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Abstract: A new all-weather land surface temperature (LST) product derived at the Satellite
Application Facility on Land Surface Analysis (LSA-SAF) is presented. It is the first all-weather
LST product based on visible and infrared observations combining clear-sky LST retrieved from
the Spinning Enhanced Visible and Infrared Imager on Meteosat Second Generation (MSG/SEVIRI)
infrared (IR) measurements with LST estimated with a land surface energy balance (EB) model to fill
gaps caused by clouds. The EB model solves the surface energy balance mostly using products derived
at LSA-SAF. The new product is compared with in situ observations made at 3 dedicated validation
stations, and with a microwave (MW)-based LST product derived from Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) measurements. The validation against
in-situ LST indicates an accuracy of the new product between -0.8 K and 1.1 K and a precision between
1.0 K and 1.4 K, generally showing a better performance than the MW product. The EB model shows
some limitations concerning the representation of the LST diurnal cycle. Comparisons with MW LST
generally show higher LST of the new product over desert areas, and lower LST over tropical regions.
Several other imagers provide suitable measurements for implementing the proposed methodology,
which offers the potential to obtain a global, nearly gap-free LST product.

Keywords: land surface temperature; all-weather; infrared; microwave; surface energy balance

1. Introduction

Land surface temperature (LST) translates the response of land surface to environmental factors
and constrains the energy exchanges at the land–atmosphere interface [1–3]. It is an essential variable
for computing longwave surface-emitted radiation, as well as for estimating turbulent fluxes of latent
and sensible heat; in some regions, the amplitude of the diurnal cycle of LST is strongly correlated to soil
moisture [4,5]. One of the benefits of LST is that it may be observed by remote sensors on-board polar
orbiting and geostationary platforms, ensuring global coverage with very good temporal sampling,
especially in the case of geostationary platforms [6]. The availability of long-term satellite data records
is now providing unique opportunities to derive climate-related information from satellite-derived LST,
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particularly its diurnal cycle, and in regions with sparse surface station data coverage. This motivated
the inclusion of LST in the list of essential climate variables [7], which underlines its relevance for
climate applications. In an attempt to increase the use of LST for climate-related studies, Good [8]
explored relationships of LST and near-surface (2 m) air temperature over a number of standard weather
stations worldwide. LST is also useful for assessing and improving parameters in surface schemes
of numerical weather prediction (NWP) and Earth system models to provide more accurate surface
and near-surface diagnostics [9–11]. It has been recognized that land surface models often struggle
to correctly represent clear sky skin temperature (Tskin), particularly regarding its diurnal amplitude
over arid and semi-arid regions with an underestimation of daytime and a small overestimation of
night–time values [10–13]. Johannsen et al. [11] showed that inaccuracies in the representation of
vegetation cover could largely explain the biases observed over the Iberian Peninsula. However, it
is unclear if other factors could be contributing to the observed bias. Alternative causes include: 1)
a misrepresentation of surface processes and land-atmosphere interactions in surface schemes and
2) inaccuracies in the main forcing variables and surface parameters (e.g. radiative fluxes and soil
moisture).

The main limitation of LST products based on infrared (IR) remote-sensing measurements is
that they can only be retrieved under clear sky conditions [14]. An example of such products is
the operational LST product retrieved from the Spinning Enhanced Visible and Infrared Imager on
Meteosat Second Generation (MSG/SEVIRI) by the Satellite Application Facility on Land Surface
Analysis (LSA-SAF, http://lsa-saf.eumetsat.int) which has been available since 2004 [15]. The LSA-SAF
standard LST product is based on a generalized split-window algorithm [16] and has been extensively
validated against independent sources, including in situ observations [15,17–20].

