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Abstract: Satellite-based quantitative precipitation estimates (QPE) with a fine quality are of
great importance to global water cycle and matter and energy exchange research. In this study,
we firstly apply various statistical indicators to evaluate and compare the main current satellite-based
precipitation products from Chinese Fengyun (FY)-2 and the Global Precipitation Measurement
(GPM), respectively, over mainland China in summer, 2018. We find that (1) FY-2G QPE and Integrated
Multi-satellitE Retrievals for GPM (IMERG) perform significantly better than FY-2E QPE, using rain
gauge data, with correlation coefficients (CC) varying from 0.65 to 0.90, 0.80 to 0.90, and 0.40 to 0.53,
respectively; (2) IMERG agrees well with rain gauge data at monthly scale, while it performs worse
than FY-2G QPE at hourly and daily scales, which may be caused by its algorithms; (3) FY-2G QPE
underestimates the precipitation in summer, while FY-2E QPE and IMERG generally overestimate
the precipitation; (4) there is an interesting error phenomenon in that both FY-based and GPM-based
precipitation products perform more poorly during the period from 06:00 to 10:00 UTC than other
periods at diurnal scale; and (5) FY-2G QPE agrees well with IMERG in terms of spatial patterns and
consistency (CC of ~0.81). These findings can provide valuable preliminary references for improving
next generation satellite-based QPE retrieval algorithms and instructions for applying these data
in various practical fields.

Keywords: precipitation; evaluation; error analysis; Fengyun; quantitative precipitation estimates;
GPM; IMERG

1. Introduction

As one of the most active variables in atmospheric circulation, precipitation is a critical linkage
between global water and energy cycles. Obtaining spatiotemporal information on precipitation
is of great importance for water resource management, climatological modeling, and many other
applications [1–3]. Therefore, reliable precipitation datasets gathered from different sources, including
ground stations, ground-based weather radars, and satellites, are essential [4,5].
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Collecting precipitation information from ground rain gauge stations is the traditional and
common method of measurement. However, the limitations are obvious due to the uneven spatial
distribution of the stations. The measurements of ground stations are usually very sparse over
some regions of the earth (e.g., the Tibetan plateau), which are meteorologically important [6,7].
As for ground-based weather radars, they have certain superiorities when observing precipitation
in local areas. Nevertheless, due to the limitations of the scope of observation and the huge cost of
equipment acquisition and maintenance, ground-based weather radars are not the first choice for
large-scale precipitation observations.

However, precipitation information obtained from satellites does not meet such limitations.
Satellite-based precipitation datasets can depict the spatial and temporal variability of precipitation
with a considerable accuracy over regions that have few ground stations [5,8]. Over the last four
decades, the progress of meteorological satellites has made it possible for scientists to acquire reliable
and cost-effective precipitation datasets through a variety of sensors and inversion algorithms [9–13].
Therefore, obtaining high-resolution and accurate precipitation estimates derived from sensors on
satellites at a regional or global scale has become a highly-efficient research method at present [4,14,15].

Satellite-based precipitation products provided by several institutions and organizations from
all over the world are different in terms of their spatial and temporal resolution, data coverage, data
continuity, and latency [16]. The products mentioned above can only be used for practical applications if
there is a consistency in terms of both the spatial and temporal scales with ground-based measurements.
Therefore, the validation of satellite-based precipitation products is necessary to ensure the reliability
of the products. In addition, in order to provide product users with a reliable error structure and
instructions for satellite precipitation products, as well as a reasonable advancement of retrieval
algorithms, validation is indispensable for satellite-based data applications [17].

There have been numerous studies evaluating the performance of satellite-based precipitation
products. Datasets such as Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation
Analysis (TMPA), Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG),
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), the Climate Prediction
Center (CPC) MORPHing technique (CMORPH), Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), Multi-Source
Weighted-Ensemble Precipitation (MSWEP), H-SAF (EUMETSAT Satellite Application Facility on
Support to Operational Hydrology and Water Management) have been validated in various regions of
the world [18–23]. Chen et al. [24] analyzed the similarities and differences between TMPA V6 and V7
over China, and determined that 3B42 RT V7 overestimated precipitation over the Qinghai–Tibet Plateau
by approximately 139.5%. Teng et al. [25] identified overestimates outside the 95% prediction interval
in TMPA data for the Xin’anjiang Reservoir, which is the largest artificial water body in southeast China.
Prakash et al. [26] evaluated the accuracy of IMERG data with TMPA and Global Satellite Mapping of
Precipitation (GSMaP) data in southeast India. The results showed that IMERG represented large-scale
monsoon rainfall features and their variability more realistically. Tang et al. [22] evaluated IMERG
from April to December 2014 at hourly scale over mainland China and found that IMERG performed
with a small correlation coefficient (CC) of ~0.40 and slight overestimates by an average of ~9%.
Katiraie-Boroujerdy et al. [27] found that PERSIANN-CDR agreed well with gauge-based datasets at
monthly scales over Iran, with a CC of ~0.88. Rivera et al. [18] demonstrated the systematic errors that
could be attributed to the varying performance of CHIRPS in different seasons over Argentina, such as
the significant bias of ~65.8% over the north Patagonia region.

