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Abstract: Hyperspectral anomaly detection methods are often limited by the effects of redundant
information and isolated noise. Here, a novel hyperspectral anomaly detection method based
on harmonic analysis (HA) and low rank decomposition is proposed. This paper introduces
three main innovations: first and foremost, in order to extract low-order harmonic images,
a single-pixel-related HA was introduced to reduce dimension and remove redundant information
in the original hyperspectral image (HSI). Additionally, adopting the guided filtering (GF) and
differential operation, a novel background dictionary construction method was proposed to acquire
the initial smoothed images suppressing some isolated noise, while simultaneously constructing
a discriminative background dictionary. Last but not least, the original HSI was replaced by the
initial smoothed images for a low-rank decomposition via the background dictionary. This operation
took advantage of the low-rank attribute of background and the sparse attribute of anomaly.
We could finally get the anomaly objectives through the sparse matrix calculated from the low-rank
decomposition. The experiments compared the detection performance of the proposed method
and seven state-of-the-art methods in a synthetic HSI and two real-world HSIs. Besides qualitative
assessment, we also plotted the receiver operating characteristic (ROC) curve of each method and
report the respective area under the curve (AUC) for quantitative comparison. Compared with the
alternative methods, the experimental results illustrated the superior performance and satisfactory
results of the proposed method in terms of visual characteristics, ROC curves and AUC values.

Keywords: hyperspectral image; harmonic analysis; guided filtering; dictionary construction;
low-rank decomposition

1. Introduction

Hyperspectral image (HSI), which is an image cube that simultaneously acquires spatial
information and rich spectral information of the objects, has high spectral resolution (10 nm or
less) and a wide spectral coverage (from visible to short-wave infrared) [1]. The recorded spectral
reflection characteristics of the objects can fully reflect the inherent nature of the objects [2,3]. Therefore,
target detection and recognition can be performed by the spatial-spectral information provided by
the HSI [4,5]. According to whether priori information is used, the target detection methods are
classified into two categories: supervised and unsupervised [6]. Anomaly detection is an unsupervised
method, which is more practical than supervised target detection because it does not require the prior
information of the target. Anomaly detection has been widely applied to the fields of maritime search
and rescue, geological survey, fire disaster monitoring and battlefield target detection [7].
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At present, many anomaly detection methods have been developed. The iconic hyperspectral
anomaly detection method is proposed by Reed-Xiaoli (RX) [8,9], and its variant, the local RX (LRX)
method [10]. However, its assumptions on the background model are too simple, which limits the
detection performance [11]. Moreover, it is difficult to avoid the contamination of the anomaly and
noise when calculating the statistical distribution characteristics of the background. As a result,
many improved methods have been proposed [12]. For example, the subspace-based RX (SSRX)
method [13] made the background statistical characteristic evaluation more robust by a projection
transformation of the covariance matrix. The random-selection-based anomaly detector (RSAD) [14]
iteratively selected a set of robust background feature pixels in HSI by adopting a random approach.
The method could obtain background statistical characteristic evaluation parameters that exclude
the interference of anomaly. Due to the fact that anomaly and background are linearly inseparable,
Kown et al. [15] suggested that the kernel method was worked to project the traditional RX (KRX)
method into the high-dimensional kernel feature space. Then, the anomaly could be separated from
the background. Traditional RX-based improved methods typically model the background before
performing the complex calculations. Therefore, the performance of such methods was limited due to
anomaly and noise contamination that may violate the assumption on background. As a consequence,
other types of methods have also been explored.

In recent years, harmonic analysis (HA) [16], which was first proposed by Jakubauskas et al.,
has attracted broad attention in the image process area. In the field of remote sensing data processing,
HA was initially exploited to analyze time series data [17]. A curve fitting method based on HA [18]
was proposed to better understand the change of natural land cover. In hyperspectral unmixing,
a mixture model based on harmonic combination description was introduced [19]. An HSI classification
method called HA-PSO-SVM [20] was proposed by combining HA and particle swarm optimization
(PSO) optimized support vector machine (SVM). It is shown that, through the above analysis, harmonic
analysis can be used for hyperspectral anomaly detection.

More recently, filtering-based methods have been introduced into anomaly detection. To solve the
unreasonable problem of the assumptions of the RX method, whitening spatial correlation filtering
(WSCF) [21] was described by Gaucel et al. Anomaly detector based on attribute and edge-preserving
filters (AED) [22] was examined by Kang et al. The AED method detected anomalies by introducing
local morphological attribute filtering after dimensionality reduction. The domain transform recursive
filter as a follow-up operation had been proved to be able to remove the noise and maintain the
edges. Multiscale attribute and edge preserving filters-based method [23] was discussed by Li et al. to
consider multiscale information in HSI. This method concentrated on the spatial structure information
of anomaly targets in HSI. To solve redundant data and noise bands in HSI, structure tensor and guided
filtering (STGF)-based anomaly detection method [24] was proposed by combining attribute filtering.

