 7 m above the
forest floor) at 12:00 on July 28, 2017. Obviously, the shadowed area gradually decreased until it finally
disappeared with the increase of the height above the ground surface, indicating the variation of the
foliage distribution in the vertical direction.
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Figure 11 shows the PAR variations in the vertical profiles along SPP and PCP at 14:00 and 16:00
on July 27, 2017 as well as 8:00, 10:00 and 12:00 on July 28, 2017. At times with relatively lower solar
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altitude, PAR in SPP decreased from canopy surface to crown interior along the direction of solar
zenith. However, PAR in PCP showed a gradual decline from the surface of the canopy to the interior
and an inconspicuous relationship with the solar zenith angle.
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4. Discussion

4.1. Sensitivity Analysis of 3D Ray Trace Model

Although PLk might provide the highest accuracy for the direct light attenuation model, the
performance of each light path length-based parameter was determined by the spatial buffer of 3D
ray trace model. How the spatial buffer radius influences each parameter can partially explain how
these parameters diverge. The statistics of PLk, PLe and PLtotal values for all observation locations
during a daily solar course (Figure 12a) show that both the mean value and standard deviation of
keep rising as r becomes larger. This indicates that a larger value of r not only enlarges parameters
themselves but also introduces more severe temporal fluctuations to daytime trends of their values.
The probability of each parameter in their different value ranges (Figure 12b–d) change greatly as
r increases. The spatial buffer built with a small r fails to contain all points that direct light may
encounter, bringing large errors to the direct light attenuation model (Figure 5a). These effects can be
explained in two aspects. Firstly, if r is not big enough, the two endpoints that make up each discrete
vegetation clusters will probably not be the true points that separate foliage elements from gaps and
will likely be located inside the canopy. This may cause insufficient clustering of foliage element points,
leading to a lower estimated path length. Secondly, if r is close to or smaller than the NPD, points
representing foliage elements may be misjudged as isolated noise points and removed by the model.
This may cause a deficiency of vegetation clusters, resulting in underestimated parameters. However,
the model accuracy will be slightly lower when r exceeds 15 cm (Figure 7a), since the spatial buffer
contains many points that are far away from the solar ray and have no impact on the light attenuation.
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These redundant "outlying points" due to oversampling of the canopy, may overestimate the length
of vegetation clusters. In models using cubic or pyramidal voxels to represent canopy structure, the
level of canopy simplification and the fineness of capturing structure features depend on voxel size.
Therefore, it should be properly determined firstly [2,34]. Similarly, it is a primary task to select the
width of the “long tube” to appropriately sample the vegetation structure and extract the part of the
canopy where light attenuation mainly occurs.
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recording times to the radius of spatial ray path buffer (r, in the 3D ray trace model). (a) Mean value
and standard deviation of PLk, PLe and PLtotal with varied r. (b)–(d) Percentage of PLk, PLe and PLtotal

values within their different value ranges with varied r. The solid square represents the zero value and
the solid circle, triangle and diamond represent each value range.

4.2. Comparison among Three Different Path Length-Based PAR Models

In this study, both PLe and PLk are feasible and powerful parameters for estimating direct light
transmittance despite little difference. However, PLtotal fails to capture the variation of direct PAR on a
five-min time scale. This result needs to be further explored. Therefore, we compared the statistics of
differences among three path length-based parameters calculated with various spatial buffer radius
at the same moment and showed them with each PLk value ranges (Figure 13a,b). Moreover, the
true values of the three parameters during a daily solar course are also shown in Figure 13c. Overall,
PLtotal is more than two times of PLe or PLk in most daytime periods, and especially higher in the
early morning or at dusk (Figure 13c). In some time periods when sunflecks and shadows alternate,
PLtotal changes more sharply. This indicates that the existence of gaps between and inside tree crowns
results in much instability. Canopy gaps along the ray path originate from leaves clumped around
branches. If structural information for continuous canopy cannot be described at the branch level with
low density ALS data, total path length and effective path length may not be discriminated clearly.
Therefore, variations of direct PAR on a short time scale will be smoothed out. This could explain the
result in the previous study that the total path length could capture 92% of PAR variation on a 10-min
average time scale [14]. However, The process of light attenuation occurred almost entirely in the
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low value range of PLk between 0 and 2 m (Figure 5b), where the largest difference between PLk and
PLe was less than 0.5m (Figure 13a). Then, as PLk became larger the absolute difference between PLk
and PLe increased. The direct light completely attenuated to 0 when the absolute difference reached
1m, having no impact on the fitting of parameters in Equation (9). In contrast, PLtotal is higher than
PLk by 2~3 m at its range of 0~2 m and the difference between PLtotal and PLk is 10 times higher than
that between PLtotal and PLe (Figure 13a,b). Given the general delineation of discontinuous canopy
structure on the branch level using UAV-based lidar data, we can trace the frequent movement of tiny
sunflecks below canopy during the daytime. Although it is unpractical to acquire leaf number and
clumping status using UAV-based lidar data, they can be implicitly expressed by the point density
and distribution information. Therefore, incorporating point density and distribution factors might
enhance the ability of effective path length to estimate direct light transmittance.
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Figure 13. Path length-based parameters comparison: (a) and (b) changes of means and standard
deviations of the difference between PLk and PLe or PLtotal calculated with various spatial buffer radius
(represented by different solid symbols) at exact same moments for all observation locations with PLk.
(c) variations of three path length-based parameters during a daily solar course at the No. 5 observation
location with a spatial buffer radius of 15cm.