Although there are a large number of evaluation studies on satellite-based precipitation products,
few investigations have been conducted to assess the quality of the precipitation products from
Chinese Fengyun (FY) series satellites. FY series satellites are the major operational meteorological
satellites of China. Currently, there are eight on-orbit FY satellites in operation, including three polar
orbit satellites and five geostationary satellites, in order to provide global meteorological observation
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services. With the increasing influences of FY series satellites, evaluating the performance and usability
of their precipitation products has become increasingly necessary.

Compared with the data obtained from polar orbit satellites, precipitation information from
geostationary satellites has a fixed observation area and stable observation intervals, which can better
reflect the spatial distribution of precipitation and its changes at hourly and other temporal scales
in the study areas. In other words, geostationary satellites have not only the spatial continuity of most
other satellites, but also the temporal continuity of ground stations. Therefore, we selected two of
the main current satellite-based precipitation products from two geostationary satellites in different
batches of the FY-2 series to evaluate their quality in this study. The main objects of this study are
as follows: (1) To firstly evaluate and compare the precipitation products from FY-2 and GPM at
meteorological scales (hourly, daily) and a climatological scale (monthly), respectively, and (2) to
analyze the potential error sources of the main current satellite-based precipitation products over
mainland China in summer, 2018.

2. Study Area and Datasets

2.1. Study Area

The study area is the region of mainland China with the longitude and latitude range between
73–135◦E and 18–53◦N, respectively (Figure 1). The spatial distribution of the Digital Elevation
Model (DEM) in mainland China is also shown in Figure 1, which demonstrates that the terrain of
mainland China is low in the southeast and high in the northwest, forming a three-ladder pattern.
Due to the dramatic changes in terrain, the climate in mainland China is of great complexity and
is mainly regulated by the monsoon system [28]. The precipitation in China shows conspicuous
variability at both temporal and spatial scales.
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In this study, we chose the northern hemisphere summer (from June to August) of 2018 as
the research period. The China Climate Bulletin in 2018 published by the China Meteorological
Administration (CMA) shows that the annual average precipitation in China was 673.8 mm/year,
which was 7% more than in other years. In particular, the average precipitation in summer was
356.4 mm/year, which was 10% above that of previous summers. Intensive typhoons and heavy
rain occurred frequently in the summer of 2018. The East Asian subtropical summer monsoon was
significantly stronger than usual in 2018, being the strongest since 1951.

2.2. Gauge Precipitation Measurements

The hourly rain gauge datasets from 2163 national ground stations used in this study were collected
from the National Meteorological Information Center (NMIC) of CMA (http://data.cma.cn). The spatial
distribution of ground stations in mainland China is shown in Figure 1. Hourly datasets from national
ground stations usually include observations of air temperature, air pressure, precipitation, relative
humidity, water vapor pressure, wind, and precipitation, etc. Meanwhile, the ground station datasets
are quality controlled with the actual rate of each factor over 99.9%, and the accuracy of the datasets
was close to 100% [29].

2.3. Satellite Precipitation Estimates

2.3.1. FY-2E Quantitative Precipitation Estimates (QPE)

The FY-2 series satellites are the principle observational platforms for covering dynamic weather
events and the near-earth space environments in China. FY-2E is the third operational stationary
satellite in the FY series, and was launched on 23 December 2008. Its sub-satellite point was 105◦E
before 1 July 2015 and has been 86.5◦E over the equator to date. FY-2E is the last satellite in the first
generation of Chinese operational meteorological satellites. The satellite is equipped with a five-channel
(one visible channel and four infrared channels) scanning radiometer named the Visible and Infrared
Spin Scan Radiometer (VISSR). The FY-2E satellite performs much better in terms of the accuracy
of the inversion results of geophysical parameters, for example, precipitation, due to technical
improvements, such as a reduction of the overlap of infrared spectral channels, compared with
previous satellites of the FY-2 series.

FY-2E QPE data, generated by the fusion of FY-2E satellite estimate results and precipitation
measurements from rain gauges, was used in this study. The QPE products have four categories at
different temporal scales—hourly, three-hourly, six-hourly, and daily—with a spatial resolution of
0.1◦ × 0.1◦. The latency of QPE products yielded by FY-2 series satellites is approximately one hour.

2.3.2. FY-2G QPE

FY-2G is one of the third batches of operational geostationary satellites in the FY-2 series, and
was launched on 31 December 2014. The sub-satellite point of FY-2G changed from 99.5◦E to 105◦E,
and finally became 99.2◦E over the equator in April, 2018. FY-2G is the latest satellite to have Level
2 and Level 3 products since 2015. FY-2G has carried the radiometer with the best performance
in operational satellites in the FY-2 series to date. Compared with satellites in the second batch, such as
FY-2E, FY-2G has the ability to scan specific areas with a more flexible and higher temporal resolution.
It plays a significant role in China’s meteorological disaster monitoring, early warning, prevention,
and reduction.