There have been some attempts to provide all-weather LST products, mostly using (1) statistical
and interpolation methods (2) products based on microwave (MW) measurements and (3) surface
energy balance (EB) methods [21]. The first kind of methodologies usually rely on ancillary information
such as land cover, elevation, day of year, a diurnal cycle model, or data from another sensor [22,23].
However, they generally provide LST estimates corresponding to clear sky situations and, therefore,
are affected by the so-called clear-sky bias [24]. MW products are more common since there have
been multiple operational MW instruments for decades, allowing the production of long-term data
records. The most used instrument for these retrievals has been the Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E) [21,25–31], but MW LST products have also been
derived for the Special Sensor Microwave Imager (SSM/I) [32–36] and even for the Microwave Imager
on Tropical Rainfall Measurement Mission (TRMM) [37]. Nonetheless, those products have their own
issues, mostly related to inherent difficulties associated to the properties of MW radiation [25], as well as
their currently low temporal and spatial sampling. The sensing depth of microwave radiation depends
on the characteristics of the soil, most notably: composition, moisture content, or vegetation cover and
characteristics [35,38–41]. In contrast to IR LST, derived from the emitted radiation emanating from
the top micrometers of the soil, the MW LST corresponds to radiation integrated over a transmissive
surface, which can be of the order of a few centimeters for dry soils [39,41]. Furthermore, moist
surfaces and snow pack pose challenges to the determination of surface emissivity in those spectral
regions [42,43]. The retrieval itself is more affected by uncertainties in this parameter because, contrary
to IR observations where the emitted radiance is proportional to T4, in the MW spectral region there is
a linear dependency to temperature [25]. When compared to IR estimates under clear sky conditions,
MW often presents significant differences, which may be 2 K or larger [26]. MW measurements are
relatively insensitive to clouds, although they may be affected by ice particles inside deep convective
clouds, since these scatter MW radiation (especially higher frequencies). Synergies between clear-sky
thermal IR data with MW for cloudy sky have recently been proposed with promising results. For
example, Andre et al. [44] combined Moderate Resolution Imaging Spectroradiometer (MODIS) and
SSM/I brightness temperatures over the circumpolar Arctic and reported root mean squared differences
(RMSDs) of 2 K when comparing their retrievals to five experimental sites of the EU-PAGE21 project
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(https://www.page21.eu/). Since MODIS and SSM/I do not have the same overpass times, they were
synchronized by fitting a diurnal cycle model derived using ERA-Interim data [45]. Duan et al. [21]
proposed a retrieval scheme using AMSR-E together with MODIS (both of which are onboard Aqua),
and showed performances of about 4 K for cloudy scenes, when compared to 4 in situ stations over
the Heihe River Basin in China. In order to reduce the uncertainty in merged MW and TIR LST,
Zhang et al. [46] developed a pixel-based method that fully utilizes the spatial interrelationships
between neighboring temperatures and merges the two LST types in the temporal and spatial domains.
By applying their approach to AMSR-E/AMSR2 and MODIS LST over a study area in China, they
generated an 11-year data record of 1-km daily all-weather LST, which had an accuracy of 1.29–2.71 K
compared to in situ LST obtained over diverse land surfaces [46].

The third methodology to derive LST estimates under cloudy conditions, i.e. surface EB-based
methods, is somewhat less popular as it tends to be computationally more demanding and requires
additional ancillary data, which makes it harder to implement operationally. Jin and Dickinson [47]
proposed an algorithm using LST information from neighboring clear-sky pixels together with sensible,
latent and longwave fluxes, which were parameterized as a function of skin temperature. The method
was applied to data collected during the First International Satellite Land Surface Climatology Project
(ISLSCP) Field Experiment (FIFE) and the Boreal Ecosystem-Atmosphere Study (BOREAS) (https://www.
gewex.org/data-sets-international-satellite-land-surface-climatology-project-islscp/). The estimation
of the fluxes required meteorological information, which was obtained from nearby meteorological
weather stations. Once the fluxes were determined, skin temperature was estimated by solving the
surface EB equation. This method assumes that cloudy skin temperature can be estimated by adjusting
a corresponding clear-sky value to the different radiative and flux inputs induced by the cloud. The
method was extended to MSG/SEVIRI retrievals by Lu et al. [48], taking advantage of the high temporal
sampling of the sensor. However, the method relies on estimates of solar radiation and, therefore, is
limited to daytime scenes; furthermore, it also depends on the availability of nearby meteorological
weather station information, which limits its global applicability. Leng et al. [49] also developed an
EB model, which was used to estimate evapotranspiration over all-sky conditions. In the cloudy-sky
component of their scheme, surface net radiation is estimated as a function of the incoming shortwave
radiation and surface albedo. Fraction of vegetation cover was used to parameterize soil heat flux.
However, the method was not specifically devoted to LST estimation.

