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Abstract: Life-saving decisions in vehicular ad hoc networks (VANETs) depend on the availability
of highly accurate, up-to-date, and reliable data exchanged by neighboring vehicles. However,
spreading inaccurate, unreliable, and false data by intruders create traffic illusions that may cause
loss of lives and assets. Although several solutions for misbehavior detection have been proposed to
address these issues, those solutions lack adequate representation and the adaptability to vehicular
context. The use of predefined static thresholds and lack of comprehensive context representation
have rendered the existing solutions limited to specific scenarios and attack types, which impedes
their generalizability. This paper addresses these limitations by proposing an ensemble-based hybrid
context-aware misbehavior detection system (EHCA-MDS) model. EHCA-MDS has been developed
in four phases, as follows. The static thresholds have been replaced by dynamic ones created on
the fly by analyzing the spatial and temporal properties of the mobility information collected from
neighboring vehicles. Kalman filter-based algorithms were used to collect the mobility information
of neighboring vehicles. Three sets of features were then derived, each of which has a different
perspective, namely data consistency, data plausibility, and vehicle behavior. These features were used
to construct a dynamic context reference using the Hampel filter. The Hampel-based z-score was used
to evaluate the vehicles based on their behavioral activities, data consistency, and plausibility. For
comprehensive features representation, multifaceted, non-parametric-based statistical classifiers were
constructed and updated online using a Hampel filter-based algorithm. For accurate representation,
the output of the statistical classifiers, vehicles’ scores, context reference parameters, and the derived
features were used as input to an ensemble learning-based algorithm. Such representation helps to
identify the misbehaving vehicles more effectively. The proposed EHCA-MDS model was evaluated
in the presence of different types of misbehaving vehicles under different context scenarios through
extensive simulations, utilizing a real-world traffic dataset. The results show that the accuracy
and robustness of the proposed EHCA-MDS under different vehicular dynamic context scenarios
were higher than existing solutions, which confirms its feasibility and effectiveness to improve the
performance of VANET critical applications.

Keywords: context-aware misbehavior detection; vehicular ad hoc network; VANET; hybrid; false
information; illusion attack; Hampel filter; Kalman filter; consistency; plausibility
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1. Introduction

Road collisions are increasing, and they are being expected to be the fifth leading cause of death by
2030 [1,2]. Annually, millions of people lose their lives on roads worldwide due to traffic accidents [1],
with 40 times more suffering from injuries. These accidents are also the main cause of traffic congestion,
which in turn has a great impact on the economy [3,4], and billions of dollars are lost due to the
treatment of injuries, loss of property, lost working hours, and high fuel consumption [5]. Several
studies reveal that more than 95% of accidents are attributed to human error that can be avoided if the
drivers had been warned half a second beforehand [6]. Vehicular ad hoc networks (VANETs) have
emerged, mainly to reduce those accidents, improve road safety and traffic efficiency, and provide
user comfort [7]. Vehicles with hundreds of sensors and communication capabilities share their
real-time information about their movement state, road conditions, and traffic situation [8,9]. Mobility
information is the main building block of VANET applications and services to create hazard-free roads,
which optimize the traffic efficiency, and improve network agility. Vehicles use wireless access in
vehicular environments (WAVE) devices, also called on-board units (OBU), to communicate with each
other in an ad-hoc manner and/or with Road Sites Unites (RSUs) in the infrastructure. These devices
utilize the dedicated short range communication (DSRC) protocol to form vehicle-to-vehicle (V2V),
and/or vehicle-to-infrastructure (V2I) links.

By utilizing VANET’s capabilities, a wide range of applications can be provided for safety, traffic
efficiency, and commercial applications [10]. Many applications have received attention from research
and industry, such as cooperative collision warning (CCWS) [11], intersection safety [12], cooperative
driving [13], cooperative adaptive cross-control (CACC) [14], and driver assistance systems (ADAS) [15].
These applications have a huge potential to save tens of thousands of lives and billions of dollars each
year [16]. An extensive review of VANET applications can be found in References [6,17]. With such
applications, vehicle automation will become a reality, such that human error will be minimized, and
the vehicles can navigate safely even under hazardous and dangerous traffic conditions such as fog,
black ice, and accidents. The performance of most VANET applications depends on the availability of
continuous, accurate, and up-to-date vehicle mobility information, including position information,
speed information, and direction information [18]. In VANET, vehicles cooperatively share their
mobility information to facilitate the operation of applications. However, VANET is vulnerable to many
types of attacks that can disrupt the functionality of these applications. Such vulnerability is due to the
deployment of VANET in hostile environments, and the cooperative nature of these applications [19].
Context-driven attackers may exploit the aforementioned vulnerabilities and inject false information to
influence vehicles’ behavior [20]. Consequently, the compromised vehicle can manipulate the data and
share false mobility information, which leads to catastrophic accidents that might put many lives in
danger. Moreover, the misbehaving vehicle can deceive other benign vehicles to make wrong decisions
by responding to illusive events, such as sudden braking and wrong maneuvering, causing serious
traffic problems and accidents [11,19]. Moreover, attackers can hijack and control the compromised
vehicles and use them to commit many crimes, including terrorist attacks, assassination, and running
over crowds of people, to name a few. Several studies have investigated the influences of misbehavior
on VANET performance [21–23]. These studies revealed that attackers could significantly degrade
the traffic flow, the performance of the routing protocol, and channel utilization. Threats such as
artificial collisions [24], illusion attack [25], and Sybil attack [26] are difficult to be detected [27]. The
most sophisticated case is when false information resembles real abnormal situation patterns, such as
accidents, congestion, and braking patterns [28].

Several solutions have been proposed to defend against insider attacks, namely the context-driven
attacks that send false mobility information in VANET. Preventing vehicles from sending false
information through cryptographic techniques is computationally expensive and ineffective for many
attack scenarios. Meanwhile, many attacks in VANET are inevitable. For example, attackers can
manipulate the sensors’ data prior to the application of cryptographic techniques. Sensors can also be
deceived by simulating the environment around them, making them acquire false data. Hence, vehicles
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may spread legitimate but false information [19]. Preventing vehicles from spreading false information
in VANET is computationally expensive and could be challenging in many cases [19]. Therefore,
misbehavior detection (also called intrusion detection) is crucial for VANET security. Detecting
intruders locally and autonomously is the ultimate goal of misbehavior detection in VANET so that
an immediate response can be taken. Most of the existing misbehavior detection systems (MDS)
employ a set of rules for detecting misbehaving vehicles. These rules assume a stationary environment
and identical independence of their input variables. Moreover, several issues have been found in
the existing MDS, which adversely affect the performance of the MDS. These issues are related to
sensor uncertainty, communication reliability, non-stationary (dynamic) context, and insufficient
context representation. However, overlooking sensors’ uncertainties, communication reliability, and
dynamic vehicular context increase the false alarms rate and decrease the detection rate. The dynamic
and heterogeneous noise environment renders data acquisition algorithms unstable, which, in turn,
increases the uncertainty of mobility information and adversely affects the information accuracy
shared among the vehicles. In addition, vehicles’ high mobility and density increase congestion in the
communication channels. Such congestion creates unreliable communication and generates incomplete
and uncertain mobility data. Nevertheless, extant misbehavior detection solutions have ignored such
an issue and used predefined static thresholds in a highly dynamic context instead.

Furthermore, existing solutions are limited to basic and specific attack types. However, many
types of attacks can target VANETs, including falsifying vehicle data and hijacking the vehicle’s entire
system to control a wide range of its functionalities. As such, existing solutions are limited to a
particular type of context-driven attacks, namely the basic type; hence, they cannot be generalized.
Basic and multifaceted rule sets-based MDS models have been commonly used to detect misbehaving
vehicles and intrusions, by building multi-classifiers with independent assumptions. That is, the
input variables have been assumed identically and independently distributed (i.i.d.). However, these
assumptions are unrealistic for real VANET applications. Such solutions ignore the correlations among
the input variables, resulting in a set of non-independent classifiers. Although the output of one
classifier might contain information about the output of the other classifiers, which, if utilized, could
improve the detection accuracy, such correlation has been ignored by the existing solutions. That is, the
correlation among input variables has been overlooked, leading to insufficient context representation,
which decreases the detection rate and increases the false alarms rate.

