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Abstract: Along with rapid urbanization, the growth and persistence of slums is a global challenge.
While remote sensing imagery is increasingly used for producing slum maps, only a few studies
have analyzed their temporal dynamics. This study explores the potential of fully convolutional
networks (FCNs) to analyze the temporal dynamics of small clusters of temporary slums using very
high resolution (VHR) imagery in Bangalore, India. The study develops two approaches based on
FCNSs. The first approach uses a post-classification change detection, and the second trains FCNs
to directly classify the dynamics of slums. For both approaches, the performances of 3 x 3 kernels
and 5 x 5 kernels of the networks were compared. While classification results of individual years
exhibit a relatively high Fl-score (3 x 3 kernel) of 88.4% on average, the change accuracies are lower.
The post-classification results obtained an Fl-score of 53.8% and the change-detection networks
obtained an Fl-score of 53.7%. According to the trajectory error matrix (TEM), the post-classification
results scored higher for the overall accuracy but lower for the accuracy difference of change trajectories
than the change-detection networks. Although the two methods did not have significant differences
in terms of accuracy, the change-detection network was less noisy. Within our study area, the areas
of slums show a small overall decrease; the annual growth of slums (between 2012 and 2016) was

7173 m?2, in contrast to an annual decline of 8390 m?

. However, these numbers hid the spatial
dynamics, which were much larger. Interestingly, areas where slums disappeared commonly changed
into green areas, not into built-up areas. The proposed change-detection network provides a robust
map of the locations of changes with lower confidence about the exact boundaries. This shows the

potential of FCNs for detecting the dynamics of slums in VHR imagery.

Keywords: slum; informal settlement; deprivation; India; machine learning; fully convolutional
networks; urban dynamics; change detection

1. Introduction

Presently, more than half of the world’s population resides in urban settlements, with an expected
increase to 68% by 2050 [1]. However, the lack of cities’ capacity to meet this sharply increasing housing
demand, combined with the inability to provide basic services, drives the growth and persistence of
slums [2]. The definitions of slums vary across the world. A globally commonly used definition by
UN-Habitat defines a slum by the lack of one or more of the following: Durable housing, sufficient
living space, easy access to safe water, access to adequate sanitation, and security of tenure [3].
Upgrading slums to ensure access to adequate and affordable housing and basic services has become
one of the targets (indicator 11.1.1) in realizing the Sustainable Development Goals (SDGs) by the
United Nations [4]. Slum maps provide information about the spatial characteristics of slum locations,
extents, and structures. Assisted by a slum map, local authorities can improve infrastructures and basic
services in slums [5]. With the advances in remote sensing technology, satellite imagery has become an
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important data source for producing slum maps. Image-based conceptualization of slums often refers
to building characteristics, such as roof materials, shape, and density [6]. Such characteristics can be
used for slum identification from remote sensing imagery. With these physical characteristics, slums
can be detected and monitored. Such maps provide consistent and easily updateable slum information
compared with that of a national census, knowing that census data are often very uncertain, quickly
outdated, and usually cover only parts of the slums [7].

There are three primary study purposes of slum mapping based on remote sensing methods:
Where, when, and what [6]: “Where” is about the location of slums in an urban region, “when” is
to measure the temporal changes of slums, and “what” is related to questions such aspects as the
populations of slums. Unlike the other two aspects, only a few studies have been performed to
analyze “when”, i.e., the temporal dynamics of slums [8,9]. One reason for the lack of such studies
is the availability of data [6], as well as the complexity of producing change-detection results [10].
For example, changes captured might refer to real change or pixel differences caused by variations in
image conditions (e.g., along the boundaries of slums). A further issue relates to the transferability of
mapping methods across multi-temporal images. Transferability is the ability to transfer the method or
algorithm developed in one image to another image and achieving comparable mapping accuracies [11].

Researchers have been working on various approaches for slum identification based on VHR
imagery, including texture analysis [12], object-based image analysis [13-15], landscape analysis [16],
machine learning [17] with increasing attention on deep-learning [18-20], and recently, combining
Object-Based Image Analysis (OBIA) and deep learning [21]. To map temporal dynamics, no conclusion
on the best method exists; while OBIA-based method showed limitations in mapping trajectories [10],
deep-learning-based methods have not been much explored for mapping the dynamics of slums.
Convolutional Neural Networks (CNNs), which are a specific technique in the machine learning field,
have drawn increasing attention in solving remote sensing classification tasks and show promising
accuracies for slum mapping [6,21]. In the last decade, CNNs have been increasingly used in the
analysis of remote sensing imagery e.g., [22-25]. For slum mapping, both CNNs [24] and fully
convolutional networks (FCNs) [26] showed promising results with overall accuracies of over 80%.
Fully convolutional networks (FCNs) are a particular architecture of CNNs designed for semantic
image segmentation (pixel-wise classification) [27]. By replacing the fully connected layers in a
CNN architecture with a convolution layer, FCNs maintain the structure of the original image [28].
Unlike CNNs, in which the output must be the same size as the input, FCNs allow the taking of images
of any size as input [29]. A recent study [26] has shown that slums can be effectively detected in very
high resolution (VHR) images by FCN techniques. So far, FCNs have not been used for analyzing the
temporal dynamics of slums. Therefore, this study analyzes the potential of transferring an FCN-based
classifier trained to identify slums to multi-temporal VHR images. Specifically, this study aims to
explore the potential of FCNs to analyze the temporal dynamics of temporary (and in general very
small) slum areas based on very high resolution (VHR) imagery in Bangalore, India. The study
proposes two FCN-based approaches to generate slum change maps and assesses their performance.
For one approach, slum maps from the land cover classification results are used for post-classification
change detection. For the second approach, the FCNs are used to directly classify the changed slum
areas in the imagery.