Although LST was the first product to be released by the LSA-SAF, the service now encompasses
a wide range of satellite-based quantities over land surfaces [50], such as emissivity [51], albedo [52],
radiative fluxes [53], vegetation state [54–56], actual evapotranspiration (ET) [57] and reference
evapotranspiration [58], and fire-related variables [59–61]. To produce ET, the surface EB for each
MSG/SEVIRI pixel is solved using an algorithm derived from the surface scheme used operationally
by the European Center for Medium-range Weather Forecast (ECMWF), namely the Tiled ECMWF
Scheme for Surface Exchanges over Land with revised hydrology (H-TESSEL) [62–65] and slightly
modified [66]. As further detailed below, the model makes use of remote-sensing data (mainly from
MSG/SEVIRI and from the Advanced Scatterometer, ASCAT) to maximum extent: amongst others,
the model outputs (LST and surface turbulent fluxes) are strongly constrained by remote-sensing
surface albedo, leaf area index, incoming radiation fluxes, and soil moisture. Some of the inputs are
not available as satellite products and, therefore, obtained from global numerical weather forecasts
(ECMWF, in this case). Since the model produces a skin temperature as a byproduct, and some of the
aforementioned applications would benefit from an all-weather LST product, a new LSA-SAF product
was developed using this skin temperature to fill in gaps caused by clouds in the standard IR-based LST
product (LSA-001). The rationale for this approach is to maintain level 2 LST estimates for clear-sky
pixels, while adding higher level LST estimates over cloudy pixels, i.e. LST values estimated with the
surface energy balance model, which relies as much as possible on LSA-SAF products. This will be
the first operational all-weather LST product that uses a surface EB model constrained by visible and
infrared observations to extend a standard IR LST product to cloudy pixels.

https://www.page21.eu/
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Here we describe the methodology to derive the new all-weather LST product. The approach is
applied to MSG/SEVIRI observations, thereby laying the ground for the first all-weather LST product
to be generated by the LSA-SAF. Section 2 describes the LSA-SAF all-weather LST, the AMSR-E LST
and the in situ LST datasets and provides a brief description of the algorithms used to derive them. In
Section 3 an inter-comparison between the different datasets used in this work is performed, namely
between IR LST and EB model skin temperature in clear sky situations (Section 3.1), IR/EB model
surface temperature datasets, and in situ (3 stations; focus on the representation of the diurnal cycle,
see Section 3.2). Furthermore, the proposed all-weather IR/energy-balance LST is compared with
the MW-based LST product in terms of spatial coherence and dependence on land cover (shown in
Section 3.3). A general discussion of the results is presented in Section 4 while Section 5 provides some
final conclusions.

2. Methodology and Datasets

2.1. Satellite Application Facility on Land Surface Analysis (LSA-SAF) All-Weather Land Surface
Temperature (LST)

The product proposed here consists of half-hourly retrievals of LST for every MSG/SEVIRI land
pixel, regardless of cloud coverage. The product will be made available through the LSA-SAF portal
(http://lsa-saf.eumetsat.int/) in near real time and will be distributed in HDF5 (Hierarchical Data
Format) format, similarly to the remaining LSA-SAF products. A product quality flag will provide
information about the cloud cover and other relevant information impacting the retrieval (depending
if the pixel was considered cloudy or clear sky), such as quality of the emissivity estimates, high total
water vapour amounts or satellite viewing angles.

For the entire year of 2010, a set of all-weather LST was generated for the MSG/SEVIRI pixels used
in the colocations with in situ stations. For the purpose of spatial comparisons, full-disk retrievals for
10 days in January and 10 days in July 2010 were produced, encompassing Europe, Africa and part
of South America (Figure 1). This particular period was chosen for validation and inter-comparison
purposes, because the corresponding in situ and MW datasets were already available. The wide
area being covered ensures representativeness of the environmental conditions within those months,
while the choice of months allows investigating differences between dry and rainy seasons. The
all-weather LST dataset consists of a combination of LSA-SAF standard LST product derived from
thermal IR brightness temperatures, and cloudy sky estimates obtained with the surface energy balance
(EB) model. The former is made available by the LSA-SAF at the temporal and spatial resolution of
MSG/SEVIRI (15 min; 3-km sample distance at nadir) from 2004 onwards. The latter follows the new
approach, which is described in Section 2.1.2, and has been generated at full MSG/SEVIRI spatial
resolution but with temporal sampling reduced to 30-minutes (corresponding to the LSA-SAF EB
model temporal resolution). Since the time-slot shown in Figure 1 corresponds to a daytime retrieval
over the MSG/SEVIRI disk, cloudy regions (masked in the standard operational LST product) appear
generally as colder regions, when compared to the neighboring pixel. The most striking feature of the
new product is the nearly full coverage of the MSG/SEVIRI disk.

http://lsa-saf.eumetsat.int/
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Figure 1. Example the standard Satellite Application Facility on Land Surface Analysis (LSA-SAF)
infrared (IR) land surface temperature (LST) product based on the Spinning Enhanced Visible and
Infrared Imager on Meteosat Second Generation (MSG/SEVIRI) measurements (left), compared to the
corresponding all-weather LST counterpart (right). Data from 29 Sep 2016 1100UTC.