4.3. Sensitivity Analysis of Sky Diffuse PAR Model

In this study, the appropriate radius for cutting the point cloud (R) in sky diffuse model depends
on tree species, distribution patterns, and point density. Furthermore, different optimal values of
angle intervals for different annulus rings can guarantee the accuracy and reliability of angular gap
fraction estimation and diffuse sky simulation for any lidar point cloud dataset. On the one hand,
gap fraction analysis depends on the canopy structure within a certain radius around target locations
in the canopy. The changes of SVF and PAIe with R show opposite “S” type trends (Figure 14a,b),
and both of them tend to be steady after R reaches 35 m. It is insufficient for a small R to build
a plot containing a substantially complete canopy structure, while a plot built with large R covers
redundant points far away from the plot center. These points distribute at the edge of the unit circle.
Thus, they have little impact on the distribution pattern of foliage and gaps in the hemisphere space.
Most ALS-based models for retrieving canopy structural parameters need to clip the original point
cloud using a specific radius ranging from 25 m to 60 m [65,66]. Our diffuse PAR model adopts a
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projection strategy, but the prerequisite for a clipping radius is consistent with traditional methods
based on statistical regression [67,68]. On the other hand, angle intervals are also important for
angular gap fraction estimation, since how the unit circle is divided dominates the probability of
whether a trapezoid contains projected points. It is acceptable to ignore the uneven distribution of
points in the unit projection circle derived from TLS data due to its extremely high point density and
precise characterization of foliage structure. However, for UAV-based lidar data, this effect should
be considered as a critical factor. Existing studies solve this problem by assigning different sizes
to the corresponding pixels in synthetic images according to the position of the projected points in
the unit circle [43,44], but this method cannot be applied to the case of no image generation. In this
study, we divided different regions of the unit circle with different angular intervals. Figure 14c,d
shows the estimation error of Pgap(θk) for each annulus ring varying with one angle interval when
the other interval is optimized and R is 35m. The differences in the trends of various annulus rings
demonstrate variations of density distribution of projected points in different regions of a unit circle.
The lowest value of RMSE for the outermost ring is about 2~3 times larger than that for the other rings.
This can be explained by the deviation of the gap distribution between the unit circle and TLS-based
synthetic image. UAV lidar fails to capture trunks and other wooden structures at the bottom of the
canopy which is located in the outermost ring (Figure 4). In addition, it should be highlighted that
the uncertainty may arise when this method is applied to a non-managed system where trees are not
uniformly spaced. The difference between Pgap(θk) based on ALS and TLS may increase due to more
complex geometric distribution and the mutual occlusion of foliage elements. Therefore, more tests
should be done when this method is applied to randomly distributed natural forests.
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Figure 14. Sensitivity analysis of parameters in the sky diffuse PAR model: (a) and (b) Changes
of means and standard deviations of SVF and PAIe at 9 observation locations with R (original data
with the optimal angle intervals given in Table 2 were used). (c) and (d) show changes of RMSE
of estimated Pgap(θk) against reference values for each annulus ring with zenith and azimuth angle
intervals, respectively. For a given zenith/azimuth angle interval, azimuth/zenith angle interval was
optimized with R = 35 m.
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4.4. Effects of Isotropic and Anisotropic Sky Diffuse Distributions

Our diffuse PAR model shows that the subcanopy sky diffuse PAR under the anisotropic sky
diffuse distribution is up to 17% lower at noon and 10% higher in early morning or evening than that
under the isotropic sky diffuse distribution. Figure 15a shows the normalized difference of estimated
sky diffuse PAR at nine observation locations assuming anisotropic sky diffuse distribution (PPFDdi f ,ani)
and isotropic sky diffuse distribution (PPFDdi f ,iso) during a daily solar course. The variation trend
of the difference during a day shows symmetry at noontime with the highest solar elevation. The
explanation for this phenomenon is that the region with the highest proportion of diffuse PAR in the
hemispherical space switches following the solar zenith angle under anisotropic sky diffuse distribution
(Figure 2), whereas PPFDdi f ,iso depends only on the temporal variation of sky diffuse above canopy
rather than solar position. Therefore, significant differences can be found at different moments between
the distribution of diffuse PAR in each annulus ring. Taking observation location No. 5 as an example,
despite low PPFDdi f ,ani in the ring of 0~10◦ due to obstruction by vegetation elements, PPFDdi f ,ani
in the top three rings still account for 50% and 67% of the total diffuse PAR at 10:00 AM and 12:00
PM, respectively (Figure 15b). It should be noted that at certain locations the normalized difference
narrows near noon. This can be explained by the fact that some observation locations (such as No.5)
are covered by a large proportion of foliage elements in the vicinity of the zenith direction, obstructing
the penetration of a large percent of diffuse sky PAR. Considering that the sky diffuse PAR above
canopy reaches its maximum value at noon, the gap distribution and canopy structure within the range
of 0~30◦ zenith angle above one location will dominate the magnitude of sky diffuse PAR reaching
that location.
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Figure 15. Comparison between isotropic and anisotropic sky diffuse distributions: (a) The normalized
difference of PPFDdi f ,ani and PPFDdi f ,iso during a daily solar course. The red line and shading area
indicate the mean value and the range of normalized difference at nine observation locations respectively.
(b) The distribution of sky diffuse PAR arriving at the No. 5 observation location in each annulus ring
at different moments under anisotropic sky diffuse distribution.