2. Materials and Methods

The methodology of this research starts with the preparation and pre-processing of the data,
including the selection of study tiles and the preparation of reference data. Then, two approaches for
applying FCNs were employed to capture the temporal dynamics of slums in the study area. The first
approach applied FCNss to classify temporary slums and other land uses for each year. Followed by
a post-classification change-detection process, the changes in slum areas were extracted from the
individual land-use classifications. The second approach used FCNs to directly detect the changed
slum areas over two years. After the changed areas were captured, in a next step, the accuracy was
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assessed using both a confusion matrix and a trajectory error matrix. Finally, the temporal dynamics of
the slums are analyzed and discussed.

2.1. The Study Area and Data Sets

Bangalore is one of the biggest cities in India, housing more than 8 million people in its metropolitan
area [30]. The India census in 2011 reported that around 8.39% of the total population in the city of
Bangalore is living in slums [31]. However, a recent study suggested that every fifth person in the
city of Bangalore lives in a slum [32]. This difference is mainly caused by the different definitions of
slums, and the exclusion of temporary slums (e.g., homes of migrant workers) in official statistics.
For example, India also sets a minimum settlement size for an area to be considered as a slum, requiring
at least 300 people or 60-70 households living in a settlement cluster [33]. Thus, there are two types of
slums: Notified slums and non-notified slums. Notified slum dwellers can usually afford to invest in
education and skill training, while residents in non-notified slums are mostly unconnected to basic
services and formal livelihood opportunities [34]. Krishna [34] also categorized non-notified slums in
Bangalore into three types: New migrants, very low-income settlements, and low-income settlements.
In this hierarchy, “New Migrants” indicates a shelter type typically characterized by blue plastic
sheeting and small unit size (Figure 1). People living in these shelters are typically not covered by any
official information, but require basic services [34]. Furthermore, temporary slums are commonly very
small in area size (mean area size is 719 m2, compared to all slums in Bangalore with a mean size of
1157 m?), and are more difficult to capture through image analysis [19].

Figure 1. Example of shelters of blue plastic sheeting and small unit size [34].

These temporary slums have high temporal dynamics. An example is shown in Figure 2. A slum
area can be seen in the satellite image on 17 December 2015. Within 100 days, this slum area decreased
sharply, indicating that temporary slums in Bangalore can experience rapid changes within a few
months, or even weeks. Monitoring slums with a high temporal granularity can help local planners to
understand their dynamics.

o Wearmcsen

Wotks,

(a) 17.12.2015 (b) 25.01.2016 (c) 21.03.2016

Figure 2. Example of one rapidly changing slum area (Source: Google Earth).
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The image data used in this study were multi-temporal very high resolution images provided by
the project Dynaslum [35]. The multispectral images from the WorldView satellites had eight bands.
Pan-sharpened images were used in this study (Table 1). For training, testing, and validation, slum
boundary data were used, which was generated by local experts using visual interpretation and field
verification in 2017. As the boundary data was generated for this specific date, sSlum boundaries were
adapted to match all image dates.

Table 1. Summary of the image dataset used in this study.

Satellite Resolution Band Number Time
WorldView 2 0.5 x 0.5 m (multispectral) 8 bands 01.12.2012
2.0 x 2.0 m (panchromatic) 24.04.2013
WorldView 3 0.3 x 0.3 m (multispectral) 8 bands 16.02.2015
1.2 x 1.2 m (panchromatic) 06.01.2016

2.2. Data Preparation and Pre-Processing

All images were pan-sharped. However, the images from two different sensors had a resolution
difference; therefore, the images from 2012 and 2013 were resampled to 0.3 m to match the images of
2015 and 2016. Working with MATLAB for computational reasons, similarly to other studies (e.g., [26]),
10 specific tiles of 1000 x 1000 pixels were selected (Figure 3) using three rules:

e  Tiles have to be covered by all image data from 2012 to 2016.
e  Slums are present in the selected tiles.
e  Slums in the selected tiles have changed between 2012 and 2016.

0 1.5 3 Kilometers Y

77°33'E 77°36'E Y7°89E A

12°57'N

77°33'E 77°36'E 77°39°E

Figure 3. Distribution of study tiles (tiles shown in red) in the WorldView image (06.01.2016)
(Source: DigitalGlobe).

2.3. Training and Testing Data

Among the 10 selected tiles, four tiles were used for training and six for testing. The training and
testing tiles were selected according to two rules:

e  The training tiles cover all the land-use classes.
e EBvery slum change trajectory is included in the training tiles.
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In total, 40 images with 40 corresponding reference maps (four images from different periods/years
for each tile) were the input data for the networks. Furthermore, 1000 labeled patches (randomly
picked from each training tile) were used as the training set. The reference data for each image was
prepared by visual interpretation with the help of the available slum polygons delineated by experts in
2017. The reference maps contained five thematic classes, namely “temporary slum”, “green land”,
“vacant land”, “formally built-up”, and “other” (Table 2). Non-labeled cells were also included in each
tile. Table 2 shows the count of pixels per class and Table 3 shows the reference data classes based on

the land uses for the change-detection net (Section 2.4.3).