In addition to the above methods, the representation based has gained much attention of
researchers. For the first time, Chen et al. [25] introduced sparse representations into the hyperspectral
target detection and achieved extraordinary results. This method represented the pixel under
test by a few pixels in the neighborhood. After this, Li et al. originally proposed a collaborative
representation-based [26] anomaly detection method (CRD). Unlike the sparse representation, the pixels
under test were represented by all the pixels in the neighborhood in the collaborative representation.
Another type of representation-based approach that has been applied to anomaly detection is based
on low-rank decomposition. Xu et al. [27] separated the anomaly from the low rank background
through robust principal component analysis (RPCA) [28]. In order to take advantage of neglected
low rank background information and reduce false alarm rate, Zhang et al. [29] combined low-rank
and sparse decomposition based on Go Decomposition (GoDec) with Mahalanobis distance (LSMAD).
The difference between this method and others is that the statistical characteristic of the decomposed
low-rank component was added to the Mahalanobis distance detection. Xu et al. first developed an
anomaly detection method based on low-rank and sparse representation (LRASR) [30] by combining
local and global structure information in HSI. The LRASR method established a background dictionary



Remote Sens. 2019, 11, 3028 3 of 21

by k-means clustering. Niu et al. [31] argued that the background dictionary constructed by adding a
random selection method to the iterative update of dictionary exhibits more excellent performance
in low-rank decomposition. This one made low-rank decomposition more robust by avoiding the
contamination of anomaly. To alleviate the effect of noise and mixed pixels, Qu et al. [32] performed
abundance and dictionary-based low-rank decomposition (ADLR) to obtain the residual matrix. Thus,
anomaly was detected from the residual matrix. The advantage of the ADLR method was that the
abundance vector obtained by spectral unmixing, whose low-rank decomposition was more accurate.
However, most anomaly detection methods do not take into account the redundant information and
isolated noise in HSI.

In this paper, we propose a novel hyperspectral anomaly detection method based on HA and low
rank decomposition (HALR) to overcome the above problems. There are three main contributions
in the proposed HALR method. Initially, low-order harmonic images of the HSI are extracted by
performing HA in a single pixel. The HA can reduce the dimension of HSI and remove the redundant
information in HSI. Moreover, in order to reduce the effects of isolated noise and suppress background,
the low-order harmonic images are filtered by the guided filtering (GF). Hence, the initial smoothed
images that were obtained by the differential operation replace the original HSI to detect anomalies.
At the same time, a novel background dictionary construction method is proposed. The extracted
background dictionary can fully represent background features. Eventually, anomalies can be obtained
by performing dictionary-based low-rank decomposition on the initial smoothed images. The low-rank
decomposition takes full advantage of the fact that the background is low-rank and the anomaly is
sparse. The experimental results verify the superiority of the proposed HALR method in terms of
detection performance.

The rest of this paper is organized as follows. The second part describes the proposed HALR
method. The third part illustrates the experimental results. The fourth part is the parameter setting
discussion. The fifth draws the conclusions.

2. Harmonic Analysis and Low-Rank Decomposition

The flowchart of the proposed HALR-based method is shown in Figure 1. The proposed HALR
method mainly includes three strategies. In the beginning, low-order harmonic images are obtained
by HA. Then, the initial smooth images are gained by GF and differential operation. At the same
time, a background dictionary is obtained through a new background dictionary construction method.
Finally, anomaly can be acquired by the low-rank decomposition.
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Figure 1. Basic flowchart of the proposed harmonic analysis and low-rank decomposition (HALR)-based
method in this paper. The three-dimensional hyperspectral image (HSI) can form a two-dimensional
matrix Y = [Y1, Y2, . . . , YM] ∈ RB×M, where Yi = [y1, y2, . . . , yB]T (i = 1, 2, . . . , M) is the i-th pixel vector
in the HSI, B is the number of bands and M represents the total number of pixels in the HSI.
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2.1. Hyperspectral Harmonic Analysis

HSI has a lot of redundant information because of the high correlation of adjacent bands. Due to
the influence of noise and the atmosphere, not all bands can provide valid information [33]. Because of
this, the hyperspectral data are regarded as the timing signal from the perspective of time domain
signals. Then, HA is introduced to perform time-frequency space conversion on the timing signal.
The theory of HA is to represent any time-series function f (t) with respect to time t by superposition of
sine or cosine waves (harmonics) [34].

Different from the traditional Fourier transform [35] than from the spatial domain to the frequency
domain, HA utilizes spectral information and correlation between bands in the HSI to transform
from time domain to spatial domain. By making full use of the hyperspectral spectral characteristics,
the hyperspectral data is transformed into a set of components that is composed of energy spectral
characteristic components by the harmonic analysis, while the spatial characteristics of the hyperspectral
data remain unchanged. Specifically for a single pixel, multiple harmonic analysis can express the
spectral information of each pixel as the sum of the superposition of the sine waves (cosine waves),
which is composed of a series of harmonic energy characteristic parameter components. In this way,
the spectrum of each pixel can be represented as a complex, continuous and smooth curve.

When HA is employed to process spectral data, the approximately continuous spectral curve
composed of B bands can be treated as a function of period B. After harmonic decomposition, the spectral
curve of each pixel in the HSI can be expressed as the sum of the superposition of the sine waves (cosine
waves) composed of a series of harmonic energy characteristic parameter components, including
harmonic remainder, amplitude and phase [20]. If it is known that the spectral vector consisting of B
bands can be represented as Yi = [y1, y2, . . . , yn, . . . , yB]T, the spectral value of each band is recorded
as yn, where n is the band serial number (n = 1, 2, . . . , B). Therefore, the harmonic decomposition
expansion of the h-th harmonic analysis of the spectral vector Yi is:

Y′i = R0
2 +

hmax
∑∑

h=1

[
Chcos( 2πhn

B

)
+ Shsin( 2πhn

B )]

= Re +
hmax

∑∑
h=1

Hhsin( 2πhn
B + Ph)

(1)

The harmonic energy characteristic parameter components of the h-th harmonic decomposition of
Yi are calculated as:

Re = R0/2 =
1
B

B∑
n=1

yn (2)

Ch =
2
B

B∑
n=1

yncos(
2πhn

B
) (3)

Sh =
2
B

B∑
n=1

ynsin(
2πhn

B
) (4)

Hh =
√(

C2
h + S2

h

)
(5)

Ph = tan−1(
Ch
Sh

) (6)

where h (h = 1, 2, 3, . . . ) is the number of harmonic decompositions; Re is the remainder of the
harmonic; Hhsin( 2πhn

B + Ph) is the h-th harmonic component; Ch, Sh, Hh and Ph are the cosine
amplitude, sine amplitude, harmonic component amplitude and harmonic component phase of the
h-th harmonic decomposition, respectively. Here, the remainder represents the average of the spectral,
the amplitude and phase respectively reflect energy changes in different bands and the position of
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the band where the amplitude of the energy appears [36]. The detailed steps of hyperspectral HA are
described in Algorithm 1.