The QPE products in FY-2E and FY-2G have the same temporal scale and spatial resolution.
However, the differences in the onboard sensors and fusion algorithms of FY-2E and FY-2G satellites
lead to differences not only in the accuracy of precipitation estimates, but also in the numerical range
and distribution. The QPE products can be downloaded from the National Satellite Meteorological
Centre (NSMC, www.nsmc.org.cn).

http://data.cma.cn
www.nsmc.org.cn
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2.3.3. IMERG

GPM is an international satellite mission. Its core observatory was launched by the National
Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency
(JAXA) on 27 February 2014. The first space-borne Ku/Ka-band Dual-frequency Precipitation Radar
(DPR) was carried on the GPM Core Observatory, making it more sensitive to light rain rates and
snowfall. IMERG is designed to intercalibrate, merge, and interpolate “all” data from satellites
in the GPM constellation at fine temporal and special scales over the entire globe [11]. The version
06 IMERG Final run products were used in this study. The spatial resolution of IMERG is 0.1◦ × 0.1◦,
which is the same as FY-2 QPE products. The temporal resolution is half an hour, and the hourly data
used in this study was obtained by averaging the two datafiles in the same hour.

Considering the fact that FY-2 QPE datasets merge precipitation information from ground
observations, we applied the IMERG Final run dataset (V06B), which is calibrated with ground station
data with a latency of about 3.5 months, as another precipitation estimate product, in this study.
IMERG data could be downloaded from the Precipitation Measurement Mission’s (PMM) website
(https://pmm.nasa.gov/data-access/downloads/gpm).

3. Methods

3.1. Contingency Statistical Indices

Four indices are used to assess the contingency of satellite precipitation estimates. The probability
of detection (POD) represents the proportion of correctly detected precipitation occurrences to the total
number of events detected by satellites. The false alarm ratio (FAR) indicates the ratio of rainfall
events that are falsely alarmed among the total number of satellite-detected precipitation occurrences.
The frequency bias index (FBI) shows the degree of precipitation occurrence estimates from satellites.
In other words, it indicates the overestimated or underestimated tendency in satellite-detected
precipitation occurrences. The critical success index (CSI) denotes the fraction of rainfall events
detected by satellites correctly to the total number of observed or detected rainfall events [30].
The indices mentioned above have no consideration of random assignments [31]. The equations of
these indicators are given in Table 1. To discriminate between wet and dry samples, the thresholds of
1 mm day-1 for daily rain events and 0.1 mm hour-1 for hourly ones were used. [6].

Table 1. Equations and the best values of four contingency statistical indices.

Index Equation 1 Best Value

POD
H

H+M 1

FAR
F

H+F 0

CSI
H

H+M+F 1

FBI
H+F
H+M 1

1 H(Hit) means that the precipitation occurrence is observed by a ground station as well as a satellite; M(Miss)
denotes that the ground station observes the occurrence, while the satellite dose not detect it; F(False) indicates that
the unobserved precipitation event is falsely detected by the satellite.

3.2. Statistical Indices

Four commonly used diagnostic statistics, including the correlation coefficient (CC), root mean
square error (RMSE), relative bias (bias), and mean absolute error (MAE), were applied in this study
to quantify the consistency between satellite precipitation products and rain gauge measurements.
The four indices were also used to cross-evaluate satellite precipitation products without rain gauge
measurements. The equations of these four statistical indices are shown in Table 2.

https://pmm.nasa.gov/data-access/downloads/gpm
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Table 2. Equations and the best values of four statistical indices.

Index Equation 1 Best Value

CC

√ ∑n
i=1(Gi−G)

2
(Pi−P)

2∑n
i=1(Gi−G)

2∑n
i=1(Pi−P)

2 1

RMSE

√
1
n

n∑
i=1

(Pi −Gi)
2

0

bias
∑n

i=1(Pi−Gi)∑n
i=1 Gi

× 100% 0

MAE 1
n

n∑
i=1
|Pi −Gi| 0

1 n means the number of precipitation pairs in the analysis; Gi means ground-based precipitation measurements;
G means the average ground-based precipitation measurements; Pi and P represent satellite precipitation products
and their average, respectively.

4. Results

4.1. Spatial Distributions of Precipitation Estimates from FY-2E, FY-2G, and IMERG

The spatial distributions of FY-2E QPE, FY-2G QPE, and IMERG data in the summer of 2018
over mainland China are shown in Figure 2b–d, respectively, while Figure 2a displays the spatial
distribution of precipitation obtained by inverse distance weighted (IDW) interpolation based on ground
observations. All three satellite-based precipitation products present a distinct decreasing spatial
variation of precipitation from the southeast to the northwest, which is consistent with that presented
by ground observations. The spatial patterns of FY-2G QPE and IMERG are consistent with the patterns
of interpolated results based on rain gauge data. However, both FY-2E and FY-2G products show
an absence of data over the Tibetan Plateau and Qaidam Basin in northwest China. Moreover, both
products do not provide precipitation estimates over northern parts of Heilongjiang Province, China,
which exceed the extent of 50◦N. Conversely, IMERG products provide full coverage precipitation
estimates over mainland China.
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4.2. Validations of the Three Precipitation Products in the Summer, 2018