To this end, this paper proposes an ensemble hybrid context-aware misbehavior detection system
model (EHCA-MDS), to address the aforementioned two issues, namely, the adaptability of the
MDS model with the context, and the insufficient context representation. EHCA-MDS utilizes the
concepts of the wisdom of crowds and the power of diversity to improve its effectiveness. Multifaceted
adaptive statistical-based classifiers and ensemble learning-based classifiers were integrated to detect
the different types of misbehaving vehicles that share false mobility information. More specifically,
EHCA-MDS combines several non-parametric, unsupervised-based online statistical classifiers with a
supervised-based offline classifier. This combination brings along the robustness and the effectiveness
of VANET critical applications. A multifaceted context reference was built and updated online using
the Hampel filter, which utilizes the spatial and temporal correlation of the features derived from the
mobility information collected from the neighboring vehicles using a Kalman filter-based algorithm.
Three types of multifaceted and hybrid features were used to construct the context reference, namely,
the consistency-based, plausibility-based, and behavioral-based features. The Kalman filter-based
algorithm was used to periodically track and predict the mobility states of the neighboring vehicles
due to its efficiency in tracking multiple vehicles’ states that are suitable for real-time requirements
of VANET applications [29]. During such tracking, the Kalman filter-based algorithm collects recent
mobility information of the neighboring vehicles. Using the spatial and temporal properties of the
mobility information that were generated from the neighboring vehicles, multidimensional feature
sets that represent data plausibility, data consistency, and the behavioral activities were extracted. The
Hampel filter was then used to construct a dynamic context-reference using these features. Vehicles
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were evaluated from different perspectives using the Hampel filter-based z-score algorithm. The
evaluation was based on the vehicle’s deviation from the dynamic context reference. As a pre-detection
process, multiple adaptive statistical classifiers were proposed using the Hampel filter due to its
robustness to outliers and its non-parametric nature that can be built online and fit the dynamic
vehicular context. As such, the context reference can be estimated even in the presence of attackers’
data. This is because the Hampel filter introduces the breakdown points concepts, in which it considers
the smallest percentage of outliers that can render the classifiers biased. The larger the breakdown
point an estimator has, the more robust it becomes. This statistical classification model is called
the hybrid context-aware misbehavior detection system model (HCA-MDS). HCA-MDS was further
improved using the random forest (RF) algorithm to include the correlation among input features and
create an ensemble of independent classifiers. The RF was trained using the output coming from the
statistical classifiers, along with the context reference model parameters, the consistency features, the
plausibility features, and the behavioral features. The random forest algorithm creates a random set
of independent classifiers resulting in an unbiased decision. It also selects the most relevant features
based on the contribution of each feature that well represents the vehicular mobility data. The final
decision was taken based on the output of both statistical and random-forest classifiers. EHCA-MDS is
a comprehensive misbehavior detection solution as it combines supervised with unsupervised learning,
statistical with machine learning classification, and data-centric with behavioral-centric features in one
model, such that it can be generalized for VANET applications.

The rest of this paper is organized as follows. The related works are reviewed in Section 2. The
proposed model is elaborated in detail in Section 3. Section 4 presents the performance evaluation and
the experimental setup. Section 5 illustrates the results, while Section 6 discusses and analyzes the
results. Finally, the paper is concluded in Section 7.

2. Related Work

Due to the tight relation with road safety, business activities, and cybersecurity, VANET is
vulnerable to many types of cyberattacks that lead to physical damage, vandalism, terrorism, robbery,
kidnapping, and fraud, to name a few. Most of the severe attacks in VANET are context-driven
attacks, which manipulate their own context information (mobility data). These attacks might be
orchestrated by organizations with a substantial amount of resources, such as government agencies that
sponsor cyberwarfare [30]. Such attacks can disturb public safety and/or business activities, leading to
substantial loss of lives and properties. Preventing vehicles from sending false information in VANET
could be impossible due to the presence of vehicles in hostile environments where the onboard sensors
can be manipulated by the owner or technician during maintenance, making vehicles vulnerable to
attacks. Although preventing attacks through cryptography-based solutions might be suitable to
thwart external attacks, such solutions are not able to prevent the internal attackers that send false
information [19]. Because the performance of VANET applications and services depend on exchanging
high rate, accurate, and reliable mobility information, attackers that manipulate such information can
disrupt the operation of these applications, which put the road safety at risk and adversely affects
the traffic efficiency [31]. Likewise, an attacker can employ malware to invade vehicles’ operating
systems and manipulate the vehicular data, which make the vehicle send false information, such
as fake accidents or false congestions messages [19]. Once compromised, the vehicle can be used
to carry out many types of crimes, like assassination, hijacking, terrorism, and sabotage. Moreover,
malware can force vehicles to respond to fake events, such as hard breaking, which might expose
onboard passengers to life threatening accidents. Therefore, misbehavior detection systems (MDSs) are
important security measures that work as the second line of defense when the prevention approaches
fail. MDSs aim at protecting the integrity of the data and guarantee their correctness.

Misbehavior detection systems (MDSs) have been studied for many years, and several
solutions have been suggested [20,32–39]. These solutions can be categorized into three approaches,
behavioral [32–38], data-centric [4–44], and hybrid [20,39]. A detailed and recent summary of those
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approaches can be found in Reference [30]. The behavioral-based approach has been investigated in
intrusion detection and misbehavior detection in VANET. A node would be classified as a misbehaving
vehicle if it violated the expected behavior predefined by VANET protocols, applications, and/or services.
Moreover, behavioral-based techniques try to encourage cooperation among vehicles. A dedicated
watchdog mechanism was adopted by several studies, such as in References [32–35], to monitor the
compliance of a vehicle with the predefined expected behavior. The behavioral-based detection starts
by monitoring the observable behavior of vehicles, such as forwarding behavior in routing protocols,
and broadcasting behavior in broadcasting schemes. For example, monitoring forwarding behavior
allows for detecting the wormhole attacks while the broadcasting rate allows for the detection of
Denial of Service (DoS) attacks. Although the behavioral approach can effectively detect many types of
attacks, it is not suitable for detecting misbehaving vehicles that send false information as it focuses
only on monitoring the behavior of the nodes against known protocols and/or services. Vehicles that
send false information may not violate those predefined rules or deviate from the expected behavior.

The data-centric approach is feasible to detect misbehaving vehicles that share false
information [10,40–44]. Data-centric-based solutions can be farther classified into event-based or
context-based misbehavior detection. Event-based MDS focuses on detecting false event messages,
such as false congestion alerts [44], false crash notifications [38], or false emergency messages [41,45].
However, event-based MDSs are application-specific, as they covers only certain types of events,
such as congestion and crash notification. Although a generalization of such an approach has been
suggested by many researchers, it is still in the conceptual forms, such as in References [43,46,47], and
no implementation has been attempted yet. In addition, the event-based MDS tries to detect if the
emerged events were raised due to attack, which is almost difficult to detect locally in ephemeral
networks, as it is the case in VANET.

The second type of data-centric-based MDS is context-based MDS. This type of MDS has received
much interest from VANET researchers as the performance of most VANET applications and protocols
depends on the availability of accurate context information [48]. Therefore, it is commonly believed that
context-based data-centric misbehavior detection has many advantages. For example, context-based
misbehavior detection can detect most types of attacks that send false information, including false
events [29,44,49,50]. Most of the possible attacks in VANET are performed through manipulating
context information [51,52]. In addition, attackers in VANET target this type of information as they can
inflict major damage easily while they remain undetected [23,25,26,53]. As such, this study aims to
build a mobility information-based MDS. Mobility information-based MDSs are more general than the
event-based MDSs for locally detecting the misbehaving vehicles that send false information messages.
In contrast to event-based MDSs, mobility information-based MDSs try to detect the attacks in the
early stages, i.e., before it develops to advanced stages. In other words, the attacks can be detected
before the attacker succeeds in triggering the vehicles to send false event messages.

Plausibility and consistency checks are common detection techniques used by existing data-centric
solutions. Plausibility-based detection uses a particular known data model of the real-world for
detecting implausible information [20,54]. For example, two vehicles cannot occupy the same area
at the same time. Similarly, it is implausible for a vehicle to exist in different locations at the same
time. Meanwhile, data consistency is used to compare messages received from many independent
sources to detect any inconsistencies [10,54]. Unlike message plausibility, data consistency correlates
messages originated from different sources. For example, the speed reported by the positioning
sensors should be consistent with the vehicle velocity obtained from the speedometer. Plausibility-
and consistency-based solutions [10,29,50,51,55–66] can effectively detect many types of attacks under
controlled conditions, in which accurate and reliable information can be collected. However, the
vehicular environment is highly dynamic, and the collection of accurate and reliable information
cannot be guaranteed. Unfortunately, the existing MDS solutions use pre-defined static thresholds
to detect the misbehaving vehicles, such that a vehicle whose data consistency or data plausibility
exceeds certain thresholds is deemed as misbehaving. However, in the vehicular network where
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vehicles move in a harsh environment, communication is unreliable due to the heterogeneous and
dynamic noises. Consequently, the data collected are inaccurate and incomplete as a result of message
loss that increases due to vehicle mobility and density. As such, static thresholding-based solutions
produce high false alarms and low detection rate. On the other hand, a data-centric context-aware
MDS (DCA-MDS) proposed by the authors of this paper significantly reduced the false alarms rate and
improved the detection accuracy. The solution was successfully able to classify the mobility messages.
However, it was not able to identify misbehaving vehicles. In addition, DCA-MDS is vulnerable to
context-aware attackers that incrementally manipulate the mobility data and can bypass the dynamic
thresholds. In the current study, the DCA-MDS has been modified to identify misbehaving vehicles
instead of false messages.