In the HA, the lower harmonics contain the main energy characteristics of the spectral and the
higher harmonics are usually mixed with noise information. Therefore, harmonic analysis has better
noise cancellation and main energy extraction capabilities, and it can also preserve the spatial feature
information of hyperspectral data.

Since the low-order harmonics contain most of the energy of the HSI, not all harmonic images
can provide crucial information. As such, we can select the first few low-order harmonic images as
the subsequent test images. However, not all images in low-order harmonic images are suitable for
anomaly detection. As shown in Figure 2, it can be clearly seen that the phase in low-order harmonic
images contains a lot of interference and useless information. Thus, the phase in low-order harmonic
images is directly discarded. The remainder and amplitude are preserved. Finally, the remainder and
the first five amplitude images are adopted for subsequent test images. In this way, the ultimate goal
of hyperspectral HA in this part is to reduce dimensionality and remove redundant information.

Algorithm 1. Harmonic analysis

1. Input: Hyperspectral matrix Y = [Y1, Y2, . . . , YM] ∈ RB×M, maximum harmonic number hmax.
2. Transformation process

for each pixel Yi do
(1) calculate remainder Re by Equation (2);
for h = 1 to hmax do

(2) Calculate coefficients of HA by Equations (3)–(6);
end for
(3) Get the reconstructed pixel Y′i by Equayion (1);

end for
3. Output: remainder Re, amplitude Hh and phase Ph.
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2.2. Guided Filtering and Dictionary Construction

Although HA achieves dimensionality reduction and removes redundant information in the HSI,
the resulting image still retains some isolated noise. Next, GF and differential operation is applied to
further reduce the isolated noise and enhance the detail in the image [37,38]. In addition, it should be
mentioned that the GF can also smooth the background to a certain extent.
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2.2.1. Guided Filtering

In GF, it is crucial to choose the guidance image sensibly [39]. The guidance image directly affects
the result of the filtered output. In this part, the remainder Re is taken as the guide image. The five
amplitude images Hj (j = 1, 2, . . . ,5) are recorded as input images, and Gj are recorded as output
images. The GF output images Gj can be obtained as follows:

G j,x = ak(Re)x + bk ∀x ∈Wk (7)

where Wk represents a window of (2r + 1) × (2r + 1); k is the center of the window Wk; x is the pixel index
in window Wk; ak and bk are the fixed coefficients of the linear function in the window Wk, respectively.

In order to minimize the difference between the output image and the input image, the minimum
cost function expression is as follows:

E(ak, bk) =
∑

x∈Wk

[(ak
(
Re)x + bk −H j)

2 + εa2
k

]
(8)

where ε is the regularization coefficient. The expressions for ak and bk are as follows: ak =
1
|w|

∑
x∈Wk

(Re)xH j,x−ukVk

δk+ε

bk = Vk − akuk

(9)

where uk and δk are the mean and variance of the image Re in the window Wk; |w| is the total number
of elements in the window Wk; Vk is the mean of the image Hj in the window Wk, respectively.

Some examples of GF are illustrated in Figure 3. Figure 3a shows the remainder Re as a guide
image. Figure 3b,d show the first-order amplitude image H1 and H2 as GF input images, respectively.
Figure 3c,e denote the output images G1 and G2 of Figure 3b,d, respectively. It can be seen from
Figure 3 that the background is smoothed by the GF.
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After getting the output images Gj of the GF, differential operation is introduced to calculate the
difference between the input images Hj and the output images Gj:

I j = |H j −G j|, j = 1, 2, · · · , 5 (10)

where Ij is the difference image. This differential operation can alleviate the isolated noise [40,41] in
the input image to a certain extent. Although anomalies are also suppressed after GF and differential
operations, background and isolated noise are simultaneously suppressed. It can highlight anomaly
and enhance the detail while suppressing the background. A wealth of information with respect to
anomaly is to be found in the difference image. Figure 4 is shown as an example, where Figure 4a,d are
difference images I1 and I2, respectively.
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In order to make use of distinctive characteristics of differential images in detecting anomalies,
the harmonic remainder Re and the difference image Ij replaces the original HSI as initial smooth
images S ∈ Rl×M for low rank decomposition. l indicates that each pixel in the initial smooth images S
is an l-dimensional column vector.

Figure 5 reveals an example of the formation of the initial smooth images S. The initial smooth
images S can be obtained by transforming the three-dimensional cube composed of the harmonic
remainder Re and the difference image Ij into a two-dimensional matrix.
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2.2.2. Dictionary Construction

In the low-rank decomposition, the background dictionary is of great importance. A satisfactory
background dictionary usually contains various background categories in the image under test, while
eliminating interference from anomaly and noise [42,43]. In this section, a rational method is studied
instead of directly using original HSI or dictionary learning method to establish a background dictionary.

