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Abstract: This paper investigates to what extent soil moisture and vegetation density information
can be extracted from the Advanced Scatterometer (ASCAT) satellite-derived radar backscatter (σ◦)
in a data assimilation context. The impact of independent estimates of the surface soil moisture
(SSM) and leaf area index (LAI) of diverse vegetation types on ASCAT σ◦ observations is simulated
over southwestern France using the water cloud model (WCM). The LAI and SSM variables used by
the WCM are derived from satellite observations and from the Interactions between Soil, Biosphere,
and Atmosphere (ISBA) land surface model, respectively. They permit the calibration of the four
parameters of the WCM describing static soil and vegetation characteristics. A seasonal analysis of the
model scores shows that the WCM has shortcomings over karstic areas and wheat croplands. In the
studied area, the Klaus windstorm in January 2009 damaged a large fraction of the Landes forest.
The ability of the WCM to represent the impact of Klaus and to simulate ASCAT σ◦ observations
in contrasting land-cover conditions is explored. The difference in σ◦ observations between the
forest zone affected by the storm and the bordering agricultural areas presents a marked seasonality
before the storm. The difference is small in the springtime (from March to May) and large in the
autumn (September to November) and wintertime (December to February). After the storm, hardly
any seasonality was observed over four years. This study shows that the WCM is able to simulate
this extreme event. It is concluded that the WCM could be used as an observation operator for the
assimilation of ASCAT σ◦ observations into the ISBA land surface model.
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1. Introduction

The main mission of space-borne radar scatterometers is to monitor wind speed over the
oceans [1]. It was shown that wind scatterometers operating at the C-band frequency (~5 GHz) such
as the Advanced Scatterometer (ASCAT) can be used over land to monitor variables such as surface
soil moisture (SSM) [2] and vegetation optical depth (VOD) [3]. The ASCAT C-band radar VOD can
be related to vegetation water content (VWC) as well as to the leaf area index (LAI) [3]. Both SSM
and LAI can be integrated into land surface models (LSMs) in order to analyze key variables such
as the root-zone soil moisture and the vegetation above-ground biomass. Barbu et al. [4] showed
the feasibility of implementing the joint sequential assimilation of SSM and LAI into the Interactions
between Soil, Biosphere, and Atmosphere (ISBA) LSM within the Surface Externalisée (SURFEX)
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modeling platform [5]. Their work permitted the development of a Land Data Assimilation System
(LDAS). Albergel et al. [6] further extended the LDAS at a global scale (LDAS-Monde) and showed
that the assimilation of LAI observations can be used to analyze the root-zone soil moisture in addition
to the vegetation above-ground biomass. This also means that LDAS-Monde could potentially use the
information content of C-band backscatter observations (σ◦) to analyze vegetation variables together
with the root-zone soil moisture [6]. To achieve this goal, an observation operator such as the water
cloud model (WCM) [7] is needed for predicting σ◦ from LSMs. SSM and LAI observations can be
assimilated into the ISBA LSM because these two variables can be predicted by ISBA. It must be noted
that the current version of ISBA is not able to simulate the VWC.

The simulation of the radar backscatter signal requires a radiative transfer model that calculates
the propagation of radiation (in this case, microwave radiation) through a plant canopy. In this study,
the semi-empirical WCM proposed by Attema and Ulaby [7] is used to simulate the impact of SSM
and LAI on the total radar backscatter signal σ◦. Lievens et al. [8] used a version of the WCM to
simulate ASCAT σ◦ from simulated SSM values and VOD observations from passive microwave
instruments. Vreugdenhil et al. [3] showed that C-band VOD values derived from ASCAT σ◦ using
the WCM are correlated with satellite-derived LAI observations from the Copernicus Global Land
service [9] over Australia. The VOD versus LAI correlation was particularly good for grasslands,
but a time lag was observed for crops and forests. A possible explanation for the mismatch between
VOD and LAI time series was that VOD at C-band may be sensitive to non-photosynthetic vegetation
parts (e.g., branches in the case of forests) in addition to leaves. Finally, the WCM may not be able to
represent all components of scattering within vegetation canopies [10].

The objectives of this study are to investigate

• The ability of the WCM to simulate ASCATσ◦ observations using SSM values simulated by the ISBA
LSM and satellite-derived LAI, in contrasting land-cover conditions over southwestern France,

• The statistical distribution of the parameters of the WCM,
• The response of observed and simulated σ◦ to LAI and SSM across seasons,
• The response of observed and simulated σ◦ to a rapid change in vegetation cover, and
• The feasibility of building an observation operator for the assimilation of ASCAT σ◦ observations

into the ISBA LSM.

In a first stage, a standard calibration method is used in order to fit the parameters of the WCM.
The calibrated WCM is evaluated using σ◦ observations not used during the calibration process. In a
second stage, the capacity of σ◦ observations to detect vegetation changes and the capacity of the WCM
to simulate such impacts on σ◦ are evaluated over an area of the Landes forest affected by the Klaus
windstorm event of 24 January 2009.

The data and methods are presented in Section 2. The results are presented in Section 3 and
discussed in Section 4. Finally, the main conclusions are summarized in Section 5.