One possible solution to address this issue is by combining the data-centric-based technique
with behavioral techniques [67]. Such a combination is referred to as a hybrid-based approach in
this paper. The hypothesis is that a context-aware attacker will be keen to convey the false pattern
to victims, e.g., by increasing the broadcasting rate, resulting in a different behavior compared to the
neighboring vehicles falling in the same context. Bissmeyer and Michael [20] proposed a model that
includes behavioral activities in the evaluation of the vehicle. However, predefined static thresholds
were used in the detection. In addition, no deep analysis or discussion has been performed to validate
the proposed model. In addition, the correlation among the independent classifiers was not considered,
which makes the scheme vulnerable to sophisticated attacks, such as advanced illusion attacks where
the attackers create traffic illusions by sending consistent and plausible information. Grover and
Laxmi [39] have trained MDS models based on a set of behavioral and data-centric features using
different machine learning techniques. Random forest generated the highest accuracy. However,
no details have been provided about the types of the implemented attacks and the scenario used
to generate the training dataset.. In addition, the context-features have not been considered in this
model, which renders such a solution specific to a particular scenario. Accordingly, Grover and
Laxmi’s [39] model cannot be generalized. Moreover, the attackers can leverage the model to search
for a successful attack. A more general model was proposed in Reference [68], where the datasets were
generated under different communication status and environmental noises scenarios. The context
was represented by behavioral and data-centric features that were extracted offline, assuming the
availability of sufficient information. The MDS model was trained using the neural network algorithm
and tested against basic attacks. The derived features were a combination of the consistency features
generated using the Kalman filter algorithm and plausibility features generated using the overlapping
test algorithm. The results showed the advantage of the proposed model compared to state-of-the-art.
However, the model was not evaluated against the context-aware and sophisticated attacks. Ghaleb and
Maarof [67] proposed hybrid misbehavior detection that combines both behavioral-based classifiers
with data-centric features. However, such an approach has overlocked the correlation between those
multifaceted features causing a high false alarms rate.

To protect the VANET from a wide range of attacks, multifaceted, data-centric-based MDSs that
utilize data-consistency and plausibility-based rules were commonly suggested by many studies in the
literature. However, most such studies rely on predefined static thresholds that do not fit the dynamic
nature of VANETs. To improve detection accuracy, hybrid MDSs that combine behavioral-based
features with the data-centric-based features were suggested by several other works. However, such
an approach has not been deeply studied yet. Most of the solutions in this regard use independent
multifaceted rules that ignore the correlation between these rules causing low detection accuracy and
high false alarms. The machine learning-based solutions can perceive such relationships. However,
existing machine learning-based solutions overlook the context dynamicity and the sophisticated
attack types, which render using the supervised machine learning-based solution alone ineffective for
VANET dynamic context.

In this paper, a more comprehensive approach called an ensemble-based hybrid context-aware
misbehavior detection model for vehicular ad hoc network (EHCA-MDS) was proposed. The wisdom
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of crowds and power of diversity concepts have motivated the authors of this paper to construct an
ensemble of multifaceted hybrid- and context-aware-based classifiers. Both statistical and machine
learning-based approaches were used to build those classifiers. Multidimensional features that reflect
the data consistency and plausibility, as well as vehicular behaviors against the communication
protocol, were derived to construct the multifaceted statistical-based classifiers. Then, a dynamic
context reference model was constructed using Kalman and Hampel filter-based algorithms utilizing
the spatial and temporal correlation among mobility information collected from neighboring vehicles.
The context reference is dynamically updated according to the newly arrived data from the neighboring
vehicles. Vehicles are evaluated using a robust Hampel filter-based outlier z-score algorithm. Vehicles
were evaluated based on the deviation from the context reference. The random forest algorithm
was used to learn the features of legitimate and misbehaving vehicles, by which a set of diverse
classifiers were constructed for the ensemble model. This ensemble was trained based on rich features
extracted from the output of the statistical classifiers, the vehicles’ data consistency and plausibility,
the behavioral scores, and the context model parameters. The outputs of the statistical classifiers and
machine learning-based classifiers were aggregated using the weighted voting scheme to deduce the
final class.

3. Materials and Methods

The proposed misbehavior detection model is host-based, i.e., it is deployed at each vehicle to
detect the local misbehavior in its initial stages before it develops to a sophisticated attack. Due to
the absence of labeled attack data, the proposed solution uses an unsupervised statistical method to
construct a context reference to detect novel attacks in their early stages. It is a context-aware model,
in which a dynamic context reference is constructed and updated online based on the analysis of the
spatial and temporal properties of the recent mobility information collected from neighboring vehicles.
The proposed model analyzes both the mobility information and the vehicle’s cooperative behavior
to derive multi-dimensional features that enable detecting a wide range of misbehavior attacks. The
mobility information was used because they are the main building block of VANET applications, and
they are targeted by many attacks, which have a huge impact on VANET’s critical applications and
services, as pointed out above. The proposed model is hybrid as it combines a set of multifaceted
classifiers to provide diversity that facilitates detecting a vast type of misbehaviors that target VANET’s
mobility data. Figure 1 shows the architecture of the proposed model.

As shown in Figure 1, the proposed misbehavior detection model consists of six main phases, as
follows: firstly, the mobility data collection phase, in which Kalman filter-based algorithms were used
to accurately acquire the data from the sensors surrounded by dynamic and heterogeneous noises. The
collected data were then efficiently shared among neighboring vehicles. Meanwhile, the data sent by
neighboring vehicles were effectively collected. A more detailed description of this phase is presented
in Section 3.1. The second phase is the features derivation phase, in which data-centric (namely
data-consistency, and data-plausibility) and behavioral features were derived. The detailed description
of the derived features is presented in Section 3.2. The third phase is the context representation phase.
In this phase, a dynamic context reference is built using an adaptive Hampel filter-based method,
utilizing the spatial and temporal properties of the derived features. The output of this phase is
the context reference model parameters. Section 3.3. presents a detailed description of this phase.
The fourth phase is the multifaceted vehicles evaluation, in which vehicles were evaluated with respect
to the derived multidimensional features based on their deviation from the dynamic context reference
using the Hampel filter z-score-based algorithm. A set of 13 different classifiers were built (one classifier
for each feature) using the Hampel filter-based method, in which vehicles were classified into either
misbehaving or benign vehicles. The outputs of this phase are the set of multifaceted, context-aware,
statistical-based classifiers, which are used for the pre-detection and the vehicles’ scoring. More details
about this phase are presented in Section 3.4. In the fifth phase, the outputs of the second phase (the
derived consistency, plausibility, and behavioral features), the third phase (context reference model
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parameters), and the fourth phase (pre-classification and vehicle scores) were used as input features to
train the ensemble learning-based classifiers. The random forest algorithm was used to create a set of
independent classifiers. More details about this phase are presented in Section 3.5. In the sixth phase,
a weighted average-based method was used to aggregate the output of the classifiers in phase 5 and
produce the final decision. More details about this phase are presented in Section 3.6. The detailed
description of the used methods is presented in the following subsections.
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3.1. Data Collection Phase