4.5. Effects of Point Density

Our lidar-based canopy PAR model showed little sensitivity to data point density when parameters
were optimized. The model accuracy will only slightly deteriorate as point density decreases. Although
point cloud with NPD greater than 5 cm fails to capture the detailed structure of twigs and to effectively
separate the vegetation clusters inside the canopy from small gaps, it is still possible to have a
comprehensive delineation of large branches and locally clumped foliage. Therefore, large gaps
between adjacent canopies that dominate the radiation regime can still be effectively detected by the
model. For the direct PAR model, point density determines the optimal radius of spatial ray path
buffer. The correlation coefficients of fitting the direct light attenuation model with PLk illustrates
that, for data with any point density from origin to NPD of 25 cm, it is possible to find an optimal r to
ensure a fitting correlation coefficient above 0.85 (Figure 16a). This result indicates that the developed
3-D canopy ray trace model has great stability and good applicability to the direct light attenuation
model in a large range of point density. For the sky diffuse PAR model, point density determines the
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optimal values of zenith and azimuth angle intervals to segment the unit circle. Assuming a 90 m
radius of the unit projection circle, the variation range of Ak based on data with different NPD levels
is evidently larger in annulus rings with a low zenith angle (Figure 16b). This phenomenon can be
explained by the uneven distribution characteristics of projected points in different annulus rings. The
compression(expansion) effect in regions with a low(high) zenith angle enhances(weakens) the impact
of point density variation. Moreover, the largest difference between Ak for all annulus rings is confined
to 0.2 m2 with point density ranging from origin to NPD of 10cm. This indicates that only when point
density is reduced to a certain extent, will the size of optimal angular interval alter significantly. To
summarize, we recommend selecting an appropriate point density on the basis of different tree species,
canopy morphology, and spatial distribution patterns in order to achieve a balance between model
accuracy and efficiency.
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4.6. Model Evaluation

The newly developed PAR model is superior in the following aspects. (1) The 3D ray trace model
can intuitively calculate the total ray path length or effective path length at a particular moment with
great accuracy. To estimate direct light transmittance, only the original lidar point cloud is needed and
other raster or vector data is not required. Many spatially explicit canopy light models based on lidar
data adopt a voxelization procedure to the entire canopy to track the geometric relationship between a
light ray and voxels with return points contained inside [2,14,42]. However, through these methods,
the selection of voxel size and the voxel itself will reduce the accuracy of path length calculation
to some extent. This problem can be avoided in our ray trace model. (2) Accurate estimation of
angular gap fraction for each annulus ring can be obtained, and thus can be perfectly combined with
anisotropic sky diffuse distribution in the sky diffuse PAR model. TLS derived synthetic images were
used as a substitution for hemispherical photographs as reference data (Figure 4). Although these two
methods observe canopy structure in a similar way [69], TLS data obtained from a 3-D perspective is
more stable than the fisheye photograph in extracting canopy structural parameters [70]. Meanwhile,
several sources of error related to acquiring and processing hemispherical photographs can be avoided.
These sources include light environment and exposure settings during shooting, threshold selection for
separating canopy and sky pixels, accurate georeference of observation locations, and height deviation
between the camera and observation locations [69,71]. (3) Our model has expanded traditional methods
based on hemispherical photographs to large-scale applications with great flexibility. The temporal
variation of PAR at any location is easily available, which can support ecological models focusing
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on soil temperature, water content and snowmelt dynamics [19,72]. Since the canopy PAR model
simulates PAR pointwise, the sampling density can be flexibly selected according to the size of study
area and the degree of horizontal heterogeneity to improve processing efficiency.

There are several sources of error in simulating PAR. The primary one is derived from the occlusion
effect of laser beams. Although UAV can easily densify data points by overlapping flight paths in
different directions, the occlusion effect in the dense canopy is still inevitable [48,73]. It can be effectively
eliminated by changing the flight path direction or increasing the scan angle, but the influence of scan
angles on the inversion of canopy structural parameters should also be considered [34]. UAV should
maintain stable speed and uniformity of flight path during scanning to avoid uneven distribution
of point density. The difference in data acquisition methods is the posterior source of model error.
UAV-based lidar provides a relatively complete depiction of the upper part of the canopy structure,
while it fails to obtain a comprehensive description to the bottom part, especially for the woody
components. On the contrary, TLS or a fisheye camera scans the upper hemisphere space based on a
location below the canopy. They can capture the precise understory structural information but lack
the morphological description for the upper part of the canopy [44,48]. When using hemispherical
photographs or TLS-based synthetic images as reference, many woody components such as trunks,
low branches, and shrubs are included, which will influence the estimation of canopy structural
parameters [73]. As shown in Figure 4, after point projection, this difference is relatively limited in the
region with a low zenith angle and more pronounced at regions with a high zenith angle. This error
can be limited by removing the outermost ring or increasing point density. In addition, transforming
the 3-D point cloud to a 2-D plane by projection will result in some loss of partial canopy structure
information. Subjectivity remains when selecting appropriate binary image resolution after TLS point
cloud projection and may bring some error to sky diffuse PAR estimation.

Hemispherical photographs or TLS derived synthetic images is necessary in the sky diffuse PAR
model as reference data for angular gap fraction estimation. TLS data used in our study has several
advantages mentioned above. Nevertheless, hemispherical photography is faster, cheaper, and easier to
process, especially when the spatial coverage is huge. We recommend that a reasonable choice should
be made according to the coverage of study area and cost. The direct PAR and sky diffuse PAR reaching
an arbitrary location in the canopy are dominated by return points around that location and the ray
path respectively. Under the premise that the point cloud can describe canopy structure substantially
and completely, the modelled subcanopy PAR is determined by the optimal model parameters selected
manually. Values of these parameter are not universal or constant but need adjusting according to tree
species, canopy distribution patterns, and data point density. Therefore, this model is supposed to be
further tested in more comprehensive conditions. Moreover, topography should be considered in this
model for further direction.