Table 2. Land-use classes for the reference data.

Class Description Label Count
Temporary slum Tents with blue plastic sheeting and small unit size 1 1,328,901
Green land Open land covered by vegetation 2 4,843,864
Vacant land Bare soil land 3 3,687,606
Formally built-up Formal buildings, roads 4 10,984,295
Other Car park, water body, etc. 5 488,007
Table 3. Reference data classes for the change-detection net.
Class Description Land-Use in T1 Land-Use in T2 Label
Green land
Increased shum Temporary slum did not exist Vacant land Temporary shum 1
in T1 but appeared in T2. Formally built-up porary
Other
Green land
Temporary slum existed in T1 Vacant land
Decreased slum but disappeared in T2. Temporary slum Formally built-up 2
Other
Temporary slum stayed
Unchanged slum unchanged between T1 and T2 Temporary slum Temporary slum 3
Green land Green land
Other Other land use Vacant land Vacant land 4

Formally built-up
Other

Formally built-up
Other

T1: An earlier year

T2: A later year

2.4. Change Detection

In this study, we employ two change-detection methods to analyze the temporal dynamics of
slums. Figure 4 illustrates the workflows of the two methods. On the one hand, the enhanced FCNs are
trained to classify the land-use class for each tile per year. Then, the classification results are used to
perform post-classification change detection. On the other hand, the images for two years are stacked
together and used as the input of change-detection enhanced FCNs. These FCNs are directly trained to
classify the changed areas of slums.
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Figure 4. The workflow of the two change detection approaches.
2.4.1. Proposed FCNs

The standard CNN s classify images in a “"patch-based” mode, labeling every central pixel in
the patches extracted from the input [36]. As CNNs generate a probability distribution of different
classes, to obtain a classification map with various classes, a large image is usually split into small
patches, where CNNs are applied to predict the class. However, as remote sensing images consist
of a large amount of information, using CNNss to classify large remote sensing images will have a
high computational cost because of the patch cropping. To address this issue, FCNs, which are based
on standard CNNs, have been proposed. In FCNs, the fully connected layers are replaced by the
convolutional layers, which allow the use of discretionary sized images as input. By training the
entire image instead of training patches separately, FCNs reduce the computation operations as well
as the implementation complexity [28]. The FCNs built in this study use the architecture (Table 4)
from [26] as their foundation. The third column of the table reports the sizes of the convolutional filters,
characterized by a four-dimension array H x W x D X K, where H and W are the height and width of
the kernel, D is the number of channels, and K is the number of filters.

In this study, first, a network with the kernel size of 5 X 5 was trained and validated. Then,
a deeper network with a 3 X 3 kernel size was used for comparison. In this architecture, the convolution
layers calculated the convolution of the input images of selected tiles, where the kernel size of the filter
was 5 x 5 pixels. The stride is the spatial interval between the centers of convolutional calculation;
thus, a stride of one pixel means there is no downsampling. The pad parameter determines the
number of zeros added to the border of the image before applying the filter. The most important
innovation of this architecture is the adoption of dilated kernels. It increases the receptive field without
increasing the number of learnable parameters in each layer [37]. Unlike normal kernels, dilated
kernels insert zeros between the elements in the filter. Figure 5 shows how the receptive field of a 3 x 3
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filter increases with the increasing dilation factors: (a) A receptive field of 3 x 3 with a dilation factor
of one, which means there is no dilation; (b) a receptive field of 7 X 7 with a dilation factor of two;
(c) a receptive field of 15 x 15 with a dilation factor of three. The red circle represents learnable filter
weights [26]. Leaky rectified linear units (IReLUs) are used as activations in the network [38].

Table 4. Structure of the 5 X 5 FCNs architecture.

Layer Module Type Dimension Dilation  Stride Pad

DK1 convolution 5x5x8x%x16 1 1 2
IReLUs

DK2 convolution 5x5x16x 32 2 1 4
IReLUs

DK3 convolution 5x5x%x32x32 3 1 6
IReLUs

DK4 convolution 5%x5x32x32 4 1 8
IReLUs

DK5 convolution 5x5x32x32 5 1 10
IReLUs

DK6 convolution 5x5x32x32 6 1 12
IReLUs

Class. convolution 1x1x32x%x5 1 1 0
softmax

(@) (b) ()

Figure 5. Kernels with an increasing receptive field: (a) a receptive field of 3 x 3 with a dilation factor
of one; (b) a receptive field of 7 X 7 with a dilation factor of two; (c) a receptive field of 15 x 15 with a
dilation factor of three.

After training the network with a 5 X 5 kernel, a network with a 3 X 3 sized filter is used.
The structure is shown in Table 5. To keep the same output spatial dimension, each block of dilated
convolution layers (DK) consists of two convolution layers, each followed by an activation layer.
The second 3 x 3 convolution layer is fully connected to the first 3 X 3 convolution, which has a
receptive field that is the same as a 5 x 5 convolution [39]. Figure 6 illustrates this for a mini-network:
(a) The first layer is a 3 x 3 convolution, followed by a convolution on top of the 3 X 3 output of the
first layer, and the receptive field is the same as in the network from (b) with a 5 x 5 convolution.
The setup of (a) leads to a high-performance vision network with relatively modest computation costs
as compared to the setup of (b) [39].
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Table 5. Structure of the 3 X 3 FCNs architecture.