In this phase, each vehicle collects the mobility information shared by its neighboring vehicles.
Data collection in VANET is not a trivial task due to the surrounding noises and harsh communication
environment. In particular, vehicles’ sensors are surrounded by different types of noises, which render
obtaining accurate data challenging. Furthermore, the communication channels between the vehicles
are unreliable due to the high mobility, traffic density, and drivers’ behavior. Figure 2 shows the
data collection scheme used by each node (vehicle or RSU) that hosts the MDS to collect the mobility
information. A similar data collection scheme was used recently in our previous publications [67,69].
However, this scheme will be elaborated in more detail.
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The scheme in Figure 2 consists of three main components: data acquisition, data-sharing, and data
collection. During data acquisition, each vehicle uses the acquisition algorithm to acquire the mobility
data recorded by its onboard sensors, such as Global Positioning System (GPS) receiver, speedometer,
accelerometer, and gyroscope. However, the harsh environment that these vehicles operate within,
as well as the mobility nature of those vehicles, contained heterogeneous and dynamic noises within the
data, which render the acquired data uncertain and the environment-dependent, i.e., it depends on the
environment surrounding the vehicles’ sensors. A robust acquisition algorithm that is aware of such
an environment should be used to improve the accuracy and estimate the uncertainty of the acquired
data. Although there are many acquisition algorithms in the literature, the improved innovation-based
adaptive estimation Kalman filter algorithm proposed in Reference [70] has been found robust for
heterogeneous and dynamic noises in vehicular environments. The algorithm in Reference [70],
which is called Enhanced Innovation-based Adaptive Estimation Kalman Filter algorithm (EIAE-KF),
estimates the measurement noise covariance according to the discrepancy between the prediction and
measurement phases of the Kalman filter algorithm in a timely manner. The estimated noise covariance
was then used to adaptively adjust the Kalman gain to improve the estimation accuracy along with
estimating the uncertainty of the data. For more details about the EIAE-KF algorithm, the readers are
referred to the study in Reference [70].
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During the data sharing step, each vehicle shares its mobility information messages with its
neighbors. Due to the high mobility of vehicles, mobility data become outdated quickly. Therefore,
vehicles should broadcast their mobility information at high rates (10 messages per second according
to the VANET standards) [71]. Unfortunately, the high broadcasting rate in shared communication
channels increases the congestion rate within these channels, which in turn increases the rate of
lost messages. Moreover, intermittent communication increases the uncertainty of the information,
leading to degrading the effectiveness of the applications and increases the false alarm rate in the
existing Intrusion Detection Systems (IDSs) solutions. Many broadcasting schemes have been proposed
in the literature to adapt the broadcasting rate according to channel characteristics such as busy
time status, vehicle density, traffic flow, or a combination of these parameters. In this study, the
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Driving-Situation-Aware Adaptive Broadcasting Rate Scheme ( DSA-ABR) [31], has been adopted
to broadcast the mobility information. DSA-ABR adapts the broadcasting rate of each individual
vehicle according to the driving situation to decrease the number of broadcasted messages, and thus
decreases the number of competitors on the channel while preserving the accuracy of the information.
Furthermore, DSA-ABR increases broadcasting according to the changes in driving behavior, such
as during braking, acceleration, and maneuvering, and it decreases the broadcasting rate when the
driving regime is stable and/or mobility information has high uncertainty. During the stable driving
situation, neighboring vehicles can accurately predict the omitted mobility messages. On the other
hand, if the uncertainty of the information is high, there is no need to increase the broadcasting rate.

For a reliable collection of the mobility information broadcasted by neighboring vehicles, the
DSA-ABR uses a Kalman filter prediction algorithm to track the mobility information broadcasted by
neighboring vehicles and predict the lost or omitted information. It is worth noting that some mobility
information messages are lost due to unreliable communication in the vehicles’ environment. In the
DSA-ABR scheme, some mobility information messages that can be easily predicted by receivers are
deliberately omitted by senders to decrease the broadcasting rate, so as to improve communication
reliability. The output of this phase is a dataset for each neighboring vehicle. Each dataset contains a
history of vehicle mobility information sampled at every 100 milliseconds.

3.2. Features Derivation Phase

After collecting the mobility information of the neighboring vehicles, two main types of features
were derived: a data-centric-based features set and a behavioral-based features set.

3.2.1. Data-Centric-Based Features

Two data-centric types of features were extracted from each dataset collected in the previous
phase: a consistency-based features set and a plausibility-based features set. More specifically, the
vector of the innovation errors of the Kalman filter algorithm is used as consistency features. This
vector contains the divergence between the predicted state and the received mobility messages. Thus,
four consistency features related to the positioning error, and speed prediction errors in both latitude
and longitude dimensions, were extracted, assuming two-dimensional space and a fixed acceleration
mobility model. The plausibility-based features set consists of three main features, as follows. The
communication range-based feature, which is the distance between the sender (all neighboring vehicles)
and the receiver vehicle (the subject vehicle that host the misbehavior detection model). The distance
of the vehicles’ appearance feature, which is the distance between the sender and the receiver vehicle
when the sender vehicle enters the communication range of the receiver vehicle, and the overlapping
frequency-based feature, which is the number of times in which the vehicle occupation area of the
neighboring vehicles is overlapped with each other. Thus, seven data-centric-based features were
derived to represent the data consistency (DC1, DC2, DC3, and DC4) and the plausibility (DC5, DC6,
and DC7). Table 1 presents a list of those features with their names and description. In the table, DSF
stands for Data-centeric Features Set while DC stands for Data-Centeric.

The following paragraphs explain more about how the consistency features (DC1, DC2, DC3, and
DC4) were derived. As the innovation sequence of the Kalman filter can describe the discrepancy
between the expected and reported mobility information, it has been used to represent the consistency
of the received information from neighboring vehicles with the information predicted using the
mobility model. Accordingly, there are two main steps to derive the consistency score (CS) feature.
Where evi

k is a vector that contains the innovation errors of vehicle vi that was recorded at the time
epoch (k), and E is a matrix that contains a list of the innovation errors for all neighboring vehicles.
The consistency feature f vi

e(k)
of a neighboring vehicle vi at a specific time epoch, k is then calculated

according to the following equation:
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∀ evi
k ∈ E : f vi

e(k)
=

 yvi
k − y̌vi

k|k−τ(i)
i f a message is recieved

f vi
k−τ(i)

∗ (k− τ(i)) Otherwise
(1)

where yvi
k is the mobility information vector as received from the neighboring vehicle vi at the time

epoch k, y̌vi
k|k−τ(i)

is the predicted mobility information vector using the last received messages (at the

time epoch τ(i)), and τ(i) is the time epoch when the last message is received.

Table 1. The derived data-centric-based features (consistency and plausibility).

DFS# Type Name Description

DC1 f1 Consistency Latitude prediction error

Consistency-based feature: The difference
between the received latitude with the

predicted one using a Kalman filter in the
DSA-ABR algorithm.

DC2 f2 Longitude prediction error
The difference between the received longitudes
with the predicted one using a Kalman filter in

the DSA-ABR algorithm.

DC3 f3 Latitude speed Prediction error Speeds errors towards latitude: the rate of
latitude prediction error

DC4 f4
Longitude speed prediction

error
Predicted speed errors towards longitude: the

rate of change of longitude prediction error

DC5 f5 Plausibility Communication Range

It is a plausibility-based feature, which is the
distance between the sender and receiver. The

distance between two vehicles can be
calculated using the Euclidean distance

formula distance function (e.g., Euclidean
distance) [72].

DC6 f6 Vehicle appearance distance
Similar to f5 but it is calculated one time when
a new vehicle enters the communication range

of the subject vehicle

DC7 f7 Overlapping Frequency The number of overlap times with the
neighboring vehicles

The plausibility-based features were driven as follows. For the communication range-based
feature (denoted by DC5 and f5 in Table 1), v contains the list of all neighboring vehicles, p(x, y) is
the position of the vehicle that will drive this feature (the receiver), and pi(xi, yi) is the position of
the vehicle vi that sent the mobility messages. Then, the communication range-based feature f vi

cr(k)
of

vehicle vi at time epoch k can be calculated as Euclidean distance between the sender and receiver,
as follows:

∀ vi ∈ v : f vi
cr(k)

∀ vi ∈ v : f vi
cr(k)

= ‖p(x, y) − pi(xi, yi)‖ (2)

The vehicle appearance distance (DC6 or f6) is calculated for newly neighboring vehicles when
they enter the communication range of the subject vehicle (the receiver). Thus, the f vi

va(k)
can be set

equal to f vi
cr(k)

, assuming k is the time epoch when vi enter the communication range of the subject
vehicle. The overlapping frequency feature (denoted by DC7 or f7 in Table 1) was derived based on the
work of Bissmeyer et al. in Reference [20]. In their work, the vehicles were modeled as rectangles so
that vehicles are misbehaving if their rectangles intersect (overlap) with each other. This study utilized
the same idea to derive overlapping-based features that work as an indication of possible misbehavior.
The algorithm in Figure 3 presents a pseudocode for the data-centric-based features derivation.
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Figure 3. Pseudocode for features derivation.

3.2.2. Behavioral-Based Features Set

As shown in Table 2, vehicles’ behaviors are represented by the following six features. Four features
(BF1, BF2, BF3, and BF4) were attributed to the vehicle’s behavior against the communication protocol,
while two features (BF5 and BF6) are for driving behavior features.

Table 2. The derived behavioral-based features.

BF# Feature Name Description

BF1 f8 Connection Length
The time difference between the first received

mobility message from each neighboring vehicle and
the current time epoch.

BF2 f9 Received Messages The total number of messages that are received from
each neighbor.

BF3 f10 Broadcasting Rate The moving average of the number of received
messages divided by the connection length.

BF4 f11 Broadcasting delay
The moving average of the differences between time

of receiving the messages by the neighboring
vehicles and their creation time in the subject vehicle.

BF5 f12 Jerk acceleration The rate of change of acceleration

BF6 f13 Speed deviation The divergence between the sender’s average speed
and the median speed of all neighboring vehicles

3.3. Context Representation Phase

In this phase, the context reference model is constructed and updated in a timely manner. Because
neighboring vehicles are exposed to the same context in terms of traffic conditions, environmental
noises, communication status, and road status, thus, the spatial correlation among the features derived
in the previous phase can be utilized to construct a dynamic context reference. The spatial correlation
among neighboring vehicles has been utilized to construct the context reference. The Hampel filter has
been used to construct the reference model as follows: let F =

{
f1, f2, f3, . . . , fm

}
is the set of features,

V = {v1, v2, v3, . . . , vn} is the set of neighboring vehicles at time epoch k. Also, Xk is a matrix that
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contains the value of the features of each neighboring vehicle at time epoch k, xNV(i)
k is a vector that

contains the values of feature j ∈ m derived from each neighboring vehicle vi ∈ V at time epoch k.