5. Conclusions

We proposed a novel spatially-explicit canopy PAR model according to UAV-based lidar data to
simulate spatiotemporal distributions of PAR within or under a discontinuous broad-leaved forest
canopy. The study compared direct PAR simulated by three light path length-based parameters and
sky diffuse PAR simulated under conditions of isotropic and anisotropic sky diffuse distribution.
The effects of data point density on model parameterization and accuracy were also discussed. For a
discontinuous canopy, the effective path length of light passing through foliage elements is a feasible
and powerful parameter to capture the spatiotemporal variations of total PAR along a light transmission
path. In addition, incorporating point density and spatial distribution factors will further improve
the accuracy of final estimation. However, the total path length fails to capture direct light variation
on a five-minute time scale. In the meantime, the estimated sky diffuse PAR is up to 17% higher at
noon and 10% lower at sunrise or sunset by assuming the anisotropic sky diffuse distribution rather
than the isotropic sky diffuse distribution. The point density has a limited impact on model accuracy
as long as parameters are determined as their optimal values. The developed canopy PAR model
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can be combined with ecological or hydrological models to solve plot- and stand-scale issues such as
vegetation succession, soil respiration and subcanopy snowmelt, and it provides a foundation for the
study of biophysical and biochemical processes (photosynthesis, transpiration, fluorescence, etc.) at
the watershed level.

Author Contributions: Conceptualization, K.Z.; Data curation, K.Z. and L.M.; Formal analysis, K.Z.; Funding
acquisition, G.Z., Y.P.; Investigation, L.M.; Methodology, K.Z.; Project administration, G.Z., Y.P. and W.J.;
Supervision, G.Z., Y.P. and W.J.; Validation, K.Z.; Writing—original draft, K.Z.; Writing—review & editing, G.Z.,
L.M. and W.J.

Funding: Funding and resources for this research project came from National Science Foundation of China
(NSFC) (NSFC award #31570546 and #41771374), and Scientific Research Satellite Engineering of Civil Space
Infrastructure Project (Forestry products and its practical techniques research on Terrestrial Ecosystem Carbon
Inventory Satellite).

Acknowledgments: Special thanks to Brandon Jang for revising this manuscript. This research was conducted at
the International Institute for Earth System Science, Nanjing University. We want to thank Qian Zhang, Lu Lu,
Zengxin Yun, Binxiao Wu for their help in field data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kobayashi, H.; Baldocchi, D.D.; Ryu, Y.; Chen, Q.; Ma, S.; Osuna, J.L.; Ustin, S.L. Modeling energy and carbon
fluxes in a heterogeneous oak woodland: A three-dimensional approach. Agric. For. Meteorol. 2012, 152,
83–100. [CrossRef]

2. Magney, T.S.; Eitel, J.U.H.; Griffin, K.L.; Boelman, N.T.; Greaves, H.E.; Prager, C.M.; Logan, B.A.; Zheng, G.;
Ma, L.; Fortin, E.A.; et al. LiDAR canopy radiation model reveals patterns of photosynthetic partitioning in
an Arctic shrub. Agric. For. Meteorol. 2016, 221, 78–93. [CrossRef]

3. Musselman, K.N.; Molotch, N.P.; Margulis, S.A.; Lehning, M.; Gustafsson, D. Improved snowmelt simulations
with a canopy model forced with photo-derived direct beam canopy transmissivity. Water Resour. Res. 2012,
48. [CrossRef]

4. Pomeroy, J.; Rowlands, A.; Hardy, J.; Link, T.; Marks, D.; Essery, R.; Sicart, J.E.; Ellis, C. Spatial Variability of
Shortwave Irradiance for Snowmelt in Forests. J. Hydrometeorol. 2008, 9, 1482–1490. [CrossRef]

5. von Arx, G.; Dobbertin, M.; Rebetez, M. Spatio-temporal effects of forest canopy on understory microclimate
in a long-term experiment in Switzerland. Agric. For. Meteorol. 2012, 166–167, 144–155. [CrossRef]

6. Barbour, M.M.; Hunt, J.E.; Walcroft, A.S.; Rogers, G.N.D.; McSeveny, T.M.; Whitehead, D. Components of
ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood
density. New Phytol. 2005, 165, 549–558. [CrossRef]

7. Svenning, J.C. Crown illumination limits the population growth rate of a neotropical understorey palm
(Geonoma macrostachys, Arecaceae). Plant Ecol. 2002, 159, 185–199. [CrossRef]

8. Sakai, T.; Akiyama, T. Quantifying the spatio-temporal variability of net primary production of the understory
species, Sasa senanensis, using multipoint measuring techniques. Agric. For. Meteorol. 2005, 134, 60–69.
[CrossRef]

9. Ross, J. The Radiation Regime and Architecture of Plant Stands; Dr W. Junk Publishers: The Hague, The
Netherlands, 1981.