Layer Module Type Dimension Dilation  Stride Pad
DK1 convolution 3x3x8x16 1 1 1
IReLUs
convolution 3x3x16x16 1 1 1
IReLUs
DK2 convolution 3x3x16x32 2 1 2
IReLUs
convolution 3X3x%x32x%x32 2 1 2
IReLUs
DK3 convolution 3x3x%x32x32 3 1 3
IReLUs
convolution 3Xx3x%x32x%x32 3 1 3
IReLUs
DK4 convolution 3Xx3x32x%x32 4 1 4
IReLUs
convolution 3x3x%x32x32 4 1 4
IReLUs
DK5 convolution 3x3x32x32 5 1 5
IReLUs
convolution 3Xx3x32x%x32 5 1 5
IReLUs
DK6 convolution 3x3x%x32x32 6 1 6
IReLUs
convolution 3x3x%x32x%x32 6 1 6
IReLUs
Class. convolution I1x1x32%5 1 1 0
softmax
1 //
1 L
< |1
> L
gl
// /><
L1 | L1
= L
L1 | L
1
L~ =

(a) two 3 x 3 convolutions

(b) one 5 x 5 convolution

Figure 6. Example architecture: (a) Two 3 X 3 convolutions and (b) replacing one 5 x 5.

The networks were trained with a learning rate of 10~* for 100 epochs, and a learning rate of 107>
was used to train another 30 epochs. The patch size in the network was 85x85 pixels. This two-stage
training provided a substantial reduction in the training error at the first stage and a more stable
training and validation with a lower learning rate at the second stage. In addition, the networks were

trained using stochastic gradient descent with a momentum of 0.9. The training was performed on a
desktop workstation with an Intel Xeon E5-2643 v3 CPU and an NVIDIA Quadro GPU.

2.4.2. Post-Classification Change Detection

For post-classification change detection, we first used the original tile images as the input for the
proposed FCNs. The trained FCNs will classify the land use in each tile per year. The post-classification
change-detection method was employed after the independent land-use classification from the FCNs.
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Each multi-temporal image of every tile was classified with the same category labels. Therefore,
a land-use change is a change in the label between two images. For the latter analysis, the exact
transformation patterns from temporary slums to another class or from other classes to a temporary
slum were extracted (Table 6). Coding and adding the different years and classes, every change
trajectory has a unique value. For instance, a pixel with a value of 1234 means that this pixel is classified
as formally built-up in 2012, changing into vacant land in 2013. In 2015, this pixel is classified as green
land and becomes a temporary slum in 2016.

Table 6. Land-use class label of classification map after reclassifying.

Land-Use Class Label

Year

Temporary Slum Green Land Vacant Land Formal Built-Up Other
2012 1 2 3 4 5
2013 10 20 30 40 50
2015 100 200 300 400 500
2016 1000 2000 3000 4000 5000

2.4.3. Change-Detection Net

In addition to the post-classification change-detection method, we also developed an FCN-based
network that directly detects the changed areas of slums. The input images to this network are stacked
images of different years. The images with n bands at one year and m bands at another year were
combined into one image with (n + m) bands. The 1st to 8th bands of the stacked image were from an
earlier year image, and the 9th to 16th bands were from a later year of the same tile. The reference data
for the change-detection net was based on the reference data prepared for all four years. To directly
detect the changed slum areas with newly generated images and reference data, a 5 x 5 FCN was
trained and validated at first, followed by a 3 X 3 network, to compare the results. As the image data
were the stacked images with 16 bands, the dimension of the first convolution layer in the network
changed to 5 x5 x 16 X 16 (or 3 X 3 x 16 X 16). The dimension of the last convolution layer changed
from1x1x32x5into1 X 1x 32 X 4. The training was performed separately for every time period.
For example, to capture the changed areas between 2012 and 2013, 10 stacked images from 2012 and
2013 and their corresponding reference maps were the input data for the networks.

2.4.4. Noise Reduction for Land-Use Classification

To reduce the classification errors of small isolated patches, we used two related methods:
(1) Majority Analysis and (2) Classification Clumping. On the one hand, the kernel size was set as
21 x 21 pixels for Majority Analysis, since a patch smaller than this size cannot be an individual
temporary slum (defined as more than one dwelling). On the other hand, Classification Clumping
applies morphological operators to the classified areas, thus first dilating, followed by erosion with a
filter. The selected class is clumped first by a dilation operation and then an erosion operation, using a
specified kernel size for each operation. Both approaches were compared according to their utility in
reducing noise.

2.5. Accuracy Assessment

Two main methods were used to assess the accuracy of classification and change detection results.
One was the confusion matrix and another was the trajectory error matrix (TEM). The performance
of the machine-learning-based classification results was evaluated by quantitative indices from the
confusion matrix, comparing the classification results with the reference data. The Producer Accuracy
(PA) and User Accuracy (UA) were included to reveal the wrong classification of each class. PA (1) is
the fraction of correctly classified pixels with regards to all pixels of that class in the reference map [40].
The value illustrates how well the pixels in the reference map are classified. UA (2) is the fraction
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of correctly classified pixels with regards to all pixels of that class in the classified map, illustrating
the reliability of classes in the classification map. In these two equations, C;; is the number of pixels
correctly classified by the class i, C4; is the column total of class i, and C,; is the row total of class i.

Producer accuracy (PA;) = Cii . 100 1)
Chi
U _ G
ser accuracy (UA;) = c._ 100 2)
i+

In addition, the mean F1-score of the classification results was calculated as well, as a harmonic
mean of precision and recall (3). Precision indicates how many pixels classified as true are actually
true, while recall shows how many true pixels were correctly classified as true.