In order to extract a suitable background dictionary from the initial smooth images S, the difference
image I is first fused. To further reduce the interference of anomalies and noise on the background
dictionary, pixels in the fused image are sorted in ascending order and segmented. Then, for the
sorted pixels after segmentation, the part with a large pixel value is considered to be an anomaly
and noise pixel set, and the part with a small pixel value is considered to be a background pixel set.
Finally, in order to ensure that the background dictionary atoms contain as many different background
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categories as possible, we randomly select some pixels from the background pixel set as representative
and discriminative background dictionary atoms. The extracted background dictionary is applied for
subsequent low-rank decomposition.

We take the column vectors of the initial smooth images S as samples. Firstly, the resulting
difference images are merged together. The fusion method is denoted as:

d =

∑5
j=1 I j

5
(11)

where d is the merged image, which will be used as the basis for dictionary extraction.
After merging, anomaly pixels and edges in the image will be highlighted. Consequently,

these highlighted points in the image will be numerically larger than background values. After that,
the pixels in the fused image d are sorted in ascending order. For sorted pixels, the background pixels
will be more forward.

Finally, a part of the pixels ϕ is randomly selected from the first ξ of the sorted pixels to build
background dictionary, where ϕ is dictionary atom selection percentage and ξ is separated value.
Both ϕ and ξ are percentages. Among them, the value of ϕ is not fixed, and the value of ξ is 90%.
The number of the selected pixels and the value of ξ will be analyzed later. The main objective of
random selection is to choose as many categories of background pixels as possible. An example of the
background dictionary constructed is displayed in Figure 6.
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Figure 6. An example of the background dictionary construction: (a) the fused image d; (b) the
ascending sorted image d is divided into two regions, the first 90% of the pixels are shown in red, and
the last 10% of the pixels are shown in green. Taking initial smooth images S as samples, the pixels in
the red area are randomly selected to form the background dictionary D.

Through this method, a representative background dictionary D∈Rl×m is obtained, where m
represents the total number of atoms in the background dictionary D.

2.3. Low-Rank Decomposition

Since the anomaly is sparse and the background is low-rank in hyperspectral data, the low-rank
decomposition in the field of visible light image processing is also applicable to HSI [44–46]. However,
most of these methods directly implement low-rank decomposition on the original HSI without
considering the redundant information of HSI, the correlation between bands and the isolated noise.
In this respect, we proposed a novel low-rank decomposition strategy. Here, instead of the original
HSI, we performed the low-rank decomposition on the initial smooth images S, which is identified as
the object of low-rank decomposition. Then, the decomposition formula is represented as follows:

S = DF + A (12)

where F∈Rm×M is a m × M coefficient matrix of all pixels in S; A∈Rl×M is a l × M sparse matrix,
respectively. Here, m represents the total number of atoms in the background dictionary D, M represents
the total number of pixels in the HIS, and l indicates that each pixel in the initial smooth images S is a
l-dimensional column vector.
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For the low-rank decomposition problem, there are several solutions. RPCA [28] could decompose
the hyperspectral data into the low rank part and the sparse residual part. However, RPCA does not
consider the noise of hyperspectral data making the detection results prone to false alarms. The GoDec
method [47,48] divides the hyperspectral data into low rank matrix, sparse matrix and noise matrix,
taking into account the noise. The LRASR method [30] solves the low rank representation (LRR) [49]
problem with low rank and sparse regularization constraints by the linearized alternating direction
method with adaptive penalty (LADMAP) [50]. This method implants the l21 regularization constraint
to make the majority of the columns in matrix F equal to 0. However, due to the characteristic difference
of anomaly in practice, there are some non-zero values in the column of the sparse matrix A. Therefore,
the ADLR method [32] replaces the l21 regularization constraint with the l1 regularization constraint.
In addition, this l1 regularization constraint can further reduce the impact of isolated noise on anomaly
detection. Since the isolated noise has no sparse attributes in the image, they will be clustered into a
group because of their similar coefficients. The l21 regularization is the l21 norm of a matrix, which is
defined as the sum of the l2 norm of each column in the matrix. The l1 regularization is the l1 norm of a
matrix, which is defined as the sum of the absolute values of all the elements of the matrix.

Through the above analysis and comparison, we exploited the ADLR method with the l1
regularization constraint for the low-rank decomposition. In the low-rank decomposition, the coefficient
matrix F is low-rank and the sparse matrix A is sparse. After introducing the l1 regularization constraint,
the objective function is as follows:

min
F,A

rank(F) + λ||A||1

s.t. S = DF + A
(13)

where rank(·) represents the rank function; λ > 0 is the tradeoff parameter used to adjust the low rank
part and the sparse part; ||·||1 is the l1 norm, respectively. The abbreviation s.t. refers to “subject to”,
which indicating that the constraint is S = DF + A. ||A||1 is specifically expressed as:

||A||1 =
l∑

row

M∑
col

|Arow,col | (14)

where l indicates that each pixel in the initial smooth images S is a l-dimensional column vector,
M represents the total number of pixels in the HIS and |Arow,col | is the absolute value of the element in
the row-th row and col-th column of the matrix A.

To solve the objective function, the rank function is replaced by the matrix nuclear norm ||·||* [51].
Therefore, the objective function can be optimized to:

min
F,A

||F||∗ + λ||A||1

s.t. S = DF + A
(15)

In order to decouple the objective function (15), an auxiliary variable U is introduced instead of
F [52]. The Lagrange equation of the objective function is;

min
F,A,U,L1,L2

||U||∗ + λ||A||1 + tr
[
LT

1 (S−DF−A)]+tr[LT
2 (F−U)

]
+ τ

2

(
||S−DF−A||2F+||F−U||2F

) (16)

where tr[·] represents the trace of matrix, which is the sum of the diagonal elements of matrix; L1 and
L2 are Lagrange multipliers; τ > 0 is the penalty parameter; ||·||F is the F norm, respectively. Since
Equation (16) contains multiple variables, it can be solved by alternate iterative update methods. When
solving one of the variables, keep the other variables unchanged. Accordingly, the solution process can
be broken down into the following form.
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(1) Update U when keeping F and A unchanged, the objective function can be reformulated as:

U = arg min ||U||∗ + tr
[
LT

2 (F−U)
]
+ τ

2 ||F−U||2F
= arg min 1

τ ||U||∗ +
1
2 ||U −

(
F + L2

τ

)
||

2
F

(17)

where arg is the abbreviation of argument. The arg min refers to the value of the variable U when the
equation behind it reaches the minimum value.