2.1.1. Clear Sky

The standard IR-based LSA-SAF LST product is only generated for clear-sky pixels, as clouds
are opaque to infrared radiation. There are several empirical algorithms to retrieve LST from remote
sensing data described in the literature [14,67,68]. The operational LST produced by the LSA-SAF uses
a generalized split-windows algorithm specifically tuned to MSG/SEVIRI [16,19,69]:

LST = C +
(
A1 + A2

1− ε
ε

+ A3
∆ε
ε2

)TIR1 + TIR2

2
+

(
B1 + B2

1− ε
ε

+ B3
∆ε
ε2

)TIR1 − TIR2

2
, (1)

where TIR1 and TIR2 are the top-of-atmosphere brightness temperatures in the split-window channels
(10.8 and 12.0µm for MSG/SEVIRI), ε and ∆ε are their surface emissivity average and difference,
respectively; and Ai, Bi and C are model coefficients. These coefficients are determined a priori by
class of viewing zenith angle (VZA) and total column water vapor (TCWV). ε is estimated with the
vegetation cover method [51], where the effective emissivity for each pixel is calculated as an average
between the vegetation and the bare soil emissivities (εveg and εbs, respectively) weighted by the
fraction of vegetation cover (FVC) within the pixel, also provided by the LSA-SAF:

ε = εvegFVC + εbs(1− FVC) (2)

Values of εveg and εbs are taken from pre-computed lookup tables, where these values, together
with an estimation of their uncertainty, are available per land cover type and per channel. These were
estimated through the convolution of spectral emissivities available from published libraries (e.g., [70])
and MSG/SEVIRI channel response functions, considering a set of natural and man-made materials
that are most common within typical land-cover types. A full description of the methodology, and
lookup tables may be found in [19,51,71]. It should be noted that Equation (2) can be extended easily to
the case of mixed pixels with water (or snow) and vegetated (or bare ground) surfaces. However, given
the limitations in the estimation of FVC in those cases, we consider a climatological FVC when snow is
detected (εbs is set to a “snow” value), while all cases where more than half of the pixel is covered by
coastal or inland water are treated as “pure” water pixels (FVC set to 0 and εbs is set to a “water” value).
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2.1.2. Cloudy Sky

For cloudy pixels, a surface EB model approach is used to derive surface temperature. In order
to provide estimates of evapotranspiration, the surface energy balance is solved every 30 min using
the LSA-SAF ET v2 algorithm (see respective Algorithm Theoretical Basis Document ATBD available
from http://lsa-saf.eumetsat.int/). A brief description of this EB model is given below; a more complete
description may be found in [57,72–74]. A schematic representation of the model is provided in
Figure 2.
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Figure 2. LSA-SAF surface energy balance model. Over each tile the model is solved for a variety of
inputs including downwelling radiative fluxes (S↓, L↓), surface albedo (α), vegetation properties (all
from LSA-SAF), surface and root zone soil moisture (hydrology SAF) and near surface meteorological
variables from ECMWF (U, V, Ta and Qa). Separate schemes are used for wildfire and urban tiles. All
quantities obtained from satellite have an MSG icon next to them. The related definitions are provided
in the main text.

Each MSG/SEVIRI pixel is considered to be composed of homogeneous tiles corresponding to
different surface types, e.g. bare soil, several classes of low and high vegetation, water, snow, rocks
and urban surfaces. The surface energy balance is solved for each tile i separately:

Rni = Hi + LEi + Gi, (3)

where Rni is net radiation, Hi is sensible heat, LEi is latent heat and Gi is ground heat flux for the
i-th tile of within a pixel. All these terms are parameterized as a function of several other variables
and the reader is referred to the product ATBD for the specific details. The fraction of each tile
within a MSG/SEVIRI pixel and its respective parameters are determined from the ECOCLIMAP-II
database [75,76].