Precision - Recall PA - UA
Precision + Recall = =~ PA + UA

F1-score =2 -

®)

The trajectory error matrix (TEM) [41] allows the assessment of multi-temporal classification
results. In this study, the possible trajectory combinations of land-use changes were classified into six
confusion sub-groups (similar to [10]). The sub-groups of the TEM are shown in Table 7.

Table 7. Sub-groups in the trajectory error matrix (TEM).

Groups Classification Situation Interpretations
Sy Correct Correctly detected as non-changed with the correct classification
Sy Correctly detected as a changed slum with correct trajectory
S3 Incorrect Correctly detected as non-changed with an incorrect classification
Sy Incorrectly detected as changed slum
S5 Incorrectly detected as non-changed
Se Correctly detected as a changed slum with an incorrect trajectory

For S1, both reference data and the classification map agree that a sample remained unchanged.
In S2, both reference data and the classification map agree that a sample is changing with the same
trajectory, e.g., changing from slum to non-slum and then becoming slum again. In S3, both reference
data and the classification results tell that a sample is not changed, though the classification result is
wrong, e.g., staying unchanged as a non-slum area in reference data while in the classification map it
remains unchanged as a slum area. In 54, the reference data suggests a sample is unchanged, but itis a
changed area in the classification map, while in S5 is vice versa. Finally, in S6, both reference data and
the classification map show changes, but the trajectory is different, e.g., the reference data suggested a
sample changed from slum to non-slum and then stayed, while the classification map detected it as a
slum changing to non-slum and then becoming slum again.

After determining the sub-groups, the classification results were reclassified into binary images,
combining the classes of Green land, Vacant land, Formally built-up, and Other into a new class of
“Non-slum”. Similarly to Table 5, a unique class value was assigned to the different years. The binary
classification maps for four years were stacked into one composite map. Therefore, every possible
trajectory has one unique value: 1, 10, 100, and 1000 were assigned to the temporary slum of different
years, while 2, 20, 200, and 2000 are non-slum. For instance, a pixel of 2112 means that this pixel is
classified as a non-slum area in 2012, as a slum in 2013 and 2015, and it finally changes into a non-slum
in 2016.

For each tile, 500 random points were generated in two groups: 250 random points in the
unchanged areas and 250 random points in the changed areas. This stratification was required because
of the limited changed areas in some tiles. If the points were randomly positioned over the whole
image without stratification, only few points would be located in the changed area. In total, there were
5000 points with their corresponding classifications and reference information. The information of each
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point was used as the input for determining the change trajectory. Two indices were used to measure the
overall accuracy: (1) Overall accuracy (At) and (2) change/no change accuracy (Ac/N). At shows how
many samples were classified with correct classification and trajectory for both slum-related changes
and non-slum-related changes, while Ac/y includes any correct detection between the reference and
classification. In total, three indices were used to measure accuracy difference [41]: (1) Overall accuracy
difference (OAD), (2) accuracy difference of no change trajectory (ADICy), and (3) accuracy difference
of change trajectory (ADICc). For OAD, a high value indicates a higher accuracy in detecting the
general change/no-change, but not in detecting individual change trajectories. ADICy and ADIC,
measure the accuracy of each trajectory. These indices were calculated using the equations below,
where S; means the number of sample points assigned to different sub-groups of TEM.

S1+4S
Ar = % . 100 @)
Lz Si
Acjn = 51+ 526+ S3+Se 100 (5)
i=1 Si
OAD = A¢/N — At (6)
ADICy = —2L— %100 ?)
N S1+S3
ADICe = —2— %100 8)
€= Sy + 5S¢

3. Results
3.1. FCN-Based Land-Use Classification

3.1.1. Comparing the Performance of 5 X 5 Networks and 3 x 3 Networks

We trained FCNs using the 5 X 5 networks and deeper 3 x 3 networks. Images from 2012, 2013,
2015, and 2016 for each study tile were used for training and validation (classification results are shown
in Supplementary Materials). Table 8 shows the average Fl-scores of the temporary slum class in
testing tiles for the two networks. Both networks performed well when classifying temporary slums in
the city, reaching a high accuracy of over 80%.

Table 8. Accuracies (precision, recall, F1 score) of two networks mapping temporary slums.

5 x 5 Networks 3 X 3 Networks
Precision Recall F1-Score Precision Recall F1-Score
2012 85.57% 97.04% 90.85% 85.79% 96.99% 90.95%
2013 84.20% 97.00% 90.03% 84.32% 96.02% 89.55%
2015 81.55% 85.76% 83.29% 84.41% 89.69% 86.82%
2016 74.40% 85.76% 81.97% 79.44% 89.69% 86.58%
In total 81.10% 93.19% 86.32% 83.30% 96.55% 88.38%

The largest improvement in performance was obtained for the 2016 classification, where the 3 X 3
networks showed an accuracy almost 5% higher than that of the 5 X 5 networks. However, in 2013,
the 3 x 3 networks had a slightly worse performance, but only by 0.5%. On average, the accuracy of
the 3 X 3 networks was 2% higher than that of the 5 X 5 networks. Thus, using this deeper network
shows a small improvement in the classification results. However, it requires higher computational
ability and it learns more slowly.