2. Material and Methods

2.1. Study Area

The study area is located in southwestern France, 42.00◦ N to 46.00◦ N and 2.00◦ W to 4.00◦ E
(Figure 1). The main vegetation types consist of crops such as maize and wheat, grasslands, coniferous
trees, and broadleaf trees [11]. The large Landes coniferous forest covers the western part of the
domain. The Landes forest mainly consists of maritime-pine (Pinus pinaster) trees in sandy soils [12].
This forest was damaged by the Klaus windstorm event of 24 January 2009. The “Storm” zone
(43.80◦ N−44.25◦ N, 1.00◦ W−0.40◦ W) indicated in Figure 1 corresponds to the forest area that was
most affected by Klaus [13]. Two zones, “North” (44.55◦ N−45.00◦ N, 0.75◦ W−0.15◦ W) and “South”
(43.40◦ N−43.85◦ N, 0.30◦ W−0.30◦ E), are also selected for further analysis of the impact of Klaus,
following Teuling et al. [13]. These two zones are mainly composed of crop and grassland land-cover
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types, with the North zone also including urban and forested areas. The South zone corresponds
to the Bas-Armagnac agricultural area. Agricultural areas present contrasting crop rotation systems.
For example, the south of the Landes forest (including Bas-Armagnac) is mainly covered by maize
monoculture, with some areas covered by vineyards. Grassland and forest patches are found over the
steepest slopes. Further east, C3 crops such as wheat are dominant. This is the case of the Lomagne
agricultural area. Crop rotation in Lomagne is characterized by winter crops such as wheat, barley,
and rapeseed and summer crops such as maize, sorghum, and sunflower. Areas presenting a mean
elevation greater than 1200 m above sea level (a.s.l.) are excluded from the analysis. They are found in
the Pyrenees Mountains.
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Figure 1. Southwestern France: study area (a) and location of the “Storm” Landes forest site (b). “Storm”
refers to the forest area most affected by the Klaus storm. “North” and “South” are bordering agricultural
areas. Fractional area of the main vegetation types is shown in (c–h), adapted from [11].

2.2. SSM Simulations

The ISBA LSM was developed at the National Center for Meteorological Research (CNRM) and is
a part of the SURFace Externalisée (SURFEX) modeling platform of Meteo-France [5]. In this study,
a carbon dioxide responsive version of the ISBA LSM [14,15] in SURFEX version 8.1 is used to simulate
SSM together with the surface soil ice content and LAI. Only SSM is used in this work, from the model
topsoil layer comprised between 1 and 4 cm depth. The simulated topsoil temperature and ice content
in the shallow (1 cm thick) surface soil layer are used to exclude soil-freezing conditions from the
analysis. The ISBA model runs are driven by ERA-5 [16], which is the latest atmospheric reanalysis
from the European Center For Medium-Range Weather Forecast (ECMWF). The ISBA simulations
cover southwestern France from 2007 to 2016 at a spatial resolution of 0.25◦ × 0.25◦.

2.3. ASCAT σ◦ Observations

ASCAT is a real aperture radar on board the Meteorological Operational Satellite Program of
Europe (Metop) series of satellites. It operates at a frequency of 5.255 GHz in C-band and uses vertically
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polarized antennas for transmission and reception, producing like-polarized VV radar backscatter (σ◦)
observations. The first Metop satellite, called Metop-A, has been operational since 2006. Metop-B
and Metop-C were launched in 2012 and 2018, respectively. The ASCAT sensors have two sets of
three antennae, measuring σ◦ at three azimuth angles of 45◦, 90◦, and 135◦ over two 550 km wide
swaths separated by a gap of about 360 km from the satellite ground track for a minimum orbit
height. Measurements of σ◦ are done over a wide range of incidence angles varying from 25◦ to 65◦.
The ASCAT backscatter observations are available at full resolution, together with spatially weighted
measurements at 25 km × 25 km or 50 km × 50 km resolution [2,17]. In this study, we used an ASCAT
σ◦ dataset normalized to an incidence angle of 40◦, which was provided by the Vienna University of
Technology. The dataset is sampled on a discrete global grid (12.5 km × 12.5 km) at a spatial resolution
of 25 km × 25 km. The incidence angle normalization is done by using a second-order polynomial
describing the relationship between incidence angle and backscatter [18]. The σ◦ dataset consists of
mean daily values incorporating data from ascending and descending orbits. In order to adapt the
normalized ASCAT σ◦ data to the 0.25◦ × 0.25◦ grid used by the ISBA model, the data were interpolated
by an arithmetic average to the model grid points. Further processing was made to mask the ASCAT
σ◦ data for areas with frozen soils and very complex topography so as to avoid these perturbing factors
influencing the results.

2.4. LAI Observations

The satellite-derived LAI product referred to as GEOV2 is produced by the Copernicus Global
Land Service (CGLS) (http://land.copernicus.eu/global/). The GEOV2 LAI is available every 10 days
at a spatial resolution of 1 km × 1 km. A neural network retrieval technique [9] is used to derive the
GEOV2 LAI product from SPOT-VGT sensors (from 1999 to 2014) and PROBA-V sensors (from 2014 to
present). Validation studies made by Camacho et al. [19] demonstrated that this LAI product tends
to perform better than other products, with a root mean square deviation (RMSD) with respect to in
situ observations across contrasting biomes of about 0.7 m2m−2. This LAI product was integrated
into the ISBA LSM in a number of studies [6,20,21] using a sequential data assimilation technique.
In this study, the LAI product was interpolated by an arithmetic average to the 0.25◦ × 0.25◦ model
grid points. A discussion on the added value of this product can be found in Section 4.4.

2.5. The Water Cloud Model (WCM)

Several models can be used to model radar backscatter signals over land [22–24]. The WCM
stands out as a robust approach because of its simplicity: it needs few parameters to be fitted and
uses few biophysical variables. It can be used as an inversion model to retrieve vegetation and
soil moisture variables at various wavelengths [25–31]. The WCM assumes that the vegetation
canopy can be modeled as a collection of water droplets that are uniformly distributed within the
canopy. Generally, the radar backscattering from a vegetated soil surface comprises (1) the direct
backscatter of the vegetation (σ0

veg), (2) the backscatter of the soil (σ0
soil), which is attenuated twice by

the vegetation layer, in relation to the vegetation transmissivity (t) depending on the incidence angle
(θ) and on the vegetation optical depth (VOD), and (3) multiple scattering from vegetation–ground
interactions (σ0

veg+soil):

σ0 = σ0
veg + t2σ0

soil + σ
0
soil+veg (1)

with
σ0

soil (dB) = 10log10σ
0
soil = C + D× SSM (2)

t = e−
VOD
cosθ (3)

σ0
veg = A V1 cosθ(1− t2) (4)

http://land.copernicus.eu/global/
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and
VOD = B V2. (5)

It must be noted that in Equations (1) and (2), σ0
soil is expressed in linear units, while in Equation (2),

σ0
soil(dB)

is expressed in dB units. SSM is the volumetric soil moisture, which in this study is representative
of the top 1–4 cm layer of the soil in the ISBA LSM.