X(k) =


xv1
(k)

xv2
(k)
...

xvn
(k)


=


f v1
1(k)

f v1
2(k)

· · · f v1
m(k)

f v2
1(k)

f v2
2(k)

· · · f v2
m(k)

...
... · · ·

...
f vn
1(k)

f vn
2(k)

· · · f vn
m(k)


,∀ vi ∈ V and f j ∈ F (3)

where f vi
j(k)

is the value of the feature j that was derived from the vehicle i at time epoch, k. Thus,
the Hampel filter-based dynamic context reference model CRM(k), at time epoch k, can be computed
as follows:

CRM(k) =


∅(k) = median

(
X(k)

)
δ(k) = 1.4826 ×median

{∣∣∣X(k) −∅(k)

∣∣∣}
CRUB(k) = HUBk = ∅(k) + β× δ(k)
CRLB(k) = HLBk = ∅(k) − β× δ(k)

(4)

where ∅(k) and δ(k) are the median and the median absolute deviation (MAD) of each feature in X(k),
respectively. CRUB(k) is the context reference’s upper bound which is equal to the Hampel filter upper
bound (HUBk). CRLB(k) is the context reference’s lower bound which is equal to the Hampel filter
lower bound (HLBk), and β is a threshold that was selected heuristically, such that the best accuracy is
obtained. Thus, the model parameters’ can be expressed as follows:

CRM(k) =



∅ f1
(k)

∅ f2
(k)

· · · ∅ fm
(k)

δ
f1
(k)

δ
f2
(k)

· · · δ
fm
(k)

CUB f1
(k)

CUB f2
(k)

· · · CUB fm
(k)

CLB f1
(k)

CLB f2
(k)

· · · CLB fm
(k)


(5)

Because vehicular context is highly dynamic due to high vehicle mobility, critical VANET
applications require a high rate of context-awareness messages. Thus, it is worth noting that the context
references are built on the fly and updated every 100 ms to capture the highly dynamic temporal
change of the context data. However, building the context reference based on information collected
within a very short period can make the context reference unstable and inefficient, causing improper
detection accuracy and delay. Similarly, using a long period can make the context reference rigid.
Accordingly, Welford’s approach [73] to calculate the running average is used to update the CRM(k)
model parameters in real-time, as follows:

CRM(k) =
CRM(k−1) ∗ (w− 1)

w
+

CRM(k)

w
= CRM(k−1) +

CRM(k) −CRM(k−1)

w
(6)

where CRM(k) is the context reference model at time epoch k, and w is the sliding window width.
Equation (4) is equivalent to the average of the context references using the average batch formula∑k

i=k−w
CRM(i)

w , but it is numerically stable and more efficient than the average batch formula.

3.4. Multifaceted Vehicles Evaluation and Pre-Detection Phase

After constructing the context reference, vehicles are evaluated based on their deviation from
the context reference. The evaluation has been calculated using a Hampel Filter-based z-score outlier
detection (z =

xt−µ
σ ). Hample filter replaces the arithmetic mean µ, and standard deviation σ by the
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median ∅k and median absolute deviation (MAD) δk, respectively. Thus, each vehicle got a score for
each feature using Hampel based z-score, which can be rewritten as follows:

zvi
f j(k)

=
f vi
j(k)
−∅ f j

(k)

δ
f j

(k)

, ∀ vi ∈ V and f j ∈ F (7)

The set of z-scores of a vehicle, i, at time epoch, k, was represented by a vector, Zvi
(k)

, as follows:

Zvi
(k)

=

 f
vi
1(k)
−∅ f1

(k)

δ
f1
(k)

f
vi
2(k)
−∅ f2

(k)

δ
f2
(k)

. . .
fm−∅

fm
(k)

δ
fm
(k)

 (8)

Accordingly, the set of all scores of all vehicles can be represented by a matrix, S(k), as follows:

S(k) =


Zvi
(k)
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(k)
...

Svi
(k)


=


zv1
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f2(k)
· · · zv1

fm(k)
zv2

f1(k)
zv2

f2(k)
· · · zv2
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...

... · · ·
...

zvn
f1(k)

zvn
f2(k)

· · · zvn
fm(k)


(9)

Different statistical classifiers were developed according to the context reference and vehicle scores.
With each vehicle, a set of tests has been conducted for each feature to the prediction results, as follows:

ovi
f j(k)

=

 0 benign vehicle i f CLB
f j

(k)
< zvi

f j(k)
< CUB

f j

(k)

1 misbehaving vehicle Otherwise
(10)

where ovi
f j(k)

is the output of the classifier that represents the features, f j, for a vehicle, vi, at the time

epoch, k. CLB
f j

(k)
and CUB

f j

(k)
are the context lower bound and the context upper bound respectively,

as computed from the feature, f j, of all vehicles present at time epoch, k, using the Hampel filter. If the
zvi

f j(k)
is located outside those bounds, the corresponding vehicle (vi) is considered as a misbehaving

vehicle with respect to the feature, f j, detected at time epoch, k.
Figure 4 presents the multifaceted MDS model, which contains both the data-centric context-aware

MDS (DCA-MDS) and the hybrid context-aware MDS (HCA-MDS). We have distinguished between
these two MDSs in order to separately evaluate the performance of each detection concept. The
DCA-MDS model is a context-aware MDS that has been built based on the data-centric features. It
aims to thwart many types of basic attacks where the attacker is unaware of the context. However,
a context-aware or a sophisticated attack type can bypass such a solution rendering DCA-MDS not
effective. Thus, the behavioral features-based classifiers were built to assist the DCA-MDS to improve
the detection rate. Our hypothesis is that the attackers may show different behavioral activities
compared to the benign vehicles because they are keen to convey their false information to the vehicles
in their vicinity. Thus, the hybrid model, HCA-MDS, is constructed. The model considers both
data-centric- and behavioral-based features. Figure 5 shows the pseudocode for features derivation,
context reference model construction, and the set of classification rules that were used by HCA-MDS
and DCA-MDS. Table 3 lists the description of the symbols used in Figure 5.
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Table 3. Symbols Description.

Symbol Description

f vi
e(k) Consistency features: innovation errors of vehicle (vi) at time epoch (k)
yvi

k Received mobility data
y̌vi

k|k−τ(i) Predicted mobility data by Kalman filter
d(i, j) The distance between the vehicle vi at position pi(xi, yi) and vehicle v j at position p j

(
x j, y j

)
τ(i) The time epoch of last received mobility data
f vi
cr(k) Range-based features: the distance between the current vehicle and the neighboring vehicle
osvi

k Overlapping-based feature
dmin(i, j) The minimum accepted distance between vehicles vi and v j

f vi
j(k) Feature number j for vehicle vi at time epoch k

f vi
b(k) Behavioral features of the vehicle vi at time epoch k

CRM(k) Context-reference model parameters
∅k Median of the vehicles’ temporal summaries
δk The median absolute deviation of vehicles’ temporal summaries

HUBk Hampel upper bound, also called CRUB(k) context reference upper bound
HLBk Hampel lower bound, also called CRLB(k) context-reference lower bound
β Tuning parameters

zvi
f j(k)

Vehicle vi Hampel-based Z-score with respect to feature f vi
j(k)

at time epoch k

ovi
f j(k) Classification rule
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Figure 5. Pseudocode for features derivation, context reference model construction, and the set of
classification rules (HCA-MDS and DCA-MDS).