(2) Update F when keeping U and A unchanged, the objective function can be reformulated as:

min
F

tr
[
LT

1 (S−DF−A)]+tr[LT
2 (F−U)

]
+ τ

2

(
||S−DF−A||2F+||F−U||2F

)
F = (DTD + I)−1[ 1

τ

(
DTL1 − L2

)
+ DTS−DTA + U

] (18)

(3) Update A when keeping F and U unchanged, the objective function can be reformulated as:

A = arg minλ||A||1 + tr
[
LT

1 (S−DF−A)
]
+ τ

2 ||S−DF−A||2F
= arg min λ

τ ||A||1 +
1
2 ||A−

(
S−DF− L1

τ

)
||

2
F

(19)

Equations (17) and (19) can be optimized by utilizing the singular value thresholding operator [53]
and Lemma 1 in literature [54], respectively. In the iterative process, the Lagrange multipliers update
formulas are as follows:

L1 = L1 + τ(S−DF−A)

L2 = L2 + τ(F−U)
(20)

The iterative convergence condition is expressed as:

||S−DF−A||∞< η and ||U − F||∞ < η (21)

where η is the decomposition error; ||·||∞ is the infinite norm. After the sparse matrix A is obtained by
low-rank decomposition, we get the anomaly by the l2 norm. The l2 norm is the square root of the sum
of the squares of all the elements in each column of pixels in the matrix. The specific equation is as
follows:

T(i) =

√∑
(A:,i)

2 i = 1, 2, · · · , M (22)

where T(i) represents the anomaly detection result of the i-th pixel. A:,i represents the i-th column of
pixels in the matrix A, and M represents the total number of pixels in the HSI.

The complete steps of the low-rank decomposition are presented in Algorithm 2.

Algorithm 2. Low-rank Decomposition

Input: Initial smooth image S, background dictionary D.
Initialization: Give λ according to different input data, τ = 10−6, η = 10−6, τmax = 1010, ζ = 1.1, F = U = A = L1
= L2 = 0.

while not satisfy the convergence condition (21) do
(1) Update variable U according to Equation (17);
(2) Update variable F according to Equation (18);
(3) Update variable A according to Equation (19);
(4) Update Lagrange multipliers L1 and L2 according to Equation (20);
(5) Update variable τ, where τ = min(τmax, τ*ζ);

end while
Return: Coefficient matrix F, sparse matrix A.

Calculate anomaly result T according to Equation (22);
Output: Anomaly result T.
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3. Experimental Results

To verify the validity of the proposed HALR method, the following methods, including the RX
method [8], LRX method [10], WSCF method [21], LSMAD method [29], CRD method [26], RPCA-RX
method [55] and AED method [22], are selected for comparison. In order to evaluate the detection
results quantitatively, the receiver operating characteristic (ROC) and the area under the curve (AUC)
are adopted [56]. The ROC curve shows the corresponding relationship between the false alarm
rate and the probability of detection under each threshold segmentation result. The AUC value is
obtained by calculating the area under the ROC curve of anomaly detector. At the same false alarm
rate, the larger the value of AUC is, the better the performance of the detector. In addition, we select
the optimal parameters of the alternative methods from original author in term of AUC value or the
parameters. Since the background dictionary is randomly chosen, we repeated it 10 times for each
experiment and reported the averaged result. Moreover, in order to verify the stability of the proposed
HALR method, we also provided the standard deviation of the results of 10 experiments.

3.1. Data Sets

Synthetic Data Set: the synthetic data is generated by a real-world HSI Salinas [44]. This Salinas
scene is acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Some parameters of
this HSI are shown in Table 1. As shown in Figure 7a, a 150 × 150 size area is selected from the original
image of 512 × 217 size as the background of the synthetic data. 204 bands (1–107, 113–153, 168–223)
were retained after removing water absorption bands and low signal-to-noise ratio (SNR) bands in
the experiment. In the synthetic data, the anomaly target is embedded by the target implantation
method [57]. Anomaly Xea is specifically embedded as follows:

Xea = Jbg × (1− p) + Xia × p (23)

where Jbg represents the spectral of the background pixel at the implantation location; Xia indicates
the spectral of the implanted anomaly; p is the percentage coefficient of the anomaly. In the synthetic
data, the embedded anomaly spectral is also extracted from the Salinas scene. As shown in Figure 7b,
six rows and three columns of targets with different size have been embedded obliquely. From left to
right, the corresponding p values for each column are 0.6, 0.8 and 1, respectively. The ground truth
map of the synthetic data is shown in Figure 7c. The ground truth is labeled with the help of the
Environment for Visualizing Images (ENVI) software.

Table 1. HSI data parameters.

Data Set Salinas San Diego Beach

Sensor AVIRISa AVIRISa ROSISb

Captured place Salinas Valley, CA, USA San Diego, CA, USA Pavia, Italy
Spatial resolution 3.7 m 3.5 m 1.3 m

Total band 224 224 102
Available band 204 189 102
Test image size 150 × 150 100 × 100 100 × 100

a AVIRIS is Airborne Visible/Infrared Imaging Spectrometer. b ROSIS is Reflective Optics System Imaging
Spectrometer.