It is assumed that the double-bounce term can be neglected:

σ0
veg+soil � σ

0. (6)

Since the WCM is a semi-empirical model, the vegetation structure is not represented in detail.
Instead, the V1 and V2 variables represent the impact of vegetation on σ◦. They can be related to
the VWC or to proxies of the VWC such as LAI or vegetation indices (e.g., the normalized difference
vegetation index, NDVI). In the original WCM [7] V1 is set as V1 = 1. In other studies, the same
vegetation variable such as LAI or VWC is used for both V1 and V2 (for example [8,24,30,32]).
Other authors proposed to use different variables to act as V1 and V2 [25,33,34].

In this study, V1 was set as V1 = 1 and LAI was used as a proxy for VWC [30]:{
V1 = 1

V2 = LAI
. (7)

Preliminary tests have shown that Equation (7), corresponding to the original WCM [7], gives better
results than other options over southwestern France.

The WCM (Equations (1)–(7)) contains four static parameters whose values may change from one
area to another. The A and B parameters in Equations (4)–(5), which are dimensionless, are related
to vegetation properties. There is no universal theoretical method to characterize the best group of
vegetation descriptors, and thus to retrieve the values of the A and B parameters [25]. These parameters
depend on the canopy type and on radar configuration. The C and D parameters in Equation (2), in dB
units, are related to soil properties. Parameter C is the value of the backscatter coefficient for a perfectly
dry soil and is essentially controlled by the surface roughness and incidence angle. Parameter D refers
to the radar sensitivity to variations in soil moisture, which depends on the radar configuration and
soil characteristics.

It is interesting to note that in this configuration of the WCM (Equation (7)), there is a critical
value of SSM for which only one σ◦ value equal to A cosθ can be simulated by the WCM, whatever the
LAI value:

SSMC = (10log10(A cosθ) −C)/D. (8)

2.6. Model Calibration

The WCM model is a semi-empirical model and its parameter values A, B, C, and D at a given
grid cell must be estimated by calibrating the model against observations. In order to avoid the impact
of changes in the vegetation coverage caused by the Klaus storm in early 2009, the time period before
the storm and during 2009 is not accounted for in the WCM calibration over southwestern France.
Instead of the whole 2007–2016 time period, only the 2010–2016 subset is considered for calibration
and validation. To assess the robustness of the calibrated WCM parameters, the σ◦ simulations
of the calibrated WCM are compared with the σ◦ observations that are not used in the calibration.
The calibration and the validation are performed during the 2010–2013 and 2014–2016 time periods,
respectively. In order to check the stability of the retrieved parameter values, an additional calibration
is performed over a longer period of time (2010–2016) encompassing the initial calibration period and
the validation period.

Al-Yaari et al. [35] derived L-band VOD estimates from SMOS (Soil Moisture and Ocean Salinity)
observations. Assuming that the L-band VOD is a proxy for standing biomass, they showed that the
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impact of Klaus on the Landes forest biomass, including the impact of forestry work following the
storm, was pronounced until the end of 2012. In this study, we investigate to what extent the Klaus
event can be observed by ASCAT. In addition to the whole WCM calibration over southwestern France,
a specific calibration for the storm area of the Landes forest (Figure 1) is performed for three time
periods: pre-storm (January 2007 to 24 January 2009), forest degradation (25 January 2009 to December
2012), and forest regeneration (2013–2016).

For retrieving the values of the WCM parameters, the calibration process is done by comparing
simulated and observed σ◦ values expressed in linear units. In field experiments where homogeneous
land-cover conditions can be ensured, the two soil parameters (C and D) can be obtained over bare
soil by a linear model fitting as expressed in Equation (2) [7]. This method cannot be used for the
low-resolution ASCAT σ◦ observations from space, because the large ASCAT pixels may include
various land-cover types, bare soil, and vegetated surfaces.

In this study, an approach consisting of simultaneously retrieving A, B, C, and D is used. A cost
function K as expressed in Equation (9) is minimized.

K =

√√√
1
N

N∑
i

(σ0
mod − σ

0
obs)

2
+ Wα

1
Nα

Nα∑
i

(α0,i − αi)
2

σ2
α(0,i)

(9)

In Equation (9), the cost function incorporates the backscatter coefficients predicted by the water
cloud model (σ0

mod) and those observed by ASCAT (σ0
obs), which are all in linear units, along with

a parameter penalty. The N symbol represents the number of σ◦ simulations and observations,
Nα represents the number of fitted WCM parameters, Wα represents the weight factor given to the
parameter penalty term, αi represents the ith parameter value, and αi,0 represents the prior value of
the ith parameter. The minimization is performed using the Shuffled Complex Evolution Algorithm
(SCE-UA) method [36]. The SCE-UA method is widely used and has proven as being robust and
effective for fitting model parameters [37]. Lievens et al. [8] successfully used this technique to
calibrate WCM parameters at a global scale. We use the same weight-factor value set to 0.01 as in [8].
The variance of each parameter σ2

α(0,i)
is assumed to be equal to the variance of a uniform distribution

as expressed in Equation (10) with boundaries [αmax,i,αmin,i] set as in [38].

σ2
α(0,i)

=
(αmax,i − αmin,i)

2

12
(10)

The prior and boundaries values of the dimensionless WCM parameters are fixed as those given
in Table 2 of [8].