To evaluate the performances of FY-2E, FY-2G, and IMERG products, the three satellite-based
precipitation products were validated separately against rain gauge data. Figure 3a–c show
the validation results of FY-2E, FY-2G, and IMERG against ground observations in June (first row),
July (second row), and August (third row) 2018, respectively. In general, according to the validation
results, FY-2G QPE and IMERG outperform FY-2E QPE at monthly scale, with a CC of 0.65, 0.87,
and 0.90 (0.90, 0.80, and 0.82) and bias of−8.13%,−3.97%, and−6.36% (8.40%, 7.84%, and 2.77%), in June,
July, and August, respectively. In terms of RMSE and MAE, the results of FY-2G QPE are also lower
than those of FY-2E QPE and IMERG for the entire summer of 2018, except for the worse performance
compared with IMERG in June. In addition, IMERG shows small degrees of overestimation (bias of
less than 10%). On the contrary, FY-2E QPE shows significant overestimation compared with ground
observations, with bias of more than 30% in June and July, while FY-2G QPE also underestimated
precipitation, but to a lesser degree (bias of more than −10%), for the entire summer of 2018.
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at monthly scale over mainland China in summer, 2018.

Figure 4a–d show Taylor diagrams of the performances of FY-2E QPE, FY-2G QPE, and
IMERG against gauge precipitation measurements, in summer, June, July, and August, respectively.
Taylor diagrams provide a graphical way to comprehensively evaluate the similarities between sets of
patterns and observations [32]. Three classical indicators, namely, the CC, centered root-mean-square
difference (CRMSD), and standard deviation (STD), are presented in a single 2D diagram, which
reflect how closely the various patterns in satellite-based precipitation products match those in ground
observations. If the estimated pattern is closer to the observations than other patterns in the diagram,
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then it means that the accuracy of the estimates is better than those of others. Taylor diagrams can
convey more information more clearly than an ordinary table. They are useful because the strengths
and weaknesses of the three statistical indexes are shown in the same diagram, and are thus less
ambiguous [33,34].

We can conclude from the Taylor diagrams that the precipitation patterns of FY-2G QPE are
the most similar to those of ground observations, since FY-2G QPE exhibits the best performances,
with an RMSD value of around 48.63 mm and CC value of around 0.87 in July (Figure 4c), and an RMSD
value of around 48.94 mm and CC value of around 0.90 in August (Figure 4d). In June, IMERG has
the best similarity to ground observations, with RMSD and CC values of around 48.12 mm and 0.89,
respectively (Figure 4b). Meanwhile, FY-2E QPE displays the largest values of RMSD, meaning that
it has the lowest similarity to ground observations in all the four periods.
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Figure 4. Taylor diagrams of performances of FY-2E QPE, FY-2G QPE, and IMERG against ground
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4.3. Validations of the Three Precipitation Products Based on Statistical Indices at Hourly Scale

Figure 5a–d illustrate the spatial patterns of CC, RMSE, bias, and MAE of FY-2E QPE (first column),
FY-2G QPE (second column), and IMERG (third column), respectively, against ground observations
at hourly scale, over mainland China in summer, 2018. It is obvious that FY-2G QPE outperforms
FY-2E QPE and IMERG, with the best spatial patterns and numerical ranges of all the four indices,
while IMERG performs better than FY-2E QPE. The CC of FY-2E QPE in mainland China is generally
lower than 0.3, while the CC values of IMERG vary from 0 to 0.5, and are rarely larger than 0.5.
Among the IMERG data, the best performing CC values are mainly distributed in the middle part of
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mainland China. As for FY-2G QPE, the CC values are larger than 0.6 over more than half of the area
of China, especially in the eastern and central parts of mainland China. All three satellite-based
precipitation products perform poorly in the southern and northwestern provinces of China. In terms
of bias, FY-2G QPE also has the best performance, with the lowest bias over the majority of mainland
China. The bias values of IMERG are greater than 10% over half of mainland China, especially
in northwestern China, where the bias values are generally more than 50%.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 20 

 

In terms of bias, FY-2G QPE also has the best performance, with the lowest bias over the majority of 
mainland China. The bias values of IMERG are greater than 10% over half of mainland China, 
especially in northwestern China, where the bias values are generally more than 50%. 

 

 
Figure 5. Spatial patterns of performances for FY-2E QPE, FY-2G QPE, and IMERG in terms of (a) the 
correlation coefficient (CC), (b) root mean square error (RMSE), (c) bias, and (d) mean absolute error 
(MAE) against ground observations at hourly scale, respectively. 

Averaged values of the four statistical indices of the three products at hourly scale in June, July, 
August, and summer are displayed in Table 3. FY-2G QPE has the largest values of CC of 0.45, 0.66, 
0.66, and 0.59 in June, July, August, and summer, respectively. The averaged RMSE and MAE values 
of all the three products are nearly smaller than 1.80 and 0.40 mm, respectively. IMERG shows 
overestimation in June (14.59%), July (11.34%), and August (10.07%), while FY-2G QPE 
underestimates the precipitation in all three months (-7.45% in June, -2.28% in July, and -4.34% in 
August, respectively). The averaged bias values of FY-2E QPE show significant variation. FY-2E QPE 
greatly overestimates precipitation in June (35.35%) and July (36.07%), while underestimates 
precipitation in August (-25.42%). 