San Diego Data Set: one of the real-world test image in the experiment is a 100 × 100 image
cropped from the original 400 × 400 San Diego HSI [46]. The HSI has a spectral range from 0.37 um
to 2.51 um. 189 bands (7–32, 36–96, 98–106, 114–152, 167–220) were retained after removing water
absorption bands and low SNR bands in the experiment. Other parameters about the San Diego data
set are illustrated in Table 1. Three aircraft in the scene are considered to be anomaly targets to detect.
The image under test and the corresponding ground truth map are shown in Figure 8. The ground
truth is labeled with the help of the ENVI software.
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the RPCA-RX method. The visual effect of the AED and CRD detection results are roughly close to 
the proposed HALR method. However, the false alarm of the proposed HALR method and the CRD 
method are slightly less than the AED method. The background suppression effect of the CRD 
method is also similar to that of the AED method and the HALR method. In terms of the ROC 
curves in Figure 11, the proposed HALR method is still excellent. The AUC values of the respective 
methods are reported in Table 2. The AUC values of the CRD method and the HALR method both 
reach a maximum value of 0.9998. The AUC value of the AED method reaches 0.9997, which is 
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Beach Data Set: this HSI [22,24] was taken by Reflective Optics System Imaging Spectrometer
(ROSIS) sensor. Its wavelength ranges from 0.43 um to 0.86 um. Additional information about this data
set is displayed in Table 1. In the experiment, a 100 × 100 area is chosen for the experiment. As shown
in Figure 9, the background in the scene is mainly water and bridge. The vehicles on the bridge are
considered to be anomaly targets. The ground truth is labeled with the help of the ENVI software.
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3.2. Detection Performance Analysis

For the synthetic HSI, the visual detection results of different anomaly detection methods are
displayed in Figure 10. It is obvious that the RX method, the WSCF method, the RPCA-RX method
and the LSMAD method have poor detection performance in visual effect. We could see in Figure 10
that the RX method, the WSCF method, the RPCA-RX method and the LSMAD method have failed
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to separate the anomaly from background. Moreover, there are many false alarms in the results of
the RPCA-RX method. The visual effect of the AED and CRD detection results are roughly close to
the proposed HALR method. However, the false alarm of the proposed HALR method and the CRD
method are slightly less than the AED method. The background suppression effect of the CRD method
is also similar to that of the AED method and the HALR method. In terms of the ROC curves in
Figure 11, the proposed HALR method is still excellent. The AUC values of the respective methods
are reported in Table 2. The AUC values of the CRD method and the HALR method both reach a
maximum value of 0.9998. The AUC value of the AED method reaches 0.9997, which is substantially
equal to the AUC value of the HALR method. From the AUC values in Table 2, the RX method has
the worst detection effect. Combined with visual detection results, ROC curves and AUC values,
our proposed HALR method is a significant and effective method.

Remote Sens. 2019, 11, 3028 13 of 21 

 

substantially equal to the AUC value of the HALR method. From the AUC values in Table 2, the RX 
method has the worst detection effect. Combined with visual detection results, ROC curves and 
AUC values, our proposed HALR method is a significant and effective method. 

 
Figure 10. Color maps of the detection results of different anomaly detection methods on synthetic 
HSI: (a) RX: Reed-Xiaoli; (b) LRX: local RX; (c) WSCF: whitening spatial correlation filtering; (d) 
CRD: collaborative representation-based anomaly detection; (e) RPCA-RX: robust principal 
component analysis-RX; (f) LSMAD: low-rank and sparse matrix decomposition-based mahalanobis 
distance method for hyperspectral anomaly detection; (g) AED: anomaly detector based on attribute 
and edge-preserving filters; (h) HALR: harmonic analysis and low-rank decomposition-based 
anomaly detection. 

 

Figure 11. Receiver operating characteristic (ROC) curve performance comparison of different 
anomaly detection methods on the Synthetic HSI. 

For the San Diego HSI, the false color maps of the detection results of different methods are 
illustrated in Figure 12. The LRX method has the worst detection result in Figure 12. The size of the 
aircraft is one of the main reasons that affect the detection result of the LRX method. The RX, WSCF, 
CRD and RPCA-RX method are not very effective in suppressing background. In consequence, there 
are numerous false targets in their detection results. The detection results of the proposed HALR 
method has clearer outline and fewer false alarms than the LSMAD method and the AED method. In 
Figure 13 shows that the ROC curves of the RX method, the WSCF method, the CRD method, the 
RPCA-RX method the LSMAD method and the AED method are almost same, while the 
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HSI: (a) RX: Reed-Xiaoli; (b) LRX: local RX; (c) WSCF: whitening spatial correlation filtering;
(d) CRD: collaborative representation-based anomaly detection; (e) RPCA-RX: robust principal
component analysis-RX; (f) LSMAD: low-rank and sparse matrix decomposition-based mahalanobis
distance method for hyperspectral anomaly detection; (g) AED: anomaly detector based on attribute
and edge-preserving filters; (h) HALR: harmonic analysis and low-rank decomposition-based
anomaly detection.
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Table 2. Performance evaluation based on AUC values corresponding to different anomaly
detection methods.