The implementation of the model calibration is illustrated in Figure 2.Remote Sens. 2019, 11, x FOR PEER REVIEW  7 of 23 
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2.7. Implementation of σ◦ Simulations

The calibrated WCM is used to produce σ◦ simulations over southwestern France from 2010 to
2016, using the SSM simulations and LAI observations described in Sections 2.2 and 2.4, respectively.
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In order to remove the impact of soil-freezing conditions on the comparison with the observed ASCAT
σ◦, regions presenting simulated topsoil surface temperature below 2 ◦C and ice are masked out.
Specific simulations are used to investigate the impact of the Klaus storm on the Landes forest by using
a time series of the mean simulated σ◦ values over the North, Storm, and South zones (Figure 1) from
2007 to 2016.

2.8. Statistical Analysis

The WCM model results for σ◦ are compared to satellite observations measurements using the
Pearson correlation coefficient (R) and the RMSD. While the observed and simulated σ◦ from the WCM
is expressed in linear units during the calibration process, values expressed in dB units are used for
calculating the R and RMSD scores.

The analysis of the impact of the Klaus storm is based on the North, Storm, and South zones in
Figure 1 (Section 2.1), as defined by [13]. Following the method used by [13] to assess differences in
cloud coverage between forest and non-forest areas, the difference in σ◦ between the Storm zone and
the average of the North and South zones is investigated. The difference is calculated for the ASCAT
observations, and for the WCM simulations.

Di f fσ0 = σ0
stormzone −

(σ0
northzone + σ

0
southzone)

2
(11)

We used the forest σ◦ difference with neighboring areas in order to eliminate the weather factor.
Preliminary tests based on a simple time series of σ◦ over the Landes forest showed that the impact of
the storm was not clearly visible. The σ◦ values are sensitive to rainfall events, and the storm impact
on the signal is masked by the weather factor. Using the difference with neighboring areas as in [13]
tends to eliminate this factor. We do not focus on the same subject as addressed by [13], but we follow
the same protocol to highlight differences in the geophysical variables.

3. Results

3.1. Parameter Values

Retrieved A and B vegetation parameter values range from 0.07 to 0.20 and from 0.2 to 1.7,
respectively (Table 1). Figure 3 shows the probability distribution of parameter values. The large
skewness score for B (Table 1) indicates that the probability distribution of this parameter is not
Gaussian. It presents a long tail toward large values. The most frequent B values range from 0.3 to 0.5.
The largest B values are observed close to the Mediterranean coast and over C3 crops such as wheat.
The latter tend to display intermediate values of A and relatively large values of B ranging mainly
from 0.5 to 0.8. The statistical distribution of A corresponds to rather evenly distributed values and can
be related to well-known geographic patterns. Figure 4 shows that very large values of A (close to 0.20)
correspond to the wide urban areas of Toulouse and Bordeaux. Values of A around 0.17 tend to match
with the large fractions of broadleaf trees in Figure 1. Small values of A (around 0.10) tend to match
with the large fractions of grass and coniferous trees in Figure 1.

Regarding soil parameters C and D, Figure 4 shows that urban areas present large values for both
(C > −16 dB and D > 29 dB). Meanwhile, the Landes forest presents large values of C and D (around
–16 dB and 29 dB, respectively), the volcanoes of Cantal (landmark “3” in Figure 4) present very low
values (around –19.5 dB and 25 dB, respectively). It must be noted that the soil types of these areas
are quite different. While the Landes forest is characterized by sandy soils [12], the soils of Cantal are
loamy (they are classified as Andosols in the French soil classification system [39]). Another difference
between Landes and Cantal is altitude (below 150 m a.s.l. and above 900 m a.s.l., respectively) and
topography (flat and complex terrain, respectively). Interestingly, low values of C are also found for
mountainous karstic areas: Quercy, Corbières, Cévennes (landmarks “4”, “5”, and “6” in Figure 4,
respectively).
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Table 1. Water cloud model (WCM) parameters (A, B, C, and D) over southwestern France: minimum,
median, and maximum values, together with standard deviation and skewness scores.

Time period Parameter Median [Minimum, Maximum] Standard deviation Skewness

2010–2013
(calibration period)

A 0.14 [0.07, 0.20] 0.02 –0.51

B 0.36 [0.20, 1.71] 0.21 2.30

C (dB) −17.9 [−20.0, −15.1] 0.8 0.10

D (dB) 27.9 [24.9, 29.7] 0.7 –0.66

2010–2016

A 0.14 [0.07, 0.20] 0.02 –0.49

B 0.41 [0.22, 1.50] 0.19 1.93

C (dB) −17.6 [−20.0, −14.9] 0.8 –0.04

D (dB) 28.0 [24.9, 29.7] 0.6 –0.62Remote Sens. 2019, 11, x FOR PEER REVIEW  9 of 23 
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Figure 4. WCM parameters: calibrated values for 2010−2016 over southwestern France. From left to
right and from top to bottom: parameters A, B, C, and D. Areas presenting a mean elevation greater
than 1200 m a.s.l. are in white. Geographic landmarks are indicated: (a) “1” and “2” for Toulouse
and Bordeaux urban areas, (c,d) “3”, “4”, “5” and “6” for the volcanoes of the Cantal, and for Quercy,
Corbières, Cévennes karstic areas, respectively.
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Figure 3 and Table 1 also show that the A parameter values resulting from the calibration over
a longer period of time (2010−2016) present a statistical distribution similar to the initial parameter
values calibrated over 2010−2013. The histograms of the other parameters are slightly shifted toward
larger values.

3.2. Performance of the WCM

The performance of the calibration of the WCM using the SCE-UA algorithm is assessed in Table 2.
Simulated and observed σ◦ values are compared using a large number of observations (n) for the
calibration and for the validation period, using the R and RMSD scores. For these two periods of
time, n = 209,327 and n = 204,520 observations are available, respectively, after sorting out the soil
freezing events. For each time period, two data subsets are considered in addition to the pooled
dataset: springtime (i.e., in March, April, and May (MAM)) and summertime (i.e., in June, July and
August (JJA)). Table 2 shows that the scores for the validation period are very close to those for the
calibration period. The WCM performs better in the springtime in terms of correlation than in the
summertime. While the median R value is 0.60 for the calibration period in the springtime, a value
of 0.44 is obtained in the summertime. Negative values are even observed in the summertime. On
the other hand, the RMSD score presents better values in the summertime. The mean model bias
(not shown) is +0.11 dB in the springtime and −0.14 dB in the summertime. The WCM bias is further
examined in Figure 5.