3.5. Ensemble Learning Phase

In the previous section, the vehicles were evaluated, and pre-detection was obtained. Multi-faceted
statistical adaptive classifiers were built, as shown in Figure 3. This design relays on the univariate
statistical analysis, in which the input variables (the derived features) were assumed to be independent.
That is, a classification rule was created for each derived feature. The relationship among the variables
has been ignored, rendering such design vulnerable to sophisticated and context-aware attackers.
An attacker who incrementally manipulates the mobility information can end up with a successful
attack because the independent classifiers can only distinguish the outliers that deviate much from the
statistical context reference represented by that specific feature. Therefore, considering the relationship
between the input features is important to detect such advanced attacks. For example, the broadcasting
rate feature, which is a behavioral-based feature, is correlated with the consistency features (Kalman
innovation errors). If the broadcasting rate increased, the innovation errors of the Kalman filter would
decrease. An attacker who incrementally manipulates the vehicle’s own mobility information will be
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keen to convey the false information to the neighboring vehicle by increasing the broadcasting rate.
The attacker will also be aware of the context, so that the increase of the broadcasting rate will be within
the context reference boundaries. Thus, independent classifiers that ignore the correlation between the
features may not be able to detect such an attack. Furthermore, collecting sufficient information about
the vehicles can be challenging in the VANET environment. Therefore, mining previously known
data can be useful in detecting previously seen patterns. Because correlation among the features is
stationary with respect to the particular vehicular context, a supervised approach can be acceptable to
predict the sophisticated attack context-aware attackers. Accordingly, an ensemble-learning-based
predictive model has been constructed using the random forest algorithm. A random forests algorithm
creates a forest of random decision trees-based classifiers. Each of those classifiers was trained based
on a random sample that was randomly selected with replacement from the original dataset. The
outputs of the classifiers are aggregated using the majority voting scheme. Inspired by the concepts
“wisdom of crowds and the power of diversity,” the random forest algorithm was selected to improve
the detection effectiveness and provide comprehensive context representation. Figure 6 shows the
procedure used to train and evaluate the proposed predictive model.
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As shown in Figure 6, there are two main tasks conducted to construct the proposed EHCA-MDS
model. The offline training of the random forest-based classifiers and the integration of the trained
ensemble classifiers with the HCA-MDS model presented in Figure 4 for the online operation. For
offline training, the first procedure is the preparation of the datasets. The preparation includes noise
injection to simulate the vehicular noise environment. The datasets have been replayed under different
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communication reliability scenarios, where different message loss ratios were simulated. Then, many
basic and sophisticated attack types related to false mobility information attacks have been simulated
and injected into vehicle trajectories. A detailed description of the procedure of the data preparation is
presented in the next section (Section 4). Then, the HCA-MDS model is implemented and used by each
vehicle in the datasets to detect the simulated misbehaving vehicles. Each vehicle uses the proposed
algorithm shown in Figure 5 to derive the context features, construct the context reference model,
evaluate the vehicles, and provide pre-detection outputs. Then, the derived features, the parameters of
the context reference model, the vehicle’s scores, and the classification outputs have been used as input
features to the random forest algorithm to construct the ensemble-based classifiers. The integration
of the trained ensemble classifiers with the HCA-MDS model was then carried out for the online
operations. The classification outputs of all classifiers (the statistical and the ensemble-based classifiers)
were aggregated using a weighted average for the final decision.

3.6. Decision Phase

After obtaining the outputs of the statistical and ensemble learning-based classifiers, the final
decision is taken using the following formula:

Dvi
(k)

=

 0 benign vehicle i f
∑

w j∗oi∑
w j

> min(W) : wi ∈W

1 misbehaving vehicle Otherwise
(11)

where Dvi
(k)

is the final decision, and wi and oi are the weight and the output of the classifier j, respectively.
The classifiers’ weight vector, W, is obtained from the performance of the classifiers according to the
performance of the individual classifiers. For example, if the performance of the classifier j in terms of
F-measure is 80%, the classifier is then weighted as 0.8. Consequently, if the condition in Equation (9)
was true, the misbehaving vehicle would be detected.

4. Performance Evaluation

The experimental setup and performance metrics are discussed in the following subsections.

4.1. Experimental Setup

In this study, the next generation simulation (NGSIM) dataset, a real-world traffic dataset that
contains vehicle trajectories recorded each 100 ms, was used to conduct the experiments. It has
been generated by the Federal Highway Administration (FHWA) of the United States Department
of Transportation (DOT) [74]. It represents the ground truth information of neighboring vehicles’
trajectories [74,75]. Extensive simulations have been conducted to evaluate the proposed model.
In particular, many activities have been done, such as dataset preparation, environmental noise injection,
communication simulation, and misbehavior simulation. Similar to related studies [2,20,29,35,76,77],
the Matlab tool [78] has been used for simulating the environmental noises, vehicle communication,
and misbehaving vehicles.

4.1.1. Sample Selection

The dataset is categorized into four different clusters, based on driver behavior to ensure that
the evaluation covers all types of driver behaviors. For each vehicle, three features were selected to
represent driver behavior, namely: time headway, space headway, and lane changing ratio. The selected
features are aggregated by finding their mean and variance, which were then used as input for the
K-means clustering algorithm [79]. These clusters describe four types of driving regime: free-flowing,
random flowing, car flowing, and lane changing behavior. The purpose of this categorization is to
ensure that the vehicle behaviors have no influence on the performance of the proposed scheme.
Table 4 shows the dataset samples used to evaluate and validate the proposed EHCA-MDS scheme.
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As shown in the table, 16 datasets have been used for the evaluation. Those datasets are composed
of Cooperative Awarness Messages (CAMs) collected by 15 vehicles, as well as one simulated RSU.
Those vehicles were selected randomly from different driving regimes and used to host the evaluated
misbehavior detection models.

Table 4. Next generation simulation (NGSIM) dataset selected samples (host vehicles).

Dataset Host
Vehicle Id

Vehicle
Regime

Average
Speed (m/s) Duration (s) Dataset Size

CAMs
Total

Neighbors

DS1 13 Free-Flow 16.8 94.8 113,258 177
DS2 252 Free-Flow 23.3 55.8 155,908 255
DS3 455 Free-Flow 21.6 60.3 145,904 260
DS4 2280 Free-Flow 24.0 54.1 197,511 270
DS5 5 Lane-Change 22.4 70.2 80,568 119
DS6 1133 Lane-Change 31.7 39.3 107,565 214
DS7 1687 Lane-Change 22.4 76.5 110,051 314
DS8 1 Lane-Change 18.0 88.4 88,971 134
DS9 268 Flowing-Mode 26.2 58.5 156,941 255
DS10 1066 Flowing-Mode 33.0 47.5 111,305 225
DS11 1964 Flowing-Mode 21.5 72.9 223,211 317
DS12 7 Flowing-Mode 22.5 71.1 85,244 127
DS13 1593 Flowing-Mode 21.1 74.2 186,260 294
DS14 2885 Random-Flow 16.5 94.5 150,127 200
DS15 1899 Random-Flow 19.9 78.8 231,867 331
DS16 RSU Mixed 28.0 57.3 479,823 284

4.1.2. Simulation of Environmental Noises

Various types of environmental noises have been injected into the vehicle trajectories in the
NGSIM data to represent VANETs’ harsh environment. A combination of stationary white noises
with zero mean, non-stationary white noise with time-varying variance, and correlated noises have
been reported by many studies in VANET context acquisition and used to simulate the dynamic and
heterogeneous environmental noise in VANET [18,70,80,81]. Noise injection is a common procedure to
simulate measurement noises in the VANET environment [18,80,81]. The noise types, noise scenarios,
and their simulation have been reported in our previous publication [70]. The acquisition algorithm
presented in Reference [70] has been used to acquire its own context information in each vehicle.

4.1.3. Simulation of Message Losses

Because the performance of the applications is impacted by the messages loss rate, nine
communication scenarios were simulated, each with different traffic density so as to represent
different message loss rates. For each communication scenario, sixteen different traffic datasets have
been conducted, each of which contains realistic driving regimes. A total of 144 experiments have
been conducted to evaluate the proposed model. The Matlab [78] network simulation platform was
used to simulate the IEEE 802.11p/WAVE communication among vehicles [82]. In each experiment, the
maximum communication range used was 1 km, broadcasting frequency 10 Hz. Each vehicle generates
a new mobility message at the beginning of every control channel interval (CCHI) [82]. Vehicles use
the scheme presented in Reference [31] for efficient broadcasting and effective collection of neighboring
vehicles’ context information. The message arrival of vehicles was modeled as a random variable with
Poisson distribution to simulate the message loss under different communication scenarios [83–86].

4.1.4. Simulation of Misbehaving Vehicles

Due to the absence of ground truth-labeled dataset for evaluating the intrusion detection systems
in the VANET, the common procedure is to simulate the attacker’s actions. Therefore, two types of
context-driven attacks were simulated, basic attack and sophisticated attack. The basic attacks are
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those that directly modify the mobility information messages without manipulating the context. This
type of attack includes, but not limited to, positioning noises, position jumping, message suppression,
cheating with context information, sudden position jumping, and random jumping attack. [52,87].
On the other hand, with a sophisticated attack, attackers are aware of the context and, consequently,
can perform incremental jumps to carry out attacks [25].

4.2. Performance Metrics

Five performance metrics were used to evaluate the proposed EHCA-MDS, namely, detection
accuracy, false positive rate (FPR), detection rate (DR), precision, and F-measure. These metrics are
commonly used by researchers to evaluate the misbehavior detection models in VANET [29]. The first
performance metric is the detection accuracy, which is the percentage of correctly classified vehicles.
The second metrics is the false positive rate (FPR), which is the proportion of genuine vehicles that
were misclassified. The third performance measure is the detection rate (DR), also called the recall or
sensitivity, which is the proportion of the attacks that are correctly detected. The fourth performance
measure is the precision (also called positive predictive value), which is a measure of statistical bias,
and measures the correctly classified genuine vehicles over the total vehicles that were predicted as
genuine vehicles. Finally, the fifth measure is the F-measure, which is the harmonic mean of the recall
and the precision [88].