Net radiation (Rni) is determined for each tile from the shortwave and longwave fluxes at the
surface:

Rn,i = (1− α)S↓ + ε
(
L↓ − σT4

sk,i

)
, (4)

where α is (pixel) surface albedo, ε is (pixel) broad-band infrared emissivity, S↓ and L↓ are the (pixel)
downward shortwave and longwave fluxes at the surface, respectively, σ is the Stefan–Boltzmann
constant and Tsk,i is the skin temperature of the i-th tile. Skin temperature is also involved in the

http://lsa-saf.eumetsat.int/
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estimation of latent and sensible heat fluxes, which are obtained using a resistance approach, combining
the effects of: (1) the stomatal aperture, modeled using the canopy resistance rc, conditioned by
environmental stress, which in turn depends on factors such as the LAI, S↓, unfrozen soil water content
and atmospheric water pressure deficit, as well as plant physiological characteristics; and (2) the
aerodynamic resistance ra, which depends on the stability of the atmosphere and turbulence intensity.
Thus, sensible heat flux is given by:

Hi =
ρa

rai

[
cp

(
Tski − Ta

)
− gza

]
, (5)

where ρa is air density, cp is the specific heat of dry air at constant pressure, Tsk,i and Ta are skin and air
temperatures (at tile and pixel level, respectively), g is the acceleration of gravity and za is the height at
which air temperature is estimated (2 m). Latent heat flux is given by:

LEi =
Lvρa

(rai + rci)

[
qsat

(
Tsk,i

)
− qa(Ta)

]
, (6)

where Lv is the latent heat of vaporization and qa and qsat are the specific humidity and the specific
humidity at saturation, respectively. Finally, the heat flux into the ground (Gi) is parameterized as a
function of net radiation and LAI. Skin temperature and turbulent heat fluxes are adjusted iteratively
to meet the surface energy balance, given the prescribed satellite and numerical weather prediction
model inputs.

Land surface parameterization schemes similar to the one that is used here have been widely
used to represent surface fluxes at various spatial and temporal scales in numerical prediction models
(e.g., [62–65]). In contrast to these, the model is run at SEVIRI pixel scale exploiting as much as possible
inputs derived from satellite observations, most of them retrieved by LSA-SAF from MSG/SEVIRI
observations. These include incoming radiation at the surface, namely shortwave and longwave
downward radiation fluxes [50,53,77,78], albedo [52], and vegetation related parameters such as the
LAI [50].

For pixels with active fires, identified using LSA-SAF fire radiative power [60], the skin temperature
is not estimated. A snow mask is also used (MSG/SEVIRI-based distributed by the Hydrology SAF,
H-SAF; http://h-saf.eumetsat.int) for the identification of non-permanent snow pixels. The clear-sky
15-minute LST is itself used to help inferring the soil moisture content in arid in semi-arid regions,
where the morning heating rate of the surface relates to soil moisture [5,79,80]. The information on soil
moisture is further complemented with H -SAF soil moisture data (product identifier H14 SSM, also
known as SM-DAS-2; [81]), based on observations made by the Advanced SCATterometer (ASCAT) on
board Metop satellites. Near- surface meteorological fields such as 2 m air temperature and specific
humidity, surface pressure and wind speed at 10 m are retrieved from the latest available ECMWF
operational forecasts (up to 24 hours) and resampled to the MSG/SEVIRI grid. The ECMWF data are
available hourly and the set of fields closest in time to SEVIRI observations is used. The forecasts
(current operational model has a horizontal resolution of about 9 km) are bi-linearly interpolated to the
SEVIRI geostationary projection; air temperature is further corrected using a constant lapse rate to
account for differences between model and pixel topography.

The surface energy balance is solved under all-sky conditions and, therefore, skin temperature is
also produced for all weather conditions. There are very few situations for which the model does not
converge after a sufficiently large number of iterations (it stops after 100 iterations). In these cases, the
model does not provide a valid skin temperature value. In all other cases (except for active fire pixels as
stated above), EB model skin temperature is used to fill the cloudy pixels in the clear sky LST product.

http://h-saf.eumetsat.int
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2.2. Microwave-Based Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) LST

An alternative approach to obtain LST under all-sky conditions consists in the use of microwave
observations, as these are nearly unaffected by clouds. MW LST data used here corresponds to the
dataset developed by Jimenez et al. [25], where a neural-network approach is applied to brightness
temperatures measured by the AMSR-E instrument on-board Aqua satellite at 18.7, 23.8, 36.5 and 89.0
GHz. The effective mean resolution of the product is 12 km (footprint size of the 36.5 GHz channel),
but information from the channels with larger footprints also affects the retrieval. The AMSR-E LST is
produced twice-daily for almost all weather conditions at equator crossing times of 1:30 AM/PM.