10. Kucharik, C.J.; Norman, J.M.; Gower, S.T. Characterization of radiation regimes in nonrandom forest canopies:
Theory, measurements, and a simplified modeling approach. Tree Physiol. 1999, 19, 695–706. [CrossRef]

11. Ameztegui, A.; Coll, L.; Benavides, R.; Valladares, F.; Paquette, A. Understory light predictions in mixed
conifer mountain forests: Role of aspect-induced variation in crown geometry and openness. For. Ecol.
Manag. 2012, 276, 52–61. [CrossRef]

12. Govind, A.; Guyon, D.; Roujean, J.L.; Yauschew-Raguenes, N.; Kumari, J.; Pisek, J.; Wigneron, J.P. Effects of
canopy architectural parameterizations on the modeling of radiative transfer mechanism. Ecol. Model. 2013,
251, 114–126. [CrossRef]

13. Link, T.E.; Marks, D.; Hardy, J.P. A deterministic method to characterize canopy radiative transfer properties.
Hydrol. Process. 2004, 18, 3583–3594. [CrossRef]

http://dx.doi.org/10.1016/j.agrformet.2011.09.008
http://dx.doi.org/10.1016/j.agrformet.2016.02.007
http://dx.doi.org/10.1029/2012WR012285
http://dx.doi.org/10.1175/2008JHM867.1
http://dx.doi.org/10.1016/j.agrformet.2012.07.018
http://dx.doi.org/10.1111/j.1469-8137.2004.01257.x
http://dx.doi.org/10.1023/A:1015520116260
http://dx.doi.org/10.1016/j.agrformet.2005.11.004
http://dx.doi.org/10.1093/treephys/19.11.695
http://dx.doi.org/10.1016/j.foreco.2012.03.021
http://dx.doi.org/10.1016/j.ecolmodel.2012.11.014
http://dx.doi.org/10.1002/hyp.5793


Remote Sens. 2019, 11, 2806 24 of 26

14. Peng, S.Z.; Zhao, C.Y.; Xu, Z.L. Modeling spatiotemporal patterns of understory light intensity using airborne
laser scanner (LiDAR). ISPRS J. Photogramm. Remote Sens. 2014, 97, 195–203. [CrossRef]

15. Musselman, K.N.; Pomeroy, J.W.; Link, T.E. Variability in shortwave irradiance caused by forest gaps:
Measurements, modelling, and implications for snow energetics. Agric. For. Meteorol. 2015, 207, 69–82.
[CrossRef]

16. Webster, C.; Rutter, N.; Zahner, F.; Jonas, T. Measurement of Incoming Radiation below Forest Canopies: A
Comparison of Different Radiometer Configurations. J. Hydrometeorol. 2016, 17, 853–864. [CrossRef]

17. Hardy, J.P.; Melloh, R.; Koenig, G.; Marks, D.; Winstral, A.; Pomeroy, J.W.; Link, T. Solar radiation transmission
through conifer canopies. Agric. For. Meteorol. 2004, 126, 257–270. [CrossRef]

18. Musselman, K.N.; Molotch, N.P.; Margulis, S.A.; Kirchner, P.B.; Bales, R.C. Influence of canopy structure and
direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agric. For. Meteorol. 2012, 161,
46–56. [CrossRef]

19. Isabelle, P.E.; Nadeau, D.F.; Asselin, M.H.; Harvey, R.; Musselman, K.N.; Rousseau, A.N.; Anctil, F. Solar
radiation transmittance of a boreal balsam fir canopy: Spatiotemporal variability and impacts on growing
season hydrology. Agric. For. Meteorol. 2018, 263, 1–14. [CrossRef]

20. Widlowski, J.-L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.;
Chelle, M.; Ceccherini, G.; et al. The fourth phase of the radiative transfer model intercomparison (RAMI)
exercise: Actual canopy scenarios and conformity testing. Remote Sens. Environ. 2015, 169, 418–437.
[CrossRef]

21. Norman, J.M.; Welles, J.M. Radiative-transfer in an array of canopies. Agron. J. 1983, 75, 481–488. [CrossRef]
22. Lieffers, V.J.; Messier, C.; Stadt, K.J.; Gendron, F.; Comeau, P.G. Predicting and managing light in the

understory of boreal forests. Can. J. For. Res. 1999, 29, 796–811. [CrossRef]
23. Song, C.H.; Band, L.E. MVP: A model to simulate the spatial patterns of photosynthetically active radiation

under discrete forest canopies. Can. J. For. Res. Rev. Can. Rech. For. 2004, 34, 1192–1203. [CrossRef]
24. Kobayashi, H.; Iwabuchi, H. A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy

reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape. Remote Sens.
Environ. 2008, 112, 173–185. [CrossRef]

25. Iio, A.; Kakubari, Y.; Mizunaga, H. A three-dimensional light transfer model based on the vertical
point-quadrant method and Monte-Carlo simulation in a Fagus crenata forest canopy on Mount Naeba in
Japan. Agric. For. Meteorol. 2011, 151, 461–479. [CrossRef]

26. GastelluEtchegorry, J.P.; Demarez, V.; Pinel, V.; Zagolski, F. Modeling radiative transfer in heterogeneous 3-D
vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [CrossRef]

27. Monsi, M.; Saeki, T. On the factor light in plant communities and its importance for matter production. Ann.
Bot. 2005, 95, 549–567. [CrossRef]

28. Ellis, C.R.; Pomeroy, J.W. Estimating sub-canopy shortwave irradiance to melting snow on forested slopes.
Hydrol. Process. 2007, 21, 2581–2593. [CrossRef]

29. Essery, R.; Bunting, P.; Hardy, J.; Link, T.; Marks, D.; Melloh, R.; Pomeroy, J.; Rowlands, A.; Rutter, N. Radiative
transfer modeling of a coniferous canopy characterized by airborne remote sensing. J. Hydrometeorol. 2008, 9,
228–241. [CrossRef]