Table 3. Averaged statistical indices for FY-2E QPE, FY-2G QPE, and IMERG at hourly scale over 
mainland China in summer, 2018. 

Data Type Index June July August Summer 

FY-2E QPE 
CC 

RMSE (mm) 
bias (%) 

0.23  0.25  0.23  0.24  
1.51  1.84  1.70  1.69  
35.35  36.07  -25.42  15.76  

Figure 5. Spatial patterns of performances for FY-2E QPE, FY-2G QPE, and IMERG in terms of
(a) the correlation coefficient (CC), (b) root mean square error (RMSE), (c) bias, and (d) mean absolute
error (MAE) against ground observations at hourly scale, respectively.

Averaged values of the four statistical indices of the three products at hourly scale in June, July,
August, and summer are displayed in Table 3. FY-2G QPE has the largest values of CC of 0.45, 0.66, 0.66,
and 0.59 in June, July, August, and summer, respectively. The averaged RMSE and MAE values of all
the three products are nearly smaller than 1.80 and 0.40 mm, respectively. IMERG shows overestimation
in June (14.59%), July (11.34%), and August (10.07%), while FY-2G QPE underestimates the precipitation
in all three months (−7.45% in June, −2.28% in July, and −4.34% in August, respectively). The averaged
bias values of FY-2E QPE show significant variation. FY-2E QPE greatly overestimates precipitation
in June (35.35%) and July (36.07%), while underestimates precipitation in August (−25.42%).
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Table 3. Averaged statistical indices for FY-2E QPE, FY-2G QPE, and IMERG at hourly scale over
mainland China in summer, 2018.

Data Type Index June July August Summer

FY-2E QPE

CC 0.23 0.25 0.23 0.24
RMSE (mm) 1.51 1.84 1.70 1.69

bias (%) 35.35 36.07 −25.42 15.76
MAE (mm) 0.33 0.40 0.31 0.35

FY-2G QPE

CC 0.45 0.66 0.66 0.59
RMSE (mm) 1.14 1.13 1.21 1.16

bias (%) −7.45 −2.28 −4.34 −4.66
MAE (mm) 0.20 0.18 0.19 0.19

IMERG

CC 0.36 0.36 0.37 0.36
RMSE (mm) 1.26 1.54 1.62 1.48

bias (%) 14.59 11.34 10.07 12.00
MAE (mm) 0.25 0.31 0.32 0.29

Figure 6 displays the temporal patterns of performances at hourly scale for the three types of
products compared to ground measurements. The statistical indices were calculated by the following
steps: firstly, the gauge-based data and satellite-based data were extracted for 24 h; secondly,
the statistical indices were calculated for each hour; and finally, the results from all stations across
the country were averaged. Generally, both the performances of FY-based and GPM-based precipitation
products are poorer during the period from 06:00 to 10:00 Coordinated Universal Time (UTC) than
other periods in one day. Specifically, in Figure 6a, CC reaches its highest value during the periods of
00:00–3:00 and 18:00–24:00, and obtains its lowest value at about 09:00 (meant 9:00–10:00 UTC, which
is the same as below), during the entire day. At about 15:00–17:00, the CC values of IMERG exhibit
a decreasing trend, which does not appear in either FY-2E or FY-2G products. The variation of RMSE
is contrary to that of CC, which means that a higher CC value always indicates a lower RMSE value
(Figure 6b). It is clear that the RMSE of IMERG at 03:00 is the lowest in the 24-h period, at which time
the curves of RMSE for FY-2E QPE and FY-2G QPE are smoother. As for the variations of bias (Figure 6c),
FY-2E QPE and IMERG show overestimates (i.e., bias greater than 0%) in most of the periods, while
FY-2G QPE generally underestimates precipitation for the entire day. Regarding the variations in MAE
(Figure 6d), all three precipitation products show similar trends.
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4.4. Contingency Indices of the Three Precipitation Products at Hourly and Daily Scales

Figure 7a–d display the spatial distributions of the contingency indices (POD, FAR, CSI, and FBI,
respectively), generated by IDW interpolation based on validation results of corresponding rain gauge
data, over mainland China during summer, 2018. Generally, the POD values of FY-2G QPE (>0.70)
are much better than those of FY-2E QPE and IMERG, across mainland China. The POD values of
IMERG are around 0.4 to 0.7 over most areas, while the POD values of FY-2E QPE are the smallest
in most parts of mainland China (<0.5), especially in the northwest (<0.3) (Figure 7a). The FAR values
of FY-2E QPE are above 0.5 over most regions and are larger than 0.8 in northwestern China, which
is similar to the case of the IMERG products. As for FY-2G QPE, the FAR values (<0.6) are smaller
than both values of FY-2E QPE and IMERG. Regarding the distributions of CSI (Figure 7c), FY-2G
QPE shows a better performance than FY-2E QPE and IMERG, with values of around 0.4 to 0.7 over
mainland China. The CSI values of FY-2E QPE and IMERG show similar spatial distributions. Both
CSI values of FY-2E QPE and IMERG are lower than 0.4 overall, and lower than 0.2 in northwestern
China. The FBI values of IMERG are higher than 1.8 in more than half of the areas, which indicates high
overestimates in precipitation over such regions. The FBI values of FY-2G QPE are also greater than
1.2 over most parts of mainland China, reflecting overestimates in these areas, but to a lower degree
compared with estimates of IMERG data. FY-2E QPE tends to overestimate precipitation in south,
northeast, and northwest China, with FBI values larger than 1.6, and underestimate precipitation
in the west and east coast regions of China, with values smaller than 1.
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Figure 7. Spatial patterns of the performance of FY-2E QPE, FY-2G QPE, and IMERG in terms of
the (a) probability of detection (POD), (b) (false alarm ratio) FAR, (c) critical success index (CSI), and
(d) frequency bias index (FBI) compared to ground observations at hourly scale, respectively.