Figure 7 displays an example of a classification map, showing some small scattered areas that
were wrongly classified as slums (i.e., the red squares in Figure 7). As one individual temporary slum
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tent is around 21 x 21 pixels (determined by visual interpretation of the image used in this study),
patches of pixels that are smaller than this size have a high probability of being wrongly classified.
Therefore, they were removed, being mainly noise.
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(a) Classification map example

(b) Image of the example area

Figure 7. Classification map example and its image of 2016, showing patches of pixel islands within
the red boxes (reclassifying the Green land, Vacant land, Formally built-up, and Other from original
results to one class of Non-slum in order to better illustrate the pixel island problem).

3.1.2. Noise Reduction for Land-Use Classification

Figure 8 illustrates examples of noise reduction. Both methods removed some noise and
smoothened slum boundaries as well. To assess the performance of both methods, the F1-scores of
3 X 3 network results were calculated (Table 9). By comparison, applying the Majority Analysis shows
slightly higher accuracy than applying Classification Clumping. The reason for why the accuracy
is lower than the accuracy without noise reduction might be that although some noise is removed,
the boundaries of other big patches are smoothened. Therefore, those left-out classified slum areas
are somehow enlarged, leading to a decrease in the accuracy. We use the classification maps with
the Majority Analysis for the next change-detection step, as it shows higher overall accuracy and has
less noise.

Table 9. Fl-scores showing the accuracies after noise reduction (based on the 3 x 3 network results).

Original Classification Majority Analysis Classification Clumping
2012 90.95% 89.38% 87.39%
2013 89.55% 89.19% 86.43%
2015 86.82% 88.03% 86.21%
2016 86.58% 86.80% 84.23%

In total 88.38% 88.35% 86.06%
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Figure 8. Comparison of the original classification and noise reduction results.
3.2. Change Detection

3.2.1. Performance of 5 X 5 Networks and 3 x 3 Networks

We also trained 5 X 5 and 3 x 3 FCNs for the change detection. The 3 X 3 networks provide a more
accurate result (Table 10). Although the 5 X 5 networks have slightly higher accuracy (2%) between
2012 and 2013, the 3 x 3 networks perform better in the other two periods.

Table 10. Accuracies (precision, recall, F1 score) of two networks for change detection net.

5 X 5 Networks 3 X 3 Networks
Precision Recall F1-Score Precision Recall F1-Score
2012-2013 13.85% 42.26% 20.25% 12.75% 40.42% 18.31%
2013-2015 34.79% 42.31% 36.01% 31.87% 52.59% 37.88%
2015-2016 22.41% 47.46% 28.76% 31.52% 54.17% 36.49%

In total 23.68% 44.01% 28.34% 25.38% 49.06% 30.89%
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3.2.2. Accuracy Assessment by Confusion Matrix

We calculated the Fl-scores for the new class of “changed slum area”, consisting of all pixels with
a slum change trajectory. For the change-detection networks, the increased area and decreased area
were also merged into one class as the “changed slum area”.

Table 11 shows the average Fl-scores of all of the study tiles and periods. Neither of the methods
showed a significant advantage over the other. Between 2012 and 2013, the change-detection networks
performed better than post-classification. But when analyzing the change between 2015 and 2016,
the post-classification was more accurate than the change-detection networks. Generally speaking,
the lower accuracies were obtained in the analysis between 2012 and 2013 for both of the two methods,
and the higher accuracies for the period of 2013 to 2014.

Table 11. Fl-scores of changed slum area in the post-classification results.

Post-Classification Change-Detection Networks
2012-2013 43.69% 49.69%
2013-2015 61.52% 60.66%
2015-2016 55.95% 50.96%
In total 53.80% 53.68%

However, when analyzing the individual accuracy of each tile, it can be seen that the accuracies
vary a lot from tile to tile (Table 12). High accuracies were over 90%, while the lowest accuracy was
only 3.86%. In fact, the accuracies of land-use classification for this tile in 2015 and 2016 were 70.48%
and 76.19% (3 x 3 networks), which was also the lowest among all the tiles, resulting in the lowest
accuracy among all of the post-classification results as well. This might be ascribed to the images
themselves. As the images were obtained at different times, the images were affected by the viewing
angles and related shadow issues.

Table 12. Fl-scores of change-detection results for each tile (the training tiles shown in red color).

] Post-Classification Change-Detection Networks
Tile 2012-2013 2013-2015 2015-2016 2012-2013 2013-2015 2015-2016

1 36.67% 38.42% 11.92% 22.69% 19.89% 3.86%
2 37.19% 55.15% 55.00% 19.31% 51.32% 40.37%
3 41.66% 70.22% 51.31% 78.46% 89.30% 73.27%
4 28.87% 63.24% 42.71% 17.79% 54.50% 24.37%
5 54.70% 73.69% 70.20% 91.54% 94.97% 91.29%
6 36.13% 57.11% 47.94% 23.66% 36.65% 39.20%
7 62.28% 82.82% 92.63% 91.29% 95.20% 96.93%
8 * * 73.58% * * 48.65%
9 62.58% 72.98% 63.93% 84.70% 86.48% 75.51%

10 33.11% 40.03% 50.31% 17.78% 17.68% 16.12%

Tile 3/5/7/9: Training tiles * No changes in this tile

Moreover, we calculated the average Fl-scores for training and testing tiles separately (Table 13).
It is obvious that both of the two methods performed better in the training tiles than in the testing
tiles. But the gap between the two groups is much bigger in the change-detection networks than in
the post-classification results. Both of the two methods had some well-performing tiles, as well as
some poor-performing tiles. In general, the post-classification generated more balanced results with a
smaller gap between the highest and lowest, as well as a smaller gap between the training tiles and
testing tiles. All change maps are shown in Supplementary Materials.
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Table 13. Fl-scores of the training and testing tiles.