30. Seyednasrollah, B.; Kumar, M. Effects of tree morphometry on net snow cover radiation on forest floor for
varying vegetation densities. J. Geophys. Res. Atmos. 2013, 118, 12508–12521. [CrossRef]

31. Duursma, R.A.; Falster, D.S.; Valladares, F.; Sterck, F.J.; Pearcy, R.W.; Lusk, C.H.; Sendall, K.M.;
Nordenstahl, M.; Houter, N.C.; Atwell, B.J.; et al. Light interception efficiency explained by two simple
variables: A test using a diversity of small- to medium-sized woody plants. New Phytol. 2012, 193, 397–408.
[CrossRef]

32. Olpenda, A.S.; Sterenczak, K.; Bedkowski, K. Modeling Solar Radiation in the Forest Using Remote Sensing
Data: A Review of Approaches and Opportunities. Remote Sens. 2018, 10, 694. [CrossRef]

33. Ma, L.X.; Zheng, G.; Eitel, J.U.H.; Magney, T.S.; Moskal, L.M. Retrieving forest canopy extinction coefficient
from terrestrial and airborne lidar. Agric. For. Meteorol. 2017, 236, 1–21. [CrossRef]

34. Zheng, G.; Ma, L.X.; Eitel, J.U.H.; He, W.; Magney, T.S.; Moskal, L.M.; Li, M.S. Retrieving Directional Gap
Fraction, Extinction Coefficient, and Effective Leaf Area Index by Incorporating Scan Angle Information
From Discrete Aerial Lidar Data. IEEE Trans. Geosci. Remote 2017, 55, 577–590. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2014.09.003
http://dx.doi.org/10.1016/j.agrformet.2015.03.014
http://dx.doi.org/10.1175/JHM-D-15-0125.1
http://dx.doi.org/10.1016/j.agrformet.2004.06.012
http://dx.doi.org/10.1016/j.agrformet.2012.03.011
http://dx.doi.org/10.1016/j.agrformet.2018.07.022
http://dx.doi.org/10.1016/j.rse.2015.08.016
http://dx.doi.org/10.2134/agronj1983.00021962007500030016x
http://dx.doi.org/10.1139/x98-165
http://dx.doi.org/10.1139/x03-280
http://dx.doi.org/10.1016/j.rse.2007.04.010
http://dx.doi.org/10.1016/j.agrformet.2010.12.003
http://dx.doi.org/10.1016/0034-4257(95)00253-7
http://dx.doi.org/10.1093/aob/mci052
http://dx.doi.org/10.1002/hyp.6794
http://dx.doi.org/10.1175/2007JHM870.1
http://dx.doi.org/10.1002/2012JD019378
http://dx.doi.org/10.1111/j.1469-8137.2011.03943.x
http://dx.doi.org/10.3390/rs10050694
http://dx.doi.org/10.1016/j.agrformet.2017.01.004
http://dx.doi.org/10.1109/TGRS.2016.2611651


Remote Sens. 2019, 11, 2806 25 of 26

35. Dutta, D.; Wang, K.; Lee, E.; Goodwell, A.; Woo, D.K.; Wagner, D.; Kumar, P. Characterizing Vegetation
Canopy Structure Using Airborne Remote Sensing Data. IEEE Trans. Geosci. Remote 2017, 55, 1160–1178.
[CrossRef]

36. Kükenbrink, D.; Schneider, F.D.; Leiterer, R.; Schaepman, M.E.; Morsdorf, F. Quantification of hidden canopy
volume of airborne laser scanning data using a voxel traversal algorithm. Remote Sens. Environ. 2017, 194,
424–436. [CrossRef]

37. Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P. Prediction of forest canopy light interception using
three-dimensional airborne LiDAR data. Int. J. Remote Sens. 2009, 30, 189–207. [CrossRef]

38. Tymen, B.; Vincent, G.; Courtois, E.A.; Heurtebize, J.; Dauzat, J.; Marechaux, I.; Chave, J. Quantifying
micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne
LiDAR scanning and a sensor network. Ann. For. Sci. 2017, 74, 32. [CrossRef]

39. Bode, C.A.; Limm, M.P.; Power, M.E.; Finlay, J.C. Subcanopy Solar Radiation model: Predicting solar radiation
across a heavily vegetated landscape using LiDAR and GIS solar radiation models. Remote Sens. Environ.
2014, 154, 387–397. [CrossRef]

40. Oshio, H.; Asawa, T. Estimating the Solar Transmittance of Urban Trees Using Airborne LiDAR and Radiative
Transfer Simulation. IEEE Trans. Geosci. Remote 2016, 54, 5483–5492. [CrossRef]

41. Mücke, W.; Hollaus, M. Modelling light conditions in forests using airborne laser scanning data. In
Proceedings of the SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing
Forest Ecosystems, Hobart, Australia, 16–20 October 2011.