Averaged values of contingency indicators of the three products at hourly scale in June, July,
August, and summer are exhibited in Table 4. FY-2G QPE shows the best values of POD in all the four
periods compared with the other two products (around 0.61 in June, 0.84 in July, 0.84 in August, and
0.77 in summer). FY-2E QPE and IMERG have higher averaged values of FAR than those of FY-2G
QPE, which are relevant to the lower values of CSI of both FY-2E QPE and IMERG. The values of CSI
of FY-2E QPE are the lowest in each month, as well as for the entire summer. The averaged FBI values
of all three precipitation products are much greater than one, which indicates that each of the three
products show a larger proportion of false alarms than false negatives.
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Table 4. Averaged contingency indices for the FY-2E QPE, FY-2G QPE, and IMERG at hourly scale over
mainland China in summer, 2018.

Data Type Index June July August Summer

FY-2E QPE

POD 0.49 0.53 0.47 0.50
FAR 0.70 0.65 0.62 0.66
CSI 0.23 0.26 0.26 0.25
FBI 1.79 1.61 1.28 1.56

FY-2G QPE

POD 0.61 0.84 0.84 0.77
FAR 0.56 0.46 0.44 0.48
CSI 0.36 0.49 0.51 0.45
FBI 1.39 1.59 1.54 1.51

IMERG

POD 0.59 0.63 0.61 0.61
FAR 0.60 0.61 0.59 0.60
CSI 0.31 0.31 0.32 0.31
FBI 1.60 1.70 1.64 1.64

Figure 8a displays the temporal variations of POD of FY-2E QPE, FY-2G QPE, and IMERG.
The values of POD of FY-2G QPE are the largest during the entire day, with values ranging from
0.75 to 0.80. The values of POD of IMERG are smaller than those of FY-2G QPE at each hour, with
values varying from 0.55 to 0.70. The temporal variations of POD of IMERG are not smooth. IMERG
shows a peak around 09:00 and valleys at 02:00, 13:00, and 17:00. FY-2E QPE shows the smallest
values of POD (<0.57) compared with those of FY-2G QPE and IMERG, which suggests that FY-2E
QPE could not detect rainfall events reasonably and effectively during the summer. Figure 8b shows
the temporal variations of FAR. In general, FY-2G QPE shows the lowest FAR values at each time
during the entire day, while the FAR values of IMERG are smaller than those of FY-2E QPE overall.
As for the performances of FY-2G QPE, the FAR values exceed 0.50 from 05:00 to 14:00. Generally,
the variations of CSI (Figure 8c) still demonstrate that FY-2G QPE outperforms IMERG and FY-2E QPE,
with the largest CSI values during the entire day, while the CSI values of FY-2E QPE are the smallest.
All of the three satellite-based precipitation products have values of FBI larger than one (Figure 8d),
which indicates that all products tend to overestimate precipitation occurrences over the study area.



Remote Sens. 2019, 11, 2992 14 of 21

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 

IMERG 

POD 
FAR 
CSI 
FBI 

0.59  0.63  0.61  0.61  
0.60  0.61  0.59  0.60  
0.31  0.31  0.32  0.31  
1.60  1.70  1.64  1.64  

Figure 8a displays the temporal variations of POD of FY-2E QPE, FY-2G QPE, and IMERG. The 
values of POD of FY-2G QPE are the largest during the entire day, with values ranging from 0.75 to 
0.80. The values of POD of IMERG are smaller than those of FY-2G QPE at each hour, with values 
varying from 0.55 to 0.70. The temporal variations of POD of IMERG are not smooth. IMERG shows 
a peak around 09:00 and valleys at 02:00, 13:00, and 17:00. FY-2E QPE shows the smallest values of 
POD (<0.57) compared with those of FY-2G QPE and IMERG, which suggests that FY-2E QPE could 
not detect rainfall events reasonably and effectively during the summer. Figure 8b shows the 
temporal variations of FAR. In general, FY-2G QPE shows the lowest FAR values at each time during 
the entire day, while the FAR values of IMERG are smaller than those of FY-2E QPE overall. As for 
the performances of FY-2G QPE, the FAR values exceed 0.50 from 05:00 to 14:00. Generally, the 
variations of CSI (Figure 8c) still demonstrate that FY-2G QPE outperforms IMERG and FY-2E QPE, 
with the largest CSI values during the entire day, while the CSI values of FY-2E QPE are the 
smallest. All of the three satellite-based precipitation products have v. 