Tile Method 2012-2013 2013-2015 2015-2016 In Total
Training Post-classification 55.30% 74.93% 69.52% 66.58%
Change-detection networks 86.50% 91.49% 84.25% 87.41%

Testing Post-classification 34.39% 50.79% 46.91% 44.21%
Change-detection networks 20.25% 36.01% 28.76% 28.37%

3.2.3. Accuracy Assessment by Trajectory Error Matrix

To better understand the accuracy of change-detection results, we also used the TEM to assess the
change trajectories of temporary slums obtained by two methods. The classification maps for four
years were stacked into one composite map (example in Figure 9).
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Figure 9. Example of stacked maps for change-detection accuracy assessment.

Five indices are shown in Table 14. For overall accuracies (AT), we obtained about 76.36% for
the post-classification result and 72.30% for the change-detection networks, meaning that 4% more of
the samples in the post-classification results were correct in both classification and change trajectory.
For the two methods, the change/no change accuracies (AC/N) were both higher than the AT. This is
because AC/N only considers whether the change maps detect changes or not, without considering
the correctness of trajectories. For OAD, the value was the opposite, which means that AC/N was
higher than AT, indicating that some of the change trajectories did not match with the reference data.
In general, the post-classification had more wrong trajectories, and change-detection networks had
a higher ADICC, suggesting that more sample points in the change-detection networks could be
identified with the correct change trajectories.
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Table 14. TEM indices for two change detection methods.

Indices Post-Classification = Change-Detection Networks
overall accuracy (At) 76.36% 72.30%
change/no change accuracy (Ac/N), 89.60% 80.12%
overall accuracy difference (OAD) 13.24% 7.82%
accuracy difference of no change trajectory (ADICy) 100.00% 100.00%
accuracy difference of change trajectory (ADICc) 67.18% 74.17%

3.2.4. Change Detection Maps

After assessing the accuracy quantitatively, we also visually checked the change maps (see
Supplementary Materials). Although the accuracy assessed in the previous section was relatively low
for some areas, they often showed the right locations where changes happened. Such an example is
shown in Figure 10. The post-classification change-detection result of temporary slums from 2015
to 2016 for this tile had an Fl-score of 42.71% based on the confusion matrix. However, the map
shows that the general locations and types of changes (increasing/decreasing) were correctly identified.
Consequently, the result can be used to determine the slum change location.
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Figure 10. Example with a low accuracy but the correct location of change.

4. Discussion

4.1. Temporal Dynamics of Slums in Bangalore

Asmentioned before, only a few studies have analyzed the temporal changes of slums. For example,
Kit and Liideke [8] identified three trends of slum temporal changes: Densification of slum settlements,
slum growth in the urban fringe, and the areas which had the most slum growth. The area of changed
slums was calculated for the result change maps with a comparison with the reference data (shown in
Table 15).

Here, ‘increase’ and ‘decrease’ represent the changes from other classes to temporary slums and
from temporary slums to other land uses. The overall gap between reference data and post-classification
is 13,579 m?, while for change-detection networks, it is 20,579 m?. Although the change-detection



Remote Sens. 2019, 11, 2844 17 of 21

networks show a comparable accuracy in the assessments, they have a higher extensional uncertainty
(worse capturing of the area’s extent).

Table 15. Area of changed slums in different time intervals.

2012-2013 2013-2015 2015-2016
(m2) Increase Decrease Increase Decrease Increase Decrease
Reference data 8873 4047 12,614 9652 7203 19,860
Post-classification 7981 6377 15,205 12,471 10,030 21,980
Change-detection networks 4826 2612 9313 13,403 5654 13,364

From 2012 to 2016, 12,012 m? of temporary slums appeared in the study area, while 17,052 m?
disappeared in this time period. There were also 11,041 m? of unchanged slum area. On average,
7173 m? of land changed into temporary slums in our study area per year, while 8390 m? of the
temporary slums disappeared, showing an overall decreasing trend. A detailed changing pattern is
shown in Figure 11. The flow of the grey color represents how many slums remained unchanged in
each time period. The flow of the green color represents the areas changing from slums to other classes,
while the red color stands for the areas becoming slums. Thus, with time, fewer slum areas remained
unchanged while more and more slum areas were disappearing. The largest increase in temporary
slums happened between 2013 to 2015, which was also the longest period in our study period.

Slum Sham Slum
Slum 2013 2015 2016
2012

Legend

Unchanged slums
Slums changing into
other land cover

Other land cover
changing into slums

Figure 11. Diagram of the change in temporary slums.

4.2. The Pattern of Slum Changing

The proportions of different types of temporal dynamics from 2012 to 2016 are shown in Table 16,
as well as the rate of change of every temporal dynamic. The largest transition (increase) was the
change from vacant land into slums. About 42% of the new slums grew on vacant land, with a change
rate of 1447 m? per year. For the slums’ decreasing, most of the temporary slums changed into green
land with a change rate of 2250 m? per year, which was different from the increasing transition. A very
specific example of this transition is shown in Figure 12. This transition was associated with some

reforming projects in this area, i.e., formal roads have been constructed in this area, with newly planted
green land.