Datasets
Methods

RX LRX WSCF CRD RPCA-RX LSMAD AED HALR

Synthetic 0.1370 0.9823 0.9072 0.9998 0.9602 0.9836 0.9997 0.9998
San Diego 0.9832 0.8467 0.9855 0.9875 0.9799 0.9867 0.9871 0.9939

Beach 0.9855 0.9347 0.9819 0.9716 0.9758 0.9828 0.7594 0.9920

For the San Diego HSI, the false color maps of the detection results of different methods are
illustrated in Figure 12. The LRX method has the worst detection result in Figure 12. The size of the
aircraft is one of the main reasons that affect the detection result of the LRX method. The RX, WSCF,
CRD and RPCA-RX method are not very effective in suppressing background. In consequence, there are
numerous false targets in their detection results. The detection results of the proposed HALR method
has clearer outline and fewer false alarms than the LSMAD method and the AED method. In Figure 13
shows that the ROC curves of the RX method, the WSCF method, the CRD method, the RPCA-RX
method the LSMAD method and the AED method are almost same, while the performance of the
HALR method is more remarkable. Above all, the ROC curve of the proposed HALR method is mostly
higher than the other curves. Moreover, Table 2 indicates that the AUC value of the proposed HALR
method, 0.9939, is the largest. In brief, the proposed HALR method achieved exceptional performance.
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For the Beach HSI, the false color maps of the detection results of different methods are illustrated
in Figure 14. In terms of visual effects, the CRD method yields the worst detection result. The AED
method and the WSCF method do not separate the anomaly targets from the background very well.
The detection results of the LSMAD method and the RPCA-RX method are stable, but some false alarms
also exist for the RPCA-RX method. The detection results of the RX method, the LRX method and
the LSMAD method are similar. Compared to them, the proposed HALR method not only effectively
detects the vehicle, but also successfully suppresses the bridge and other backgrounds. We could
see that the separation of background and anomaly in the detection result of the proposed HALR
method are successful. It is obvious from the ROC curves in Figure 15 that the performance of the AED
method is the worst. The ROC curve of the proposed HALR method is lower than the curves of the
WSCF method and the RPCA-RX method in a small region. However, under the same false alarm rate,
the detection probability of the proposed HALR method reaches 1 the first. Additionally, the curves
show that the proposed HALR method has a higher detection probability at a lower false alarm rate
than other methods. The AUC values of different methods are presented in Table 2. The AUC value
of the proposed HALR method is 0.9920, the largest among all. In summary, the performance of the
proposed HALR method is very outstanding.
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We reintroduced the standard deviation to further evaluate the effectiveness and stability of
the proposed HALR method. In another set of experiment, the AUC value is still the average of
the 10 results. At the same time, the standard deviation is calculated. Table 1 shows the 10 AUC
values, average AUC values, and standard deviations of the proposed HALR method on three datasets.
In the original paper, the average values of AUC on the three datasets were 0.9998, 0.9939 and 0.9920,
respectively. As shown in Table 3, the average AUC of the 10 results in another experiment were
0.9998, 0.9926 and 0.9922, respectively. They are very close to the results in the first set of experiments.
In addition, the standard deviations of the 10 results on each dataset are 0.00011, 0.0043 and 0.002,
respectively. It can be seen from the standard deviations that the performance of our proposed HALR
method is still relatively stable.

Table 3. Performance evaluation based on AUC value and standard deviation on the Synthetic, the San
Diego and the Beach datasets.

Datasets Synthetic San Diego Beach

AUC

1 0.9999 0.9934 0.9899
2 0.9996 0.9969 0.9949
3 0.9998 0.9886 0.9899
4 0.9999 0.9832 0.9939
5 0.9998 0.9956 0.9928
6 0.9997 0.9944 0.9915
7 0.9998 0.9939 0.9932
8 0.9999 0.9936 0.9898
9 0.9997 0.9898 0.9942
10 0.9999 0.9968 0.9931

Average AUC 0.9998 0.9926 0.9922

Standard deviation 0.00011 0.0043 0.002

4. Discussion

The proposed HALR method contains a total of four sensitive parameters. They are the window
radius r and the regularization coefficient ε in GF, dictionary atom selection percentage ϕ, and the
tradeoff parameter λ in low-rank decomposition, respectively. The AUC value will be utilized to
distinguish the influence of each sensitive parameter on the performance of the HALR method. When
analyzing one parameter, the others are fixed as default parameters. As has been noted, the atoms in
the background dictionary are selected randomly. Hence, to eliminate the effects of random dictionary,
we repeated the test for each value 10 times to report the average score.

For the synthetic hyperspectral dataset, the default parameters are r = 60, ε = 1, ϕ = 0.001 and
λ = 6 × 10−4, respectively. For the San Diego dataset, the default parameters are r = 20, ε = 0.12,
ϕ = 0.002 and λ = 3 × 10−3, respectively. For the Beach dataset, the default parameters are r = 2,
ε = 0.32, ϕ = 0.001 and λ = 1 × 10−1, respectively. The default parameters were selected in order to
make the HALR method to achieve optimal performance on the corresponding dataset.

The influence of each sensitive parameter on the AUC performance of the HALR method is
demonstrated in Figure 16. When the window radius r parameter is analyzed, due to the different
image sizes, the parameter r shows values of only up to 40 in the San Diego HSI and the Beach
HSI. For the tradeoff parameter λ, when the parameter λ is greater than or equal to 0.01 while other
parameters are fixed, the iterative process of the low-rank decomposition does not converge in the
Synthetic HSI and the San Diego HSI. Though there is some variance due to randomness in selecting
the atoms in the background dictionary, in general, it can be verified from Figure 16 that the HALR
method achieves optimal detection performance under the default parameter settings.
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For the parameter hmax, it determines the number of harmonic analysis. In the hyperspectral
harmonic analysis, the parameter hmax determines the number of lower harmonics that we should
choose. When analyzing the parameter hmax, the other parameters are fixed, the AUC value is used as
the evaluation standard. Figure 17 shows the impact of the parameter hmax on the detection results.
It can be seen that, for the synthetic dataset, when the parameter hmax is equal to 3 or 5, the detection
performance of the proposed HALR method is optimal. For the San Diego and Beach datasets, when
the parameter hmax is equal to 3 or 7, respectively, the AUC value of the proposed HALR method
reaches the maximum. However, they are slightly larger than the AUC values when the parameter
hmax is equal to 5. In order to unify the parameters, the parameter hmax is set as 5. Hence, we finally
select the first 5 amplitude images of lower harmonics in the experiment.
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Finally, the effect of the separated value ξ on the performance of the proposed HALR method is
analyzed. As shown in Figure 18, when the separated value ξ is 90%, the proposed HALR method has
the highest performance on all three data sets.Remote Sens. 2019, 11, 3028 18 of 21 