Table 2. WCM performance: statistical scores of simulated σ◦ values over southwestern France.
The calibration period of the parameters is from 2010 to 2013, and the validation period is from 2014 to
2016. For both calibration and validation periods, scores are given for the pooled dataset (All) and for
the March, April, and May (MAM) spring period and the June, July, and August (JJA) summer period.
The number of observations is indicated (n).

Scores

R
Median

[Minimum, Maximum]
(n)

RMSD in dB
Median

[Minimum, Maximum]

Seasons All MAM JJA All MAM JJA

Calibration
(2010–2013)

0.67
[0.16,0.80]
(209327)

0.60
[0.02,0.77]

(45348)

0.44
[–0.18,0.71]

(90082)

0.35
[0.22,0.68]

0.39
[0.23,0.86]

0.32
[0.17,0.54]

Validation
(2014–2016)

0.69
[0.17,0.82]
(204520)

0.60
[–0.04,0.80]

(45805)

0.47
[–0.38,0.68]

(83139)

0.36
[0.20,0.68]

0.36
[0.19,0.66]

0.32
[0.18,0.75]

In Figure 5, maps of simulated σ◦ values are compared with ASCAT σ◦ observations for spring
and for summer. The large urban areas of Toulouse and Bordeaux are clearly visible in Figure 5 because
they present the largest observed σ◦ values. The latter correspond to the high A and C values observed
in Figure 4. The temporal correlation between the WCM simulations and the observations is also
shown. Again, this score tends to present better values in the springtime than in the summertime.
Small or negative correlations are found in locations corresponding to the three karstic areas presented
in Figure 4. The mean simulated σ◦ maps are quite similar to the observations (not shown), and the
mean seasonal bias is generally very small. However, a seasonal bias can be observed over agricultural
areas mainly covered by C3 crops (see Figure 1). An example of such an agricultural area is Lomagne
(“7” in Figure 5). Over these areas, the calibrated WCM tends to overestimate σ◦ in the springtime and
to underestimate σ◦ in the summertime.
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Figure 5. WCM performance: (a,b) observed σ◦ from Advanced Scatterometer (ASCAT) (sigma0_Obs),
(c,d) WCM correlation coefficient scores and (e,f) mean bias (simulations–observations), for (a,c,e) the
March, April, and May (MAM) spring period and the June, July, and August (JJA) summer period.
All values are averaged from 2010 to 2016. Areas presenting an elevation greater than 1200 m a.s.l are
in white. Geographic landmarks are indicated: (a,b) “1” and “2” for the Toulouse and Bordeaux urban
areas; (c,d) “4”, “5”, and “6” for the Quercy, Corbières, and Cévennes karstic areas, respectively; and (e,f)
“7” and “8” for the Lomagne and Bas-Armagnac (South zone in Figure 1) agricultural areas, respectively.

Figure 6 presents the daily and monthly time series of spatially averaged simulated and observed
σ◦ over southwestern France. It appears that the simulated ASCAT σ◦ values in the springtime are
systematically higher than the observed ones. The σ◦ observations are often lower in the springtime
than in the summertime. This seasonal bias is consistent with the biases observed in Figure 5 over the
C3 crop areas. In spite of the seasonal mismatch between observed and simulated values, the monthly
time series of scaled anomaly in Figure 6 show that the simulated month-to-month variability of σ◦ is
consistent with the observations.
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3.3. Landes Forest: Impact of the Klaus Storm

The result of the analysis method consisting of comparing the Storm area (Figure 1) with the
bordering North and South agricultural areas (see Section 2.8) is presented in Figure 7. It is observed
that the seasonal cycle of the monthly difference in σ◦ observations changes after the storm event
of 24 January 2019. Before this date, the difference is small in the springtime (> −0.8 dB) and large
in the autumn and wintertime (< −1.0 dB). After this date, the ASCAT σ◦ seasonal cycle that was
present before is no longer noticed up until the end of 2012. The pre-storm pattern starts reappearing
in 2013. In order to assess the ability of the WCM to represent this behavior, the four parameters
of the WCM were calibrated for the Storm area for three distinct time periods indicated in Figure 7:
pre-storm, forest degradation, and forest regeneration (2013–2016). Table 3 shows the values of the
WCM parameters obtained for each time period over the Storm area.
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Figure 7. Landes forest Storm area: differences in σ◦ and leaf area index (LAI) with respect to bordering
agricultural areas. (a) ASCAT σ◦ observations (blue line), (b) simulated σ◦ values using the WCM
parameters values listed in Table 3 (red line) vs. observations (blue line), (c) LAI.

Table 3. Landes forest Storm area: parameters of the WCM before and after the Klaus storm event of
24 January 2009. The number of observations is indicated (n). The contrasting value of B for the forest
regeneration period is in bold.

Time Period
WCM Parameters Scores

A
(–)

B
(–)

C
(in dB)

D
(in dB)

R (n) RMSD
(in dB)

Pre-storm (January 2007 to January 2009) 0.13 0.19 −16.5 27.3 0.74 (503) 0.33

Forest degradation (February 2009 to December 2012) 0.13 0.20 −16.5 27.3 0.79 (1027) 0.42

Forest regeneration (January 2013 to December 2016) 0.12 0.29 −16.5 27.9 0.80 (1203) 0.40

Overall, the obtained WCM parameter values do not change much from one time period to another,
except for B. The B value corresponding to the forest regeneration period (B = 0.29) is much larger than
for the pre-storm and forest degradation time periods (B ≈ 0.20). This corresponds to an increase of
45% in VOD value for a given value of LAI during the regeneration period. The monthly difference in
σ◦ simulated by the WCM according to the parameter values listed in Table 3 are compared with the
observations in Figure 7.