(a) (b) 

(c) (d) 

Figure 8. Temporal patterns of performances of FY-2E QPE, FY-2G QPE, and IMERG in terms of (a) 
POD, (b) FAR, (c) CSI, and (d) FBI against ground observations, respectively. 
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(a) POD, (b) FAR, (c) CSI, and (d) FBI against ground observations, respectively.

Figure 9 illustrates the numerical distributions of contingency statistical indices for FY-2E QPE,
FY-2G QPE, and IMERG, at daily scale. In terms of POD (Figure 9a), the performance of FY-2G QPE
is close to that of IMERG, with mean values of around 0.87 and 0.82, respectively, while the mean
value of POD for FY-2E QPE is around 0.62. For the distributions of FAR (Figure 9b), the mean value
of FY-2G QPE is the smallest (around 0.25), while the mean values of IMERG and FY-2E QPE are
both around 0.4. In spite of the well-performing median, FY-2E QPE shows the worst POD and FAR
distributions, since the range of whiskers is too large compared with that of the other two products.
Regarding CSI (Figure 9c), it shows similar distributions and numerical characteristics to those of
POD, which indicates that FY-2G QPE outperforms IMERG and FY-2E QPE, with the largest mean
value of around 0.6. For FBI (Figure 9d), the mean values of all three precipitation products are larger
than 1, which indicates that each of the three products shows a tendency to overestimate precipitation
occurrences at diurnal scale. The mean values of FBI of the FY-2 series satellite precipitation products
are closer to one than IMERG, indicating a smaller degree of overestimation. Note that some FBI values
of FY-2G QPE are smaller than one, which indicates that FY-2G QPE underestimates precipitation
occurrences in some areas.
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4.5. Cross-Evaluation of FY-2 Precipitation Products Based on IMERG

Figure 10a–c demonstrate the inter-comparison results for FY-2E, FY-2G precipitation products,
and IMERG, in terms of the total precipitation in summer, 2018. The number of pixels involved in cross
evaluation between FY-2E QPE and IMERG is different from the number between FY-2G QPE and
IMERG, which is mainly caused by the different ratios of data absence of FY-2E QPE and FY-2G QPE
in northwestern mainland China. It is obvious that the correlations between FY-2G QPE and IMERG
(CC of ~0.81) are much larger than those between FY-2E QPE and IMERG (CC of ~0.29), which is
mainly caused by some significant overestimates of FY-2E QPE for the total precipitation in summer,
when the precipitation is relatively small, compared with IMERG data. Additionally, the values of
CC and other indicators between FY-2E QPE and FY-2G QPE are relatively poor, which indicates
that the estimates of FY-2E are somewhat unreliable. Overall, according to the inter-comparisons
displayed in Figure 10, FY-2G QPE agreed better with IMERG than FY-2E QPE in terms of spatial
patterns and consistency.
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5. Discussion

5.1. The Advantages and Disadvantages of FY-2E QPE, FY-2G QPE, and IMERG

As mentioned above, we found that FY-2G QPE generally outperformed IMERG in terms of
the statistical metrics over mainland China in summer, 2018. One of the possible reasons for this could
be the different correction strategies; for example, the fusion method of FY-2 QPE considers not only
the intensity, but also the directionality, of precipitation in the estimate fields. The FY-2 QPE fusion
methods assume that the error field of the satellite-based precipitation estimate is related to not only
the distance to the ground stations, but also the directionality of precipitation.

The unsatisfying performances of FY-2E QPE are significant, and may be related to the service life
designed for FY-2E. FY-2E was launched in 2008 and was discontinued in early 2019, with a running
time of about 11 years [35]. Therefore, the summer of 2018 coincides with the late stage of its
operation. This could also explain the fact that there are some striped textures of precipitation spatial
distributions derived from FY-2E in southern China in Figure 2b, which shows the spatial discontinuity
of the satellite-based precipitation products. With the inevitable degradation of the sensors aboard
the satellite, performance degradation is understandable.

According to the results demonstrated above, we found that FY-2 series satellites QPE and
IMERG have advantages and disadvantages across the study area (Table 5). In mainland China, FY-2G
QPE is more suitable in operational applications than IMERG, not only in terms of data accuracy,
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but also for the latency of the products (1 h for FY, 4 h for IMERG Early-run, 14 h for IMERG Late-run,
and 3.5 months for IMERG Final-run), although there is no data coverage in the northern part of
Heilongjiang Province (>50◦N), while the time span of FY-2 series satellites is not long enough.
In contrast, the IMERG Final-run precipitation product has been calculated back to 2000. Therefore, it is
appropriate for IMERG to be used for long-term studies related to precipitation with fine spatiotemporal
resolutions. Regarding the spatial coverage of these precipitation products, IMERG is more applicable
for global-scale research due to the wide coverage of its products. Nonetheless, users should still pay
great attention to the not so satisfying performance of IMERG at hourly and diurnal scales. Furthermore,
some algorithms and methods, such as downscaling and retrospective studies, could be applied to
yield long-term precipitation estimates with finer spatiotemporal resolutions in the future [36–39].

Table 5. Summary of advances and weaknesses of the three products over mainland China.