42. Musselman, K.N.; Margulis, S.A.; Molotch, N.P. Estimation of solar direct beam transmittance of conifer
canopies from airborne LiDAR. Remote Sens. Environ. 2013, 136, 402–415. [CrossRef]

43. Varhola, A.; Coops, N.C. Estimation of watershed-level distributed forest structure metrics relevant to
hydrologic modeling using LiDAR and Landsat. J. Hydrol. 2013, 487, 70–86. [CrossRef]

44. Moeser, D.; Roubinek, J.; Schleppi, P.; Morsdorf, F.; Jonas, T. Canopy closure, LAI and radiation transfer from
airborne LiDAR synthetic images. Agric. For. Meteorol. 2014, 197, 158–168. [CrossRef]

45. Van der Zande, D.; Stuckens, J.; Verstraeten, W.W.; Muys, B.; Coppin, P. Assessment of Light Environment
Variability in Broadleaved Forest Canopies Using Terrestrial Laser Scanning. Remote Sens. 2010, 2, 1564–1574.
[CrossRef]

46. Cifuentes, R.; Van der Zande, D.; Salas, C.; Tits, L.; Farifteh, J.; Coppin, P. Modeling 3D Canopy Structure and
Transmitted PAR Using Terrestrial LiDAR. Can. J. Remote Sens. 2017, 43, 124–139. [CrossRef]

47. Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating Tree Detection and Segmentation Routines on Very High
Resolution UAV LiDAR Data. IEEE Trans. Geosci. Remote 2014, 52, 7619–7628. [CrossRef]

48. Brede, B.; Lau, A.; Bartholomeus, H.M.; Kooistra, L. Comparing RIEGL RiCOPTER UAV LiDAR Derived
Canopy Height and DBH with Terrestrial LiDAR. Sensors 2017, 17, 2371. [CrossRef]

49. Nyman, P.; Metzen, D.; Hawthorne, S.N.D.; Duff, T.J.; Inbar, A.; Lane, P.N.J.; Sheridan, G.J. Evaluating models
of shortwave radiation below Eucalyptus canopies in SE Australia. Agric. For. Meteorol. 2017, 246, 51–63.
[CrossRef]

50. Cescatti, A. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model
structure and algorithms. Ecol. Model. 1997, 101, 263–274. [CrossRef]

51. Kandare, K.; Orka, H.O.; Chan, J.C.-W.; Dalponte, M. Effects of forest structure and airborne laser scanning
point cloud density on 3D delineation of individual tree crowns. Eur. J. Remote Sens. 2016, 49, 337–359.
[CrossRef]

52. Grant, R.H.; Heisler, G.M.; Gao, W. Photosynthetically-active radiation: Sky radiance distributions under
clear and overcast conditions. Agric. For. Meteorol. 1996, 82, 267–292. [CrossRef]

53. Nouvellon, Y.; Begue, A.; Moran, M.S.; Lo Seen, D.; Rambal, S.; Luquet, D.; Chehbouni, G.; Inoue, Y. PAR
extinction in shortgrass ecosystems: Effects of clumping, sky conditions and soil albedo. Agric. For. Meteorol.
2000, 105, 21–41. [CrossRef]

54. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]
55. Zheng, G.; Ma, L.X.; He, W.; Eitel, J.U.H.; Moskal, L.M.; Zhang, Z.Y. Assessing the Contribution of Woody

Materials to Forest Angular Gap Fraction and Effective Leaf Area Index Using Terrestrial Laser Scanning
Data. IEEE Trans. Geosci. Remote 2016, 54, 1475–1487. [CrossRef]

56. Zheng, G.; Moskal, L.M.; Kim, S.H. Retrieval of Effective Leaf Area Index in Heterogeneous Forests with
Terrestrial Laser Scanning. IEEE Trans Geosci. Remote 2013, 51, 777–786. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2016.2620478
http://dx.doi.org/10.1016/j.rse.2016.10.023
http://dx.doi.org/10.1080/01431160802261171
http://dx.doi.org/10.1007/s13595-017-0628-z
http://dx.doi.org/10.1016/j.rse.2014.01.028
http://dx.doi.org/10.1109/TGRS.2016.2565699
http://dx.doi.org/10.1016/j.rse.2013.05.021
http://dx.doi.org/10.1016/j.jhydrol.2013.02.032
http://dx.doi.org/10.1016/j.agrformet.2014.06.008
http://dx.doi.org/10.3390/rs2061564
http://dx.doi.org/10.1080/07038992.2017.1286937
http://dx.doi.org/10.1109/TGRS.2014.2315649
http://dx.doi.org/10.3390/s17102371
http://dx.doi.org/10.1016/j.agrformet.2017.05.025
http://dx.doi.org/10.1016/S0304-3800(97)00050-1
http://dx.doi.org/10.5721/EuJRS20164919
http://dx.doi.org/10.1016/0168-1923(95)02327-5
http://dx.doi.org/10.1016/S0168-1923(00)00194-5
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1109/TGRS.2015.2481492
http://dx.doi.org/10.1109/TGRS.2012.2205003


Remote Sens. 2019, 11, 2806 26 of 26

57. Frazer, G.W.; Fournier, R.A.; Trofymow, J.A.; Hall, R.J. A comparison of digital and film fisheye photography
for analysis of forest canopy structure and gap light transmission. Agric. For. Meteorol. 2001, 109, 249–263.
[CrossRef]

58. Liu, J.; Chen, J.M.; Cihlar, J. Mapping evapotranspiration based on remote sensing: An application to
Canada’s landmass. Water Resour. Res. 2003, 39. [CrossRef]

59. Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and
spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [CrossRef]

60. Ma, L.; Zheng, G.; Wang, X.; Li, S.; Lin, Y.; Ju, W. Retrieving forest canopy clumping index using terrestrial
laser scanning data. Remote Sens. Environ. 2018, 210, 452–472. [CrossRef]

61. Hirose, T. Development of the Monsi-Saeki theory on canopy structure and function. Ann. Bot. 2005, 95,
483–494. [CrossRef]