5. Results

In this section, the performance of the proposed EHCA-MDS, HCA-MDS, and DCA-MDS, in terms
of the aforementioned performance measures, is presented. In HCA-MDS, the classification outputs
of all statistical classifiers have been aggregated using the logical OR operator to obtain the final
decision (the pre-detection phase). That is, a misbehaving vehicle is identified if the output of
any one of the independent statistical classifiers is positive. The context-aware entity-centric MDS
model (DCA-MDS) is similar to the hybrid model with the behavioral classifiers removed. The
Ensmbel-based Hybrid Context-Aware MDS (EHCA-MDS), Hybrid Context-Aware MDS (HCA-MDS),
and Data-Centric Context-Aware MDS (DCA-MDS) were compared with the Bissmeyer’s model [20],
called the Entity-Centric Trust-based MDS (ECT-MDS) model and Stübing’s MDS model [58]. Stübing’s
MDS [58] has been used as a baseline for evaluating misbehavior detection by several studies [20,29]. The
results of the simulations are presented in Table 5. For each value in Table 5, the results were averaged
over 144 runs (16 datasets × 9 communication scenarios) with respect to the performance measure.

Table 5. The effectiveness of the proposed models.

Model Accuracy% FPR% DR% Precision% Recall% F-Measure%

EHCA–MDS (Proposed) 97.01 1.19 90.45 95.32 90.45 92.82
HCA–MDS (Proposed) 93.51 4.45 86.11 85.00 86.11 84.44
DCA–MDS (Proposed) 90.98 2.33 66.18 89.19 66.18 75.05

Bissmeyers’ ECT-MDS [20] 74.79 2.98 30.65 83.50 30.65 44.49
Stübing’s MDS [58] 87.37 4.79 62.55 86.91 62.55 71.60

The results in Table 5 show that EHCA-MDS has achieved the highest accuracy performance in
terms of detection accuracy (see Figure 7a). That is, 97.01% of the vehicles were correctly classified by
the EHCA-MDS compared to 93.01% for the HCA-MDS, 90.98% for the DCA-MDS, 74.79% for the
ECT-MDS, and 87.37% for the baseline MDS model. In terms of the false positive rate, the EHCA-MDS
achieved the lowest false alarms, 1.19% of benign vehicles were misclassified as attackers by the
EHCA-MDS compared to 4.45%, 2.33%, 2.98%, and 4.79% of HCA-MDS, DCA-MDS, ECT-MDS, and
MDS models, respectively. Furthermore, the ensemble-based approach, EHCA-MDS, achieved the
lowest false positive rate (1.19%) compared to the independent-classifiers HCA-MDS and DCA-MDS
and non-context-aware model ECT-MDS and Stübing’s MDS (see Figure 7b), which achieved 4.45%,
2.33%, 2.98%, and 4.79%, respectively. Regarding the detection rate, an average of 90.45% of misbehaving
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vehicles has been correctly identified by EHCA-MDS compared to 86.11%, 66.18%, 30.65%, and 62.55%
for the HCA-MDS, CA-MDS, ECT-MDS, and MDS models, respectively. That is, EHCA-MDS has
achieved the highest detection rate compared to the related work (see Figure 7c). Overall, EHCA-MDS
has achieved the highest detection performance, which is 92.82% compared to 84.44%, 75.05%, 44.49%,
and 71.60% for HCA-MDS, CA-MDS, ECT-MDS, and MDS models, respectively. The results in terms of
F-measure shows that the proposed model achieves the highest trade-off between precision and recall
(see Figure 7d). Table 6 summarized the improvement gained by the proposed EHCA-MDS compared
to the other studied models HCA-MDS, DCA-MDS, ECT-MDS, and MDS baseline. In terms of the
overall accuracy, the EHCA-MDS achieved 3.5, 6.03, 22.22, and 9.64 higher than HCA-MDS, DCA-MDS,
ECT-MDS, and MDS baseline, respectively. That is, the accuracy has been improved by 3.74%, 36.67%,
29.71%, and 11.03%, as compared to HCA-MDS, DCA-MDS, ECT-MDS, and MDS baseline, respectively.
The false-positive rate has been reduced to 1.19%, which becomes 73%, 36.67%, 60.07%, and 75.16%
lower than that of HCA-MDS, DCA-MDS, ECT-MDS, and MDS baseline, respectively. The detection
rate (DR) was improved by 5%, 36.67%, 195.11%, and 44.60% compared to HCA-MDS. In terms of
precision, the proposed EHCA-MDS has been improved by 11.8% compared to HCA-MDS, DCA-MDS,
ECT-MDS, and MDS baseline, respectively. The overall performance has been improved by 9.9%
compared to HCA-MDS.
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Figure 7. Average effectiveness of EHCA-MDS, HCA-MDS, CA-MDS, ECT-MDS and MDS baseline
models in terms of the: (a) Accuracy, (b) False Positive Rate (FPR), (c) Detection Rate (DR), and
(d) F-Measure.
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Table 6. Improvement gained by the proposed EHCA-MDS model.

Model Accuracy FPR DR Precision Recall F-Measure

HCA-MDS (Proposed) 3.5 −3.26 4.34 10.32 4.34 8.38
(3.74%) (73.26%) (5.04%) (12.14%) (5.04%) (9.92%)

DCA-MDS (Proposed) 6.03 −1.14 24.27 6.13 24.27 17.77
(36.67%) (36.67%) (36.67%) (36.67%) (36.67%) (36.67%)

Bissmeyers’ ECT-MDS [20] 22.22 −1.79 59.80 11.82 59.80 48.33
(29.71%) (60.07%) (195.11%) (14.16%) (195.11%) (108.63%)

Stübing’s MDS baseline [58] 9.64 −3.60 27.90 8.41 27.90 21.22
(11.03%) (75.16%) (44.60%) (9.68%) (44.60%) (29.64%)

Figure 8 shows the performance comparison between the proposed EHCA-MDS, the independent
classifiers-based approach (HCA-MDS), the data-centric context-aware-based approach (DCA-MDS),
and the related non-hybrid non-context-aware models (ETC-MDS and MDS) under different context
scenarios where the communication reliability degraded from ideal in the first scenario to the worst
in the last scenario. The X-axis contains nine context scenarios. In each scenario, different messages’
arrival rates that represent different communication statuses were used. The Y-axis contains the
average results of replaying the 16 datasets listed in Table 4 under each context scenario in terms of the
performance measures, namely, detection accuracy (Figure 8a), FPR (Figure 8b), DR (Figure 8c), and
the F-Measure (Figure 8d).
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Figure 8a–d compare the impact of different vehicular contexts on the detection performance of
each model. All the context-aware models (EHCA-MDS, HCA-MDS, and DCA-MDS) manage to keep
the false positive rate low. Figure 8a shows the comparison of the accuracy performance of EHCA-MDS
with the other implemented MDS models. Figure 8b compares the performance of EHCA-MDS in terms
of the false-positive rate. EHCA-MDS has the lowest false positive rate in most scenarios, with a slight
increase when communication becomes more unreliable. HCA-MDS has the highest false-positive rate
among the context-aware models. Figure 8c compares the performance of EHCA-MDS with other MDS
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models in terms of the detection rate. EHCA-MDS has the highest detection rate in most scenarios. In
the first scenario where the communication was assumed ideal, the detection rate of the EHCA-MDS
is lower than that of HCA-MDS. Figure 8d summarizes the overall performance of EHCA-EC-MDS
compared to the other MDS models in terms of the F-measure. Particularly, EHCA-EC-MDS has the
highest F-measure values in most scenarios. Only under the assumption of ideal communication, the
overall performance of the EHCA-EC-MDS, in terms of F-measure, is lower than that of HCA-EC-MDS.
However, the difference is insignificant.

6. Discussion

In this study, the ensemble hybrid context-aware misbehavior detection system model
(EHCA-MDS) was introduced to address the adaptability issue of the MDS model with the highly
dynamic vehicular context as well as the issue of insufficient context representation. To address the
adaptability issue, Kalman and Hampel filters were used to build a hybrid multifaceted dynamic
context reference utilizing neighboring vehicles’ context information. Accordingly, hybrid multifaceted
statistical models were constructed online and updated in a timely manner. In doing so, the misbehaving
vehicles can be effectively detected locally and autonomously. That is, vehicles that deviated much
from the context reference are considered suspicious. To address the issue of insufficient context
representation, the output of the hybrid and multifaceted classifiers were used as new features to train
an ensemble of machine-learning-based classifiers using the ensemble learning method. The random
forest algorithm was used as the base classifier. The results from both statistical- and ensemble-based
classifiers were combined using a weighted average function for more effective results. The results
show the effectiveness and robustness of the proposed model for dynamic vehicular context. In Table 4,
Table 5, Figure 7, and Figure 8, significant improvements were observed by the proposed EHCA-MDS
model compared to the existing MDS models in all studied scenarios. The results confirm that
the proposed ensemble-based model (EHCA-MDS) outperforms the existing models, including the
independent hybrid model (HCA-MDS), the non-hybrid context-aware model (DCA-MDS), and
the non-context-aware-based models (ECT-MDS and MDS) with high significance (see Table 4 and
Figure 7).