In addition to σ◦ differences, Figure 7 shows differences in LAI of the Storm area with respect
to bordering agricultural areas. The main discontinuity in this time series corresponds to the storm.
It consists of a reduction of the LAI difference annual cycle after the storm. This change in LAI difference
is entirely due to a discontinuity in the LAI of the Storm area after the storm event. Before the storm,
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the LAI of the pine forest presents a marked annual cycle and ranges from 1.2 m2m−2 in the wintertime
to 4.5 m2m−2 in the summertime (Figure 8). After the storm, the amplitude of the LAI annual cycle
is reduced. The annual maximum LAI of the degraded forest does not exceed 3.5 m2m−2, and the
annual minimum LAI presents smaller values than before the storm, ranging from 0.5 to 1.0 m2m−2.
Since the WCM parameters do not change much from the pre-storm period to the forest degradation
period (Table 3), this result confirms that the ability of the WCM to simulate changes in σ◦ differences
during the forest degradation period comes from the LAI forcing. On the other hand, the main driver
of changes in σ◦ differences during the forest regeneration period is the increase in B value.
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4. Discussion

4.1. Is the WCM Able to Represent Vegetation Effects?

In Section 3.3, it is shown that the WCM is able to simulate the behavior of the σ◦ observed over
the Landes pine forest before the Klaus storm. The WCM performs well just after the storm, provided
that LAI observations can be integrated into the model. The B parameter value does not change at this
time, and the impact of the storm on the forest σ◦ values is determined by smaller LAI values (Figure 8).
Actually, this area remained a forested area but with much fewer standing trees after the storm. On the
other hand, increasing the B parameter value by 45% (see Table 3) is needed to accurately simulate the
transition from the forest degradation period to the regeneration period. This could be related to a
drastic change in the tree age distribution, with much more young trees.

Over agricultural areas where C3 crops such as wheat are dominant (e.g., the Lomagne), Figure 5
shows that the simulated σ◦ values are higher than the observed values in the springtime. This seasonal
bias is also visible in Figure 6. In spite of this bias, Figure 6c shows that the simulated month-to-month
anomaly variability of σ◦ is able to capture the extreme spring drought that was observed in 2011 [40].
Figure 4 shows that the C3 crop area presents relatively large values of the B parameter. The parameters
of the WCM are listed in Table 4 for Lomagne and for Bas-Armagnac. The B parameter value is
larger for Lomagne than for Bas-Armagnac (0.51 and 0.34, respectively). For a given value of LAI,
this means that the sensitivity of the simulated σ◦ to SSM is much smaller for Lomagne than for
Bas-Armagnac. The large value of the B vegetation parameter over Lomagne may also be the signature
of missing processes in the WCM in the springtime, such as for example (1) multiple scattering within
the vegetation canopy of specific crop types or (2) changes in soil roughness caused by agricultural
practices (e.g., tillage). Another explanation could be that B presents a seasonal cycle. A specific WCM
calibration performed for the springtime season (MAM only) is shown in Table 4. The most noticeable
change in parameter values is the greatly reduced value of B (B = 0.28 instead of 0.51). This result
suggests that a misrepresentation of scattering within the vegetation canopy in relation to the rapid
physiological changes of the wheat crop may contribute to the model bias.
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Table 4. Agricultural areas: parameters of the WCM for Lomagne and Bas-Armagnac (“7” and “8” in
Figure 5, respectively). The number of observations is indicated (n). The contrasting value of B for
Lomagne at springtime is in bold.

Agricultural Areas
WCM Parameters Scores

A
(–)

B
(–)

C
(in dB)

D
(in dB)

R (n) RMSD
(in dB)

Lomagne (all seasons) 0.13 0.51 −16.9 27.7 0.74 (1954) 0.65

Lomagne (MAM only) 0.11 0.28 −18.3 29.0 0.77 (499) 0.54

Bas-Armagnac 0.14 0.34 −17.9 27.5 0.77 (2669) 0.38

In order to understand the specific behavior of agricultural areas such as Lomagne with respect
to Bas-Armagnac, Figure 8 presents a comparison of the observed and simulated response of σ◦ to
SSM and to LAI. Over Bas-Armagnac, the WCM predicts higher σ◦ values in dry conditions for large
vegetation coverage (LAI >2.2 m2m−2) than for sparse vegetation (LAI <1.0 m2m−2). The reverse
result is obtained in wet conditions for SSM values larger than SSMC = 0.30 m3m−3 (Equation (8)).
We performed a statistical test in order to evaluate to what extent this behavior is present in the
observations. In dry conditions, it was found that the observed σ◦ values for the large LAI class (LAI
>2.2 m2m−2) are significantly higher (p-value < 0.01) than those corresponding to sparse vegetation
(LAI <1 m2m−2) and intermediate LAI values ranging from 1 to 2.2 m2m−2. On the other hand, the
observed σ◦ corresponding to small LAI values are not significantly different from those corresponding
to intermediate LAI values. In wet conditions, the observed σ◦ corresponding to large LAI values
are significantly lower than those corresponding to sparse vegetation, but they are not significantly
different from those corresponding to intermediate LAI values. Over Lomagne, Figure 9 shows that σ◦

observations for large vegetation coverage (LAI >1.7 m2m−2) behave differently from the Bas-Armagnac
ones, especially in dry conditions. While dense vegetation tends to trigger high σ◦ values in dry
conditions over Bas-Armagnac, very low σ◦ values (< −11 dB) can be observed over Lomagne in
similar conditions. The WCM succeeds in predicting the observed relatively low σ◦ values of sparse
vegetation (LAI <0.5 m2m−2) in dry conditions (for SSM values smaller than SSMC = 0.25 m3m−3),
and vice versa in wet conditions (high σ◦ values are observed for sparse vegetation). On the other
hand, the WCM is not able to predict the very low values of σ◦ observed in dry and moderately dry
conditions in large vegetation coverage conditions.