Table 16. Proportion and changing rate of different temporal dynamics, 2012 to 2016.

Increased Decreased
. Changing Rate . Changing Rate
Proportion (m?/Year) Proportion (m?/Year)
other — slum 0.64% 22 slum — green land 42.64% 2250
formally built-up — slum 24.11% 819 slum — vacant land 36.71% 1937
green land — slum 32.68% 1111 slum — formally built-up 20.51% 1083

vacant land — slum 42.57% 1447 slum — other 0.14% 7
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Figure 12. Example of slums changing into green land.

4.3. Methodological Advantages and Disadvantages

In this study, two change detection methods were employed to analyze the temporal dynamics of
slums, followed by two methods for accuracy assessment. For post-classification change detection,
land-use classification maps were generated based on FCNs. The maps have a high accuracy of over
85%, indicating that using a deep learning algorithm to identify temporary slums from VHR imagery in
urban areas is effective. This result also responds to a recent study [26] which showed that FCNs work
well to capture informal settlements in Dar es Salaam in Tanzania and Bangalore in India. However,
the post-classification change-detection results did not have similar good performances; they did not
allow the exact quantification of the change areas. This problem is associated with the uncertainty
of slum boundaries, as the reference data were generated by visual interpretation, which tends to be
more generalized than the results of image classification, showing extensional uncertainties [42,43].
However, the resulting change maps could identify the existence of changes, i.e., the changed slum
areas (location) in the reference maps were also captured by the change-detection results. Molenaar [44]
proposed two concepts of existential uncertainty and extensional uncertainty. Existential uncertainty
means the uncertainty about the existence of a slum in reality, and extensional uncertainty implies
the uncertainty of whether an area covered by a slum can be determined with limited certainty or
not [42]. Based on these concepts, the post-classification method is beneficial in analyzing the existence
of changes, but not the exact sizes of changed slum areas.

An FCN with the same architecture as the one used for the land-use classification was employed
to directly detect the changed slum areas. One of the problems for this method is that the accuracies
for the training tiles were much higher than for the testing tiles, indicating that what the classifier
learned through the FCNs was not well transferred to the other images. This might also have resulted
from the reference data preparation. In addition to the uncertainty of slum delineation, which is the
same in the post-classification process, another uncertainty is the change trajectory. In this study;,
when selecting the training tiles, we only considered the trajectories between temporary slums and
our determined land-use classed. In fact, the objects in one land-use class might be different from
each other. For example, one training tile contained a trajectory from concrete buildings to temporary
slums and taught the networks how to classify it. But in the testing tiles, the trajectory was from brick
buildings to temporary slums. Thus, the networks had no knowledge about this specific trajectory,
leading to incorrect classification. The change-detection networks had an 87% accuracy for the training
tiles, indicating that it has the potential to detect changes when it is well trained. Besides, similar
to post-classification, the change-detection networks performed well when identifying the existence
of change.
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4.4. Accuracy Assessment

In this study, the confusion matrix and trajectory error matrix were employed to assess the
accuracy of change detection results. The confusion matrix and related indices, like producer accuracy
and user accuracy, are still widely used methods for assessing the accuracy of deep learning algorithms
(classification and change detection) [26,28,45]. In this study, the change-detection results did not have
high F1-scores; however, the results could detect the correct location of where changes occurred. As the
confusion matrix provides a pixel-based result, uncertainties along the boundaries are high and result
in low accuracies. Without a standard definition of a slum area and rules on how to draw boundaries,
the boundaries of changed areas are fuzzy. Therefore, the confusion matrix cannot give a credible
assessment with the consideration of an area (neighborhood) context.

Another assessment method employed in this study was the trajectory error matrix. While the
confusion matrix provided an assessment of ‘change/no change’ status, which also addressed the
sensitivity and specificity of binary classification [46], TEM assessed the accuracy for ‘from/to” changes.
One shortcoming of the TEM is that random samples are not suitable for analyzing changes, especially
when the changed areas only cover a small proportion of the whole region. Therefore, it is recommended
for further studies to combine the assessment of change uncertainties with a focus on areas and the
change trajectories.

5. Conclusions

An FCN-based approach was developed to map and analyze the temporal dynamics of slums in
the city of Bangalore. Temporary slums, also known as “blue tent” slums, generally show a quite high
dynamic. Using an FCN architecture with dilated convolutions, we found that a 3 x 3 network had
slightly better accuracy (88.38%) compared with that of a 5 X 5 network (86.32%). The results show
that 17,052 m? of slum areas disappeared and 12,012 m? of new slums developed between 2016 and
2012, showing an overall decrease in slum areas. However, when analyzing the change trajectories, it
was surprising that slums were generally not transformed or upgraded, but were more often changed
into green areas while new slums developed on vacant land. This has implications for urban planning
and management, as slums do not exist for long periods at the same spot; still, dwellers would require
basic services, which need to be much more flexible and tailored to the high spatio-temporal dynamics
of such areas. Furthermore, we know very little about the living conditions in these areas as they are
not (well) covered in official statistics (e.g., census), and socio-economic surveys will commonly omit
such small pockets, as they are not easily included in sampling frameworks without spatial data on
them. Therefore, spatial data, even of moderate accuracies, on these highly dynamic slums are essential
for addressing a totally overlooked dimension of urban deprivation, namely the one of temporary
settlements, which can be found across Indian cities and in many other rapidly developing cities of the
global South.
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