The results in Table 4, Table 5, Figure 7, and Figure 8 indicate that the combination among
several non-parametric, unsupervised-based online statistical classifiers with a supervised-based
offline classifier consolidates the robustness and the effectiveness of VANET critical applications. The
improvement achieved by the proposed model suggests that the consideration of the correlation among
the hybrid and multifaceted features can capture the unseen behavior of the misbehaving vehicles.
That is, sophisticated attacks that are aware of vehicular context and resemble benign vehicles can be
easily identified when the correlations among features are considered. Considering the correlations
between the outputs of individual classifiers provided effective context representation and worked as a
pre-detection step that helps the ensemble-based classifiers to accurately distinguish the misbehaving
vehicles from other benign ones. The lack of consideration of the correlation among the outputs of
the statistical classifiers led to lower accuracy (see Figure 8a,c). This is because of the sophisticated
attackers that are aware of the parameters of the statistical classifiers. Thus, those parameters can
be used as attack thresholds to normalize attackers’ behavior and avoid detection. To increase the
detectability of the sophisticated attackers, the limits of the statistical classifiers can be shrunk. The
problem, however, is that such shrinking leads to an increase in the false-positive rate. This interprets
the high positive-rate resulted from the HCA-MDS (see Figure 8b) and led to reducing the overall
performance (see Figure 8d). Both the non-context-aware and non-hybrid approaches (ECT-MDS [20]
and MDS baseline [58]) are ineffective even for simple attack types ( See Figure 8) due to the ignorance
of the context and lack of considering the correlation among different features.

As shown in Figure 8a, EHCA- MDS remains stable at the highest accuracy among all the models
in most of the scenarios. In the first scenario where the communication was assumed ideal, the
accuracy of the HCA-MDS is slightly higher than the accuracy of the EHCA-MDS. However, the
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EHCA-MDS is more robust than HCA-MDS when the communication becomes unreliable. This is
due to the consideration of the relationship among the input features in the EHCA-MDS compared
to the other models that treat the features separately, which has led to insufficient representation
and thus lower accuracy. Although both DCA-MDS and HCA-MDS have a high false-positive rate
compared to the EHCA-MDS, all context-aware models are relatively stable and robust to the context
change (see Figure 8b). As shown in Figure 8b, EHCA-MDS is more stable and robust in terms of the
false-positive rate than the other tested models. When the data is accurate, the baseline model has a
relatively low false-positive rate compared to HCA-MDS and DCA-MDS. However, when the context
becomes unreliable, or data accuracy is highly uncertain, the false-positive rate of the baseline MDS
model increases rapidly.

From Figure 8c, it can be noted that in the first scenario where the communication was assumed
ideal, the accuracy of the HCA-MDS is slightly higher than the accuracy of the EHCA-MDS. This is
because the ensemble-based learning-based classifiers could not well distinguish between the patterns
of the sophisticated attack due to its high similarity with the behavior of benign vehicles in the ideal
context scenarios. This explains the drop in the accuracy under the first scenario, as shown in Figure 8a.
The detection rate remains stable as the communication becomes highly unreliable as their detection
rate stays stable under different context scenarios (see scenarios 6, 7, 8, and 9 in Figure 8c). It can be
observed that neither context-aware nor non-context-aware was able to detect sophisticated attacks
effectively. The non-context-aware schemes fail to achieve a balance between the detection rate and the
false positive rate. That is, both the false positive rate and the detection rate of the non-context-aware
(Bissmeyers’ ECT-MDS and Stübing’s MDS) approach increases dramatically when the communication
becomes more unreliable. In contrast, the context-aware approach (EHCA-MD, HCA-MDS, and
DCA-MDS) has a better trade-off between the detection rate and the false positive rate (see Figure 8b,c).
It can be observed that the EHCA-MDS is more effective in terms of the trade-off between detection
rate and false-positive rate among all studied models. Compared with the non-hybrid approaches,
EHCA-MDS and HCA-MDS are more effective and stable when making a trade-off between the
false positive rate and the detection rate compared with the data-centric and non-context-aware
models (DCA-MDS).

From Figure 8d, one can observe that the overall performance in terms of F-measure shows that
EHCA-EC-MDS is more robust and effective than the other studied models. Although the overall
performance of the EHCA-EC-MDS is lower than that of HCA-EC-MDS under the assumption of ideal
communication, the difference is insignificant. This is due to the drop in the detection rate, as shown in
Figure 8c. The drop in the detection rate is due to the high similarity between attack behavior and
normal vehicle behavior. The weights that were given to the classifiers during the decision-making
process worked as a penalty in high message arrival rate scenarios. This interprets the improvement in
the detection rate when the message arrival rate decreases. Although the difference is insignificant,
one idea to solve such a problem is by adapting the classifiers’ weights according to the context. This
issue has been left for future work.

To sum up, the performance achieved by the ensemble-based learning approach, i.e., EHCA-MDS,
was better than that of the independent statistical classifiers-based approach (represented by HCA-MDS,
DCA-MDS, ECT-MDS, and MDS baseline) due to its consideration of the correlation among the outputs
of the statistical classifiers. Meanwhile, the performance achieved by the hybrid-based approach, i.e.,
HCA-MDS, outperformed the non-hybrid approach (DCA-MDS, Bissmeyers’ ECT-MDS, and Stübing’s
MDS) due to involving the multifaceted classifiers, which addressed the direct relationship between the
behavioral- and data-centric-based features. For example, the attacker who tries to share false events
will be keen to increase its broadcasting rate to get more chance over the congested communication
channel. On average, HCA-MDS has improved the overall performance by 17.93% compared to
Stübing’s MDS model. The proposed context-aware models EHCA-MDS, HCA-MDS, and DCA-MDS
can adapt to dynamic vehicular context achieving higher performance than that of the none-context
aware models (ECT-MDS and MDS baseline). Table 7 summarizes the important features that have led
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to the performance improvement in terms of F-measure achieved by the proposed EHCA-MDS model
compared to the existing models.

Table 7. Features comparison among the studied and proposed models.

Model Ensemble Hybrid * Context-Aware Data-Centric Trust-Based Performance

EHCA-MDS
√ √ √ √

92.82
HCA-MDS

√ √ √
84.44

DCA-MDS
√ √ √

75.05
ECT-MDS

√ √ √
71.60

MDS Baseline
√

44.49

* Hybrid ≡ Data_Centric + Behavioural, Performance = F−measure.

7. Conclusions and Future Work

In this paper, an ensemble hybrid context-aware misbehavior detection model was developed.
EHCA-MDS follows the concepts of the wisdom of crowds and the power of diversity, in which crowds
of random and uncorrelated classifiers have been used with multifaceted independent classifiers. These
classifiers work together to detect the different types of misbehaving vehicles that share false mobility
messages. Both unsupervised and supervised approaches were used to construct the crowds of the
classifiers. The robust statistical-based outlier classifiers were constructed and updated online to detect
emerging attacks. Meanwhile, the random forest algorithm was used to train crowds of smart classifiers
to predict the vehicles’ class based on learning from the previously seen pattern. The model consists of
hybrid and multifaceted statistical classifiers that work together to detect sophisticated attacks that the
single-classifier approach cannot detect accurately. A multifaceted and hybrid context-reference model
is constructed and updated in a timely manner by analyzing the spatial and temporal correlation
among neighboring mobility information using Kalman and the Hampel filter-based algorithms.
Significant improvement has been observed by the proposed model in terms of detecting misbehaving
vehicles under different context scenarios. The EHCA-MDS model has manifested its adaptability
and robustness even under unreliable communication and heterogeneous noise environment. Results
show that they can make a trade-off between precision and recall effectively. On average, the overall
performance of the proposed EHCA-MDS model has improved by 10% better than the hybrid model
(HCA-MDS) and 37% better than the data-centric model (DCA-MDS).

In the future, the use of the supervised method can be replaced by unsupervised methods, due to
the lack of labeled data and the dynamic nature of the normal context. Further research is required
to investigate which unsupervised learning techniques are more effective and efficient for local and
autonomous detection. In addition, the proposed EHCA-MDS relies on first-hand information (the
mobility information shared by neighboring vehicles) to detect short-term misbehavior. However,
second-hand information (the output of the misbehavior detection shared between neighboring
vehicles) can be used to make long-term detection.
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