Data Type Advances Weaknesses

FY-2E QPE Low latency
Poor data quality
Short time span

Limited coverage

FY-2G QPE Best data quality
Low latency

Short time span
Limited coverage

IMERG Final-run

Fine data quality
High temporal resolution

Long time span
Wide coverage

High latency
Not so satisfying performance at

hourly and diurnal scales

5.2. Possible Error Source Analysis of the GPM IMERG Product

For decades, numerous researchers have focused on the errors of satellite-based precipitation
products at multiple scales all over the world, leading to the continuous improvement of these products
to [40–45]. In this study, we have proposed some possible error sources of the GPM IMERG product,
hoping to provide preliminary references for improving satellite-based QPE for the next generation.
As can be seen from Figures 5 and 7, the large FAR (>0.7) of IMERG is mainly distributed in northwestern
China, where the values of CC are relatively small compared with the other regions over mainland
China. Additionally, the bias is generally greater than 50%. The dominant arid and semi-arid climate
means that the area exhibits little precipitation over the entire year. The small amount of rainfall
in summer makes it difficult to obtain correct detections [46,47]. Moreover, the ground observations
obtained from meteorological stations for calibrating the satellite-based precipitation estimates are
limited. These two issues may lead to a high false alarm ratio and significant overestimates over
northwestern China.

In spite of the good performance compared with ground observations at monthly scale, the hourly
and daily performance of IMERG shown by various indicators is not so satisfying. The characteristics
of IMERG algorithms, including calibration algorithms and retrieval algorithms, might be related
to this phenomenon. We know from the Algorithm Theoretical Basis Document (V06) of IMERG
that the calibration strategy of IMERG Final-run products still has much room to improve [12].
The half-hourly precipitation estimates are simply multiplied by the monthly calibration ratios
against monthly ground observations to yield half-hourly Final-run products. Although this will
result in monthly estimates matching the gauge values more closely, IMERG Final-run datasets
show an unsatisfying performance at meteorological scales (e.g., hourly or daily scale). We could
assume that by using gauge calibrations at finer temporal resolutions, such as a daily scale, IMERG
would likely yield satisfying performances at meteorological scales in terms of diagnostic indicators,
with decreasing proportions of false negatives and false alarms. As for the retrieval algorithms of
IMERG, the databases, including the a-priori database of cloud and precipitation profiles for inverting
the passive microwave-based satellite precipitation estimates and the cloud feature database for
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inverting the infrared-based satellite precipitation estimates, might not be robust enough in China,
considering the complex terrains and climatic factors [12,48–51]. In Figure 9, the POD patterns of
IMERG are similar to those of FY-2G QPE, while the performances of its FAR and CSI patterns are
not good. The phenomenon is caused by the larger proportion of false alarms of IMERG than those
of FY-2G QPE. The high probability of false alarm occurrence indicated that the ability of IMERG
in detecting the precipitation clouds at meteorological scales is comparatively weak, which may be
related to the not well-matched feature database for precipitation retrieval algorithms over mainland
China. In addition, significant overestimates and false alarms of IMERG in some areas may also result
in large surrounding values for IMERG products. Meanwhile, the inconsistency between IMERG and
FY-2G QPE would be significantly aggravated, as shown in Figure 10b.

6. Conclusions

Evaluations of satellite-based quantitative precipitation estimates are of great importance when
applying these datasets in related fields, such as hydrology, meteorology, and agriculture. In this study,
we firstly evaluated and compared the main current satellite-based precipitation products from Chinese
Fengyun (FY)-2 and the Global Precipitation Mission (GPM), respectively, over mainland China
in summer, 2018. The main conclusions are as follows:

(1) The three products (FY-2E QPE, FY-2G QPE, and IMERG) demonstrate similar spatial
precipitation patterns; for example, a general decreasing trend from the southeast to northwest
over mainland China;

(2) Compared with rain gauge measurements, FY-2G QPE and IMERG perform better among
the three products, with the CC varying from 0.65 to 0.90 and 0.80 to 0.90 in summer, 2018, followed by
FY-2E QPE (CC of ~0.40 to 0.53);

(3) IMERG agrees well with rain gauge data at monthly scale, while it performs worse than FY-2G
QPE at hourly and daily scales, which might be caused by the algorithm characteristics of IMERG
Final-run products;

(4) Compared with ground observations, FY-2G QPE exhibits underestimates in capturing
the precipitation at both a monthly and hourly scale, while FY-2E QPE and IMERG generally tend to
overestimate the precipitation in summer, 2018;

(5) The performances of both FY-based and GPM-based precipitation products are poorer during
the period from 06:00 to 10:00 UTC than other periods at diurnal scale, which might have resulted
from the satellite-based precipitation retrieval algorithms and the impact of regional meteorological
and climatological influences. Further study is required to investigate the underlying reasons for
this phenomenon;

(6) FY-2G QPE agrees well with IMERG in terms of spatial patterns and consistency (CC of ~0.81),
which means that these two products have similar capacities to capture the spatial patterns of
precipitation events.

The findings presented in this study could provide valuable preliminary references for improving
the current satellite-based QPE retrieval algorithms for the next generation.
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