 

 
Figure 18. The effect of the separated value ξ on the performance of the HALR method. 

5. Conclusions 

In this paper, we proposed a novel hyperspectral anomaly detection based on harmonic 
analysis (HA) and low-rank decomposition. The proposed approach mainly comprises three stages, 
i.e., HA, guided filter (GF) and low-rank decomposition. In order to deal with large data and 
redundant information in the original hyperspectral image (HSI), we applied a single-pixel-based 
HA. Subsequently, we introduced GF on the images after HA, not only to reduce the impact of 
isolated noise to some extent, but also to make the dictionary more discriminative on the low-rank 
decomposition. Ultimately, the low-rank decomposition was adopted to extract anomaly objects. 
The primary goal of this low-rank decomposition was to consider the low-rank features of 
background and the sparse features of anomaly. Furthermore, both the visual and the quantitative 
results (receiver operating characteristic (ROC) curves and area under the curve (AUC)) indicate 
that the proposed approach achieves a more competitive detection performance than alternatives. In 
the future, we will work on the automatic determination of the optimal parameter. 

Author Contributions: conceptualization, P.X.; methodology, P.X. and H.L.; software, P.X. and J.S.; validation, 
J.S., H.L. and L.G.; investigation, P.X. and H.L.; resources, P.X.; data curation, L.G.; writing—original draft 
preparation, P.X., J.S. and H.L.; writing—review and editing, L.G. and H.Z.; visualization, P.X.; supervision, 
H.Z.; funding acquisition, J.S., H.L. and H.Z. 

Funding: This research was funded by the Fundamental Research Funds for the Central Universities under 
grant number XJS17106 and JB180502, the National Natural Science Foundation of China under grant number 
51801142, the Natural Science Foundation of Shaanxi Province under grant number 2018JQ5022. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

ADLR Abundance and dictionary-based low-rank decomposition 
AED Anomaly detector based on attribute and edge-preserving filters 
AUC Area under the curve 
AVIRIS Airborne Visible/Infrared Imaging Spectrometer 
CRD Collaborative representation-based anomaly detection 
ENVI Environment for Visualizing Images 
GF Guided filter 
GoDec Go Decomposition 
HA Harmonic analysis 
HALR Harmonic analysis and low-rank decomposition 
HA-PSO-SVM Harmonic analysis-particle swarm optimization-support vector machine 
KRX Kernel RX 
LADMAP Linearized alternating direction method with adaptive penalty 

Figure 18. The effect of the separated value ξ on the performance of the HALR method.

In the experiment, these uncertain parameters are empirically selected which limits the application
of the proposed HALR method to some extent. In the future, we will work on the adaptive determination
of the various parameters of the proposed HALR method.

5. Conclusions

In this paper, we proposed a novel hyperspectral anomaly detection based on harmonic analysis
(HA) and low-rank decomposition. The proposed approach mainly comprises three stages, i.e.,
HA, guided filter (GF) and low-rank decomposition. In order to deal with large data and redundant
information in the original hyperspectral image (HSI), we applied a single-pixel-based HA. Subsequently,
we introduced GF on the images after HA, not only to reduce the impact of isolated noise to some
extent, but also to make the dictionary more discriminative on the low-rank decomposition. Ultimately,
the low-rank decomposition was adopted to extract anomaly objects. The primary goal of this low-rank
decomposition was to consider the low-rank features of background and the sparse features of anomaly.
Furthermore, both the visual and the quantitative results (receiver operating characteristic (ROC) curves
and area under the curve (AUC)) indicate that the proposed approach achieves a more competitive
detection performance than alternatives. In the future, we will work on the automatic determination
of the optimal parameter.
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Abbreviations

ADLR Abundance and dictionary-based low-rank decomposition
AED Anomaly detector based on attribute and edge-preserving filters
AUC Area under the curve
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
CRD Collaborative representation-based anomaly detection
ENVI Environment for Visualizing Images
GF Guided filter
GoDec Go Decomposition
HA Harmonic analysis
HALR Harmonic analysis and low-rank decomposition
HA-PSO-SVM Harmonic analysis-particle swarm optimization-support vector machine
KRX Kernel RX
LADMAP Linearized alternating direction method with adaptive penalty
LRASR Low-rank and sparse representation
LRR Low rank representation
LRX Local RX

LSMAD
Low-rank and sparse matrix decomposition-based mahalanobis distance method for
hyperspectral anomaly detection

PSO Particle swarm optimization
ROC Receiver operating characteristic
ROSIS Reflective Optics System Imaging Spectrometer-03
RPCA Robust principal component analysis
RSAD Random-selection-based anomaly detector
RX Reed-Xiaoli
SNR Signal-to-noise ratio
SSRX Subspace-based RX
STGF Structure tensor and guided filtering
SVM Support vector machine
WSCF Whitening spatial correlation filtering
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