For this dataset, several limitations have been identified by Jimenez et al. [25]: (1) less reliable
retrievals can occur in regions where the emissivity can depart from the assumed climatological
value such as surfaces with very low emissivity, potentially flooded areas, snow/ice surfaces with
changing conditions (e.g., melting), and coastal pixels; (2) the radiation reaching the sensor may
include emissions from subsurface layers, specially over dry sandy areas; and (3) the ice phase of deep
convective clouds may scatter microwave radiation.. The latter conditions are flagged by looking for
cloud scattering signals in the 89 GHz channel.

Ermida et al. [26] performed comparisons of clear-sky LSTs for AMSR-E and MODIS and a few
geostationary sensors. They found good agreement between MW and IR estimates, except in arid
and semi-arid regions, where differences of up to 6–7 K were reported, and in snow covered areas,
where LST differences may reach 20 K. The main advantage of the AMSR-E dataset compared to the
MODIS counterpart is its much larger frequency of successful retrievals: the authors showed that for
frequently cloudy pixels, the increase in coverage in AMSR-E compared to MODIS exceeds 250%.

Based on comparisons made against a training database used to calibrate the neural network
algorithm, Jiménez et al. [25] reported an expected precision of 2.8 K or better for almost 75% of the
global land surface. A comparison with in situ stations spread across a wide range of biomes and
climates showed a RMSD of around 4 K, which is larger than that reported for MODIS (around 2.4 K),
but with nearly 3 times more sampling due to its ability to measure LST even under cloudy conditions.

For the purpose of comparison with MSG/SEVIRI-based all-weather LST, we consider LST derived
from AMSR-E [25] for the whole year of 2010.

2.3. In Situ LST

The LST estimates from the LSA-SAF MSG/SEVIRI (level-2) product are routinely validated against
dedicated in situ stations, equipped with upward and downward looking longwave radiometers,
the “KT15.85 IIP” produced by Heitronics GmbH, Wiesbaden, Germany. This type of instrument
measures thermal infrared radiance in the 9.6 – 11.5 µm interval with a 0.03 ◦C resolution and ±0.3 ◦C
accuracy over the corresponding temperature range. In this work, data from three permanent LST
validation stations operated by Karlsruhe Institute of Technology (KIT) are used. These are located
within the MSG/SEVIRI disk (Figure 3): Évora (Mediterranean, Portugal), Kalahari (Steppe, Namibia)
and Gobabeb (Desert, Namibia). This study considers all data collected by stations dedicated to LST
validation for this period over the MSG/SEVIRI disk. Due to the relatively large pixel size, stations need
to be located in large homogeneous landscapes, where in situ “point-measurement” (e.g. covering an
area of 10 m2) are representative of the about 25 km2 corresponding to the MSG/SEVIRI pixel scale.

The in situ LST (here referred to as Ts) is estimated from the measured upward radiance L↑(Ts,λ)
corrected for the downward radiation L↓(λ) reflected by the surface and local surface emissivity
ε(λ) [17,18,20,82]:

B(λ, Ts ) =

[
L↑(Ts,λ) − (1− ε(λ))L↓(λ)

]
ε(λ)

, (7)

In (7), surface emissivity is either estimated from the corresponding value for the 10.8 µm
MSG/SEVIRI channel, combining vegetation and bare ground emissivities of the land cover attributed
to the pixel containing the station, or set to a constant value, e.g. at the Gobabeb desert site [83,84].



Remote Sens. 2019, 11, 3044 9 of 28

Surface temperature is then derived with the inverse Planck function, at the central wavelength of the
radiometer response function (λc):

LST =
c2[

λ log
(

c1λ
−5
c

B(λ,Ts)
+ 1

)] , (8)

where c1 = 1.191044 × 10−8 W m sr−1 cm−4, c2 = 1.438769 K cm, and λc = 10.55 µm is the center
wavelength of the downward looking radiometer.