Figure 10 presents LAI time series for the two agricultural areas of Bas-Armagnac and Lomagne.
It appears that the two crop growth cycles are completely different. While LAI generally peaks only
once per year in the springtime over Lomagne, two marked peaks are observed over Bas-Armagnac.
In general, the most pronounced peak occurs in the summertime over Bas-Armagnac, following a
first peak occurring at springtime. This rather complex vegetation growth cycle results from the
crop rotation system and from the sub-grid heterogeneity of crop types. Figure 1 shows that in
Bas-Armagnac, the maize summer crop is dominant. This can explain the large LAI peak observed
in the summertime over this area. Figure 10 also shows that the largest LAI values over Lomagne
(LAI >1.7 m2m−2) systematically occur in the springtime. This means that the lowest values of the
observed σ◦ in Figure 9 for Lomagne correspond to the springtime LAI peak. The WCM is not able to
represent σ◦ during the springtime LAI peak over Lomagne. The more pronounced LAI peak observed
in the springtime for Lomagne suggests that winter crops are more frequent over Lomagne than over
Bas-Armagnac. This would imply that the vegetation fractional coverage is larger in the springtime
over Lomagne (i.e., that the fraction of bare soil is smaller) than over Bas-Armagnac. In addition,
winter and summer crops often consist of wheat in this area [41]. Contrary to maize, a well-developed
wheat crop can be completely opaque at the C-band for the VV polarization [42], preventing the use
of σ◦ for soil moisture retrieval. Picard et al. [43] showed that VV σ◦ observations at an incidence
angle of 40◦ (close to the configuration of the ASCAT observations used in this study) are affected by
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large changes in the ratio of vegetation to soil contribution to backscatter. At the beginning of the
spring, soil backscatter is the dominant mechanism. The stem–ground interaction gradually becomes
the dominant mechanism, and soil moisture has no longer an impact on the signal. Fieuzal et al. [41]
have shown in a case study over southwestern France that the σ◦ values at C-band decreases to low
values over wheat fields during the stem elongation phase, while NDVI (a proxy for LAI) increases to
reach its peak value, even when no major change in SSM is observed. Since the wheat LAI peaks at
the end of the stem elongation phase, this can explain the low σ◦ values observed over Lomagne in
the springtime.Remote Sens. 2019, 11, x FOR PEER REVIEW  16 of 23 
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4.2. Can the WCM be Improved?

Thanks to a seasonal analysis of the model scores, this study shows that the WCM presents
seasonal biases over agricultural areas comprising a large fraction of wheat fields. The low values of σ◦

observed at springtime over these areas could be better represented by using a specific calibration of
the WCM for this period of the crop growth cycle.

Tables 3 and 4 show that the B vegetation parameter of the WCM may change through time,
with a larger B value during the Landes forest regeneration and a smaller B value in the springtime for
the wheat areas of Lomagne, respectively. The former could be explained by the fact that the young
trees of the pine forest stands of the Landes forest do not completely cover the soil surface, and that the
biomass of understory vegetation is not completely developed yet [44]. The latter could at least partly
be explained by the rising values of the specific leaf area (SLA) of wheat during the stem elongation
phase [45]. Since for low vegetation, VOD is probably more related to the standing biomass than to
LAI at C-band, an inverse relationship between B and SLA is to be expected.

In addition, we found that karstic areas are not easily simulated by the WCM over southwestern
France. As a result, small and even negative correlations between observed and simulated σ◦ values
are observed over these areas (Figure 5). In order to improve the genericity of the observation
operator, the analysis performed in this study should be extended to a global scale. This would
permit constraining model errors in various conditions of the soil–plant system. For example, negative
correlations between ASCAT SSM retrievals and independent estimates of SSM have been observed
over some arid areas [46]. In addition, it is likely that other crop-rotation systems or other forest types
such as tropical forests can be challenging for the WCM.

4.3. Can the WCM Be Used as an Observation Operator?

The results of this study show that the WCM could be used as an observation operator for the
assimilation of ASCAT σ◦ observations into the ISBA LSM provided that larger model errors over
karstic areas and over wheat croplands in the springtime are accounted for. It is also shown that
integrating LAI observations into the WCM is needed to account for extreme events (e.g., the Klaus
storm in January 2009) and to quantify the model error (e.g., larger model errors during the spring
LAI peak of wheat). More often than not, the LAI information is particularly useful in very dry or
very wet conditions, because the WCM predicts little influence of the LAI on σ◦ for intermediate SSM
values. The LDAS-Monde tool is able to jointly assimilate LAI and SSM observations in the ISBA land
surface model. Since the data flow within LDAS-Monde already includes LAI [47], analyzed LAI
values could be used to force the WCM in order to analyze soil moisture. In this case, the ASCAT Level
1 σ◦ observations would be used instead of the Level 2 SSM product.

The WCM seasonal biases over wheat should be taken into account in the assimilation of σ◦

observations. One way could be to allow seasonal changes in the WCM parameters (e.g., the B
parameter as discussed in Section 4.2). Seasonal B retrievals could be informative and allow the
monitoring of SLA, which is a key land surface model variable. This seasonal retrieval could also
be refined by estimating the B parameter via data assimilation, but it would raise the question of
cross-covariances between B and the variables LAI and SSM. Another option would be to remove
seasonal biases by adjusting the probability density function of the observations to the model’s one, or to
assimilate scaled anomalies (see Figure 6c). These seasonal biases could also be estimated. Biases can
either come from ISBA model deficiencies (e.g., ISBA not being able to simulate an adequate LAI and
SSM over a certain area), or deficiencies from the WCM, thus introducing a bias between observed
and simulated σ◦. Both model and observation biases can be estimated through data assimilation
(see e.g., Ménard [48] and references therein). LDAS-Monde could be adapted to this context and
would provide precious information on the source of bias. Assimilating σ◦ in a LDAS also raises the
question of how to specify observation, background, and model error covariance matrices. The last
decade has seen the development of techniques to estimate those matrices. Approaches based on
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Desroziers diagnostics [49] are affordable for LDASs from a computational point of view and could
provide insightful information on the various sources of the data assimilation system.