62. Fuchs, M.; Asrar, G.; Kanemasu, E.T.; Hipps, L.E. Leaf area estimates from measurements of photosynthetically
active radiation in wheat canopies. Agric. For. Meteorol. 1984, 32, 13–22. [CrossRef]

63. Alexander, C.; Moeslund, J.E.; Bocher, P.K.; Arge, L.; Svenning, J.C. Airborne laser scanner (LiDAR) proxies
for understory light conditions. Remote Sens. Environ. 2013, 134, 152–161. [CrossRef]

64. Reda, I.; Andreas, A. Solar position algorithm for solar radiation applications. Sol. Energy 2004, 76, 577–589.
[CrossRef]

65. Riano, D.; Valladares, F.; Condes, S.; Chuvieco, E. Estimation of leaf area index and covered ground from
airborne laser scanner (Lidar) in two contrasting forests. Agric. For. Meteorol. 2004, 124, 269–275. [CrossRef]

66. Solberg, S.; Brunner, A.; Hanssen, K.H.; Lange, H.; Naesset, E.; Rautiainen, M.; Stenberg, P. Mapping LAI in a
Norway spruce forest using airborne laser scanning. Remote Sens. Environ. 2009, 113, 2317–2327. [CrossRef]

67. Morsdorf, F.; Kotz, B.; Meier, E.; Itten, K.I.; Allgower, B. Estimation of LAI and fractional cover from small
footprint airborne laser scanning data based on gap fraction. Remote Sens. Environ. 2006, 104, 50–61.
[CrossRef]

68. Richardson, J.J.; Moskal, L.M.; Kim, S.H. Modeling approaches to estimate effective leaf area index from
aerial discrete-return LIDAR. Agric. For. Meteorol. 2009, 149, 1152–1160. [CrossRef]

69. Hancock, S.; Essery, R.; Reid, T.; Carle, J.; Baxter, R.; Rutter, N.; Huntley, B. Characterising forest gap fraction
with terrestrial lidar and photography: An examination of relative limitations. Agric. For. Meteorol. 2014,
189, 105–114. [CrossRef]

70. Calders, K.; Origo, N.; Disney, M.; Nightingale, J.; Woodgate, W.; Armston, J.; Lewis, P. Variability and bias
in active and passive ground-based measurements of effective plant, wood and leaf area index. Agric. For.
Meteorol. 2018, 252, 231–240. [CrossRef]

71. Woodgate, W.; Jones, S.D.; Suarez, L.; Hill, M.J.; Armston, J.D.; Wilkes, P.; Soto-Berelov, M.; Haywood, A.;
Mellor, A. Understanding the variability in ground-based methods for retrieving canopy openness, gap
fraction, and leaf area index in diverse forest systems. Agric. For. Meteorol. 2015, 205, 83–95. [CrossRef]

72. Reid, T.D.; Essery, R.L.H.; Rutter, N.; King, M. Data- driven modelling of shortwave radiation transfer to
snow through boreal birch and conifer canopies. Hydrol. Process. 2014, 28, 2987–3007. [CrossRef]

73. Hilker, T.; van Leeuwen, M.; Coops, N.C.; Wulder, M.A.; Newnham, G.J.; Jupp, D.L.B.; Culvenor, D.S.
Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated
forest stand. Trees Struct. Funct. 2010, 24, 819–832. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0168-1923(01)00274-X
http://dx.doi.org/10.1029/2002WR001680
http://dx.doi.org/10.1016/S0304-3800(99)00156-8
http://dx.doi.org/10.1016/j.rse.2018.03.034
http://dx.doi.org/10.1093/aob/mci047
http://dx.doi.org/10.1016/0168-1923(84)90024-8
http://dx.doi.org/10.1016/j.rse.2013.02.028
http://dx.doi.org/10.1016/j.solener.2003.12.003
http://dx.doi.org/10.1016/j.agrformet.2004.02.005
http://dx.doi.org/10.1016/j.rse.2009.06.010
http://dx.doi.org/10.1016/j.rse.2006.04.019
http://dx.doi.org/10.1016/j.agrformet.2009.02.007
http://dx.doi.org/10.1016/j.agrformet.2014.01.012
http://dx.doi.org/10.1016/j.agrformet.2018.01.029
http://dx.doi.org/10.1016/j.agrformet.2015.02.012
http://dx.doi.org/10.1002/hyp.9849
http://dx.doi.org/10.1007/s00468-010-0452-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Sites 
	Data Collection 
	UAV Lidar Data 
	TLS Data 
	Lidar Data Pre-Processing 
	Field-Based PAR Measurements 
	PAR Measurements Normalization 

	Model Development 
	Direct PAR Estimation Model 
	Diffuse PAR Estimation Model 
	Scattering PAR Estimation Model 

	Model Parameters Determination 
	UAV Lidar Data Thinning 
	Spatiotemporal Variations of Forest PAR 

	Results 
	Determined Parameters of Direct Light Attenuation Model 
	Determined Parameters of Sky Diffuse PAR Model 
	Comparisons between the UAV- and Field-Based PARs 
	Spatiotemporal Distribution Patterns of Forest PAR 

	Discussion 
	Sensitivity Analysis of 3D Ray Trace Model 
	Comparison among Three Different Path Length-Based PAR Models 
	Sensitivity Analysis of Sky Diffuse PAR Model 
	Effects of Isotropic and Anisotropic Sky Diffuse Distributions 
	Effects of Point Density 
	Model Evaluation 

	Conclusions 
	References