Evora is located within an oak tree woodland, where temperature contrasts between tree canopies
and the sunlit and shaded understory may be high, especially during the dry summer season. Such
contrasts may lead to significant directional effects that should be taken into account when upscaling
the in situ measurements to pixel scale [18,85]. Following Ermida et al. [18], Evora in situ LST is
upscaled using a geometric model to simulate the satellite-viewed fractions of tree canopy and sunlit
and shaded ground, taking into account the illumination and viewing geometries and a typical tree
shape for the region. These fractions are then used in combination with the available measurements
of tree canopy, sunlit ground and air temperatures (used as proxy for shaded ground temperature)
to estimate the LST as would be retrieved by the satellite. However, it must be stressed that while
MSG/SEVIRI IR LSTs are retrieved directly from the measured thermal emissions at a given viewing
geometry, EB estimates correspond to an average of tile skin temperature, which assumes tile fractions
based on the ECOCLIMAP-II database and disregards any shadowing effects. Therefore, the correction
method developed by Ermida et al. [18] is only applied to the in situ clear sky values used for the
validation of clear sky LST values retrieved via the split-windows algorithm. The validation of EB skin
temperature makes use of in situ observations upscaled using known fractions of tree canopies/open
ground around the station. Clear sky pixels over the station sites are identified using the MSG/SEVIRI
cloud mask. For Gobabeb and Kalahari no such corrections are needed since there are very few surface
elements casting shadows.
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Figure 3. Locations of the dedicated LST validation stations used in this study. The colors in the
right-hand plots represent the land cover types from the International Geosphere-Biosphere Programme
(IGBP) database [86].

A summary of all the datasets used in this study is provided in Table 1.
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Table 1. Characteristics of the products used in this study. All datasets are available for the full year of
2010, except the energy balance (EB) model TSk; for the latter, full disk retrievals were performed for 10
days in January and 10 days in July; for the full year, retrievals every 30 min were performed for the
pixels matched with the in situ stations.

Source (Product ID) Original Resolution
(spatial/temporal) Comments

EB model TSk
LSA-SAF
(LSA-311) 3 km at nadir/30 min Byproduct of LSA-311

IR LST LSA-SAF
(LSA-001) 3 km at nadir/15 min Clear sky only

IR+EB model LST LSA-SAF
(LSA-005) 3 km at nadir/30 min All-weather LST

presented here

In situ LST KIT Point measurement/1 min)
Evora (Portugal);

Kalahari and
Gobabeb (Namibia)

AMSR-E LST GlobTemperature
(AMSRE_LST_2)

12 km/Ascending and
descending orbits MW; All-weather LST

2.4. Statistical Metrics

In this study, for the comparison with in situ data, we use robust statistics recommended by the
Committee on Earth Observation Satellites Working Group (CEOS) on Calibration and Validation-Land
Product Validation (LPV) Subgroup for validation of Land Surface Temperature Products [82,87]. The
median error, µ, which is a measure of the accuracy is given by:

µ = median(LSTsat − Ts), (9)

where LSTsat stands for satellite LST and TS represents in situ LST. The median of the absolute residuals,
σ, reports on precision and is given by:

σ = median
(∣∣∣LSTsat − µ

∣∣∣), (10)

Finally, an estimate of total uncertainty is given by root-mean-square-difference, RMSD:

RMSD =

√∑
(LSTsat − Ts)

2

N
, (11)

where N represents the sample size.
For the comparison of satellite datasets, the traditional average (bias) and standard deviation

(STD) of LST differences are used instead of the robust metrics.