Finally, part of the difficulty in simulating the ASCAT σ◦ values is related to the low spatial
resolution of this sensor. This is particularly true for agricultural areas presenting a large diversity of
crop types. Using disaggregated ASCAT σ◦ values or high resolution σ◦ values such as those observed
by the Sentinel-1 satellites [50] together with vegetation products derived from Sentinel-2 satellites [51]
could be a way to go forward.

4.4. Are Satellite-Derived LAI Values Reliable?

Our results show that the CGLS satellite-derived LAI product can be used to calibrate and operate
the WCM. This LAI product has many advantages. It does not present the unrealistic large variations
observed in products such as MODIS Collection 4 (e.g. [11]) and Collection 5 (e.g. [52,53]). In addition,
the CGLS product is less prone to saturation effects than MODIS and compares much better to reference
LAI maps containing ground observations [53]. Yan et al. [54] showed that the quality of the MODIS
Collection 6 product is better than for Collection 5 and that the direct validation scores with respect to
in situ LAI observations get closer to those given by [19] for the CGLS product.

The satellite-derived LAI values for the unperturbed forest are consistent with typical values
observed over the Landes forest. Using in situ observations over a mature (30 years) forest stand of the
Landes forest, Rivalland et al. [55] showed that the total LAI can vary from 1.8 m2m−2 in February to
4.2 m2m−2 at the end of July (Figure 1a in [55]). They also showed that a key driver of the LAI seasonal
cycle is the understory vegetation, which has no green leaves in the wintertime and has a LAI of about
1.5 m2m−2 in July. This large contribution of the understory to the total LAI is not always observed in
coniferous forests. For example, [52] showed that the maximum LAI of the understory vegetation of
a coniferous forest in southern Finland ranges from 0.2 to 0.8 m2m−2. This could explain why they
observed small seasonal variations of total LAI based on field measurements. Figure 8 shows that
the CGLS LAI observed in 2007 over the Landes forest is consistent with the in situ observations of
total LAI shown in [55]. The smaller wintertime values observed in the satellite-derived LAI before
the storm (1.2 m2m−2 against 1.8 m2m−2 in [55]) could be explained by the fact that not all the forest
stands in a 1 km x 1 km pixel are mature.

5. Conclusions

In this study, C-band VV σ◦ observations over southwestern France observed by the ASCAT
sensor at an incidence angle of 40◦ are used to calibrate the WCM. Ancillary information needed
to operate the WCM consists of LAI observations from the Copernicus Global Land Service and
from surface soil moisture simulations of the ISBA land surface model. It is shown that the SCE-UA
method for model calibration is able to produce robust estimates of the four parameters of the WCM,
with validation scores values very close to the calibration ones. The WCM parameter maps are
compared with well-known geographic patterns. For example, the A parameter corresponding to the
maximum asymptotic backscatter from elements standing over the soil surface presents larger values
over large urban areas (Toulouse and Bordeaux). The C parameter corresponding to the minimum soil
backscatter in dry conditions presents high values over urban areas and low values over mountainous
areas such as the volcanoes of Cantal and the karstic areas of Quercy, Corbières, and Cévennes. The D
parameter corresponding to the sensitivity of σ◦ to SSM presents very low values over the volcanoes of
Cantal. The overall performance of the WCM is good, with R and RMSD values of 0.7 and 0.36 dB,
respectively. However, small and even negative R values are observed over karstic areas, especially in
dry conditions in the summertime. The bias is generally very small, except for croplands dominated
by wheat in the springtime, during the stem elongation phase of the wheat. Finally, it is shown that the
WCM is able to make a reasonably accurate representation of the impact of the Klaus storm on the
Landes forest in January 2009. The changes in the σ◦ seasonal cycle after the storm are mainly explained
by the reduced LAI values. On the other hand, changes associated with the forest regeneration phase



Remote Sens. 2019, 11, 2842 18 of 21

starting in 2013 can only be explained by an increase of the B parameter corresponding to the ratio of
VOD to LAI. This study focuses on methods applicable at a global scale. A more detailed analysis of
LAI observations over the Landes forest could be done in a future study. More generally, focusing
on higher spatial resolution products such as Sentinel-1 σ◦ data could help linking changes in WCM
parameters to land-cover changes. The Sentinel-1 σ◦ data would need to be aggregated to the spatial
resolution of existing global land-cover maps (e.g. 300 m x 300 m), together with satellite-derived LAI
at the same spatial resolution.

Finally, more research is needed to implement the WCM as an observation operator in a LDAS.
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Abbreviations

The following abbreviations are used in this manuscript:

ASCAT Advanced Scatterometer
CNRM Centre National de Recherches Météorologiques
CGLS Copernicus Global Land Service
ECMWF European Centre for Medium-Range Weather Forecasts
ERA-5 ECMWF Reanalysis 5th generation
ISBA Interactions between Soil, Biosphere, and Atmosphere
JJA June–July–August
LAI Leaf Area Index
LDAS Land Data Assimilation System
LSM Land Surface Model
MAM March–April–May
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
PROBA-V Project for On-Board Autonomy—Vegetation
RMSD Root Mean Square Deviation
SCE-UA Shuffled Complex Evolution Algorithm
SLA Specific Leaf Area
SMOS Soil Moisture and Ocean Salinity
SPOT-VGT Vegetation sensor on SPOT (‘Système probatoire d’observation de la Terre’ or ‘Satellite pour l’observation de la Terre’) satellite
SSM Surface Soil Moisture
SURFEX Surface Externalisée (externalized surface models)
VOD Vegetation Optical Depth
VWC Vegetation Water Content
WCM Water Cloud Model
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