3. Results

3.1. Infrared (IR) and Energy Balance (EB) Model Comparison in Clear Sky Situations

Figure 4 shows a direct comparison between EB model skin temperature and IR LST (over clear
sky scenes). Such comparisons for clear sky cases, while taking into account uncertainty in IR LST,
are helpful in providing insights into model capabilities and weaknesses. This is important for future
model improvements, in particular over areas where in situ observed data used for model calibration
are scarce. The mean differences were computed using the full 10-day period processed for January
and July 2010, respectively, but accounting only with cases where both EB skin temperature and IR
LST are simultaneously available. Daytime and nighttime cases were analyzed separately, averaging
half-hourly timeslots between 00:00UTC and 02:30UTC for nighttime and between 12:00UTC and
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14:30UTC for daytime. In general, the results in Figure 4 are similar to those found in previous
comparison studies between model skin temperature and satellite LST [10,11,88,89]. Namely, they
show a tendency for model surface temperatures to have a lower daily amplitude, particularly over
arid and semi-arid regions – see the strong negative daytime bias of −4 to −7 K over the Iberian
Peninsula in July, of −2 K to −4 K over part/most of Northern Africa in July/January and of −1 K to −5
K in Southern Africa in January. The nighttime bias over the same areas/months suggests that model
surface temperature stays warmer than IR LST, also in agreement with the aforementioned model
comparisons, although the results presented here show a higher level of detail. Indeed, here we run
an EB model at high spatial resolution (MSG/SEVIRI pixel scale) and force it with a combination of
satellite and ECMWF data, which may contribute to the differences in the results. The information
contained in Figure 4 is complemented by Figure 5, which shows the corresponding histograms of the
instantaneous differences for the same period and area. Daytime differences show a positively skewed
distribution, i.e. for January (July) 1.7% (6.3%) of the datapoints are above 10 K, while only 1.2% (0.9%)
are below –10 K. The mode of both distributions (January and July) is −1.5 K (for 1 K histogram bins).
Since the frequency of larger positive differences in July increases, the absolute median difference
decreases from 1.2 K (negative) in January to 0.0 K in July. During nighttime, these larger differences
are less frequent and the distributions are less skewed. For January (July) only 0.4% (0.9%) of the
differences exceed 10 K, while 0.2% (0.1%) have values below –10 K. Furthermore, for January the
negative bias is reduced (µ = –0.3 K), while it is slightly positive (µ = 0.6 K) for July.
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Figure 5. Histograms of the instantaneous clear sky differences of TSk − LST in Figure 4 (units: K). The
red dashed line denotes the median difference. Also indicated are the values of the median difference,
µ, the median of the absolute residuals, σ, the root mean squared difference (RMSD) and the number of
pixels used in the comparison.

Areas with frequent cloud cover (see e.g., the tropics, mid-latitudes winter) tend to exhibit a clear
positive bias, which needs to be further investigated. Figure S1 shows the number of data points
used to compute the median differences in Figure 4. Over some of the aforementioned regions (e.g.,
Central Africa in July, where the Intertropical Convergence Zone lies) the number of EB versus IR LST
matchups decreases significantly, with large areas with less than 6 matchups. There, IR LST is more
prone to cloud contamination, which may contribute to the observed positive bias.

Possible reasons for the observed discrepancies are discussed in Section 4. Note that clear-sky
EB model skin temperature is not used in the proposed all-weather LST product. Comparisons were
also performed using the full month of July of 2018 (since all the inputs were readily available for
that period) and the obtained patterns are very similar to those shown in Figure 4 (not shown), with
exception of a reduced positive bias over West Africa at 13UTC. This reduction could be related to the
higher sampling available for the comparison. This confirms the systematic character of these biases
and the need for further model improvements.

3.2. IR and EB Model In Situ Comparisons

3.2.1. Time Series

To illustrate the general behavior of the different products, Figure 6 provides time-series of the
various LST datasets for Evora (in situ with and without directional correction, IR split-window
LST, all-weather EB model Tsk and AMSR-E LST), for a spring (23 March–7 April 2010) and summer
(7–22 August 2010) period. The area surrounding Evora station experiences strong seasonal (and
inter-annual) vegetation variability as the understory grows and desiccates. This introduces some
emissivity variability as well as significant temperature contrasts between surface elements, particularly
during summer. A correction that accounts for directional effects was introduced in order to improve
comparisons with MSG/SEVIRI level 2 clear-sky LST estimates [18,90]. The adjusted time series (shown
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in green) show differences to the original in situ estimate up to 2 K, with lower LST values around
the daily maximum for the periods shown. This is plausible since the non-adjusted in situ values
correspond to a composite of sunlit ground and tree canopy temperatures and do not include the
fraction of shaded areas observed by MSG/SEVIRI.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 28 

 

 439 

Figure 6. LST products over Evora station: IR clear-sky LST (red line), EB model (all-weather) 𝑇ௌ௞ 440 
(blue line), in situ LST without directional correction (black line), in situ LST with directional 441 
correction to MSG/SEVIRI viewing angle (in green) and AMSR-E LST (yellow diamonds). Spring is 442 
characterized by mild temperatures and high soil moisture (top panel), and summer is characterized 443 
by warm temperatures and low soil moisture (bottom panel). 444 

The IR LST follows the in situ curve quite closely, with some negative differences for partly 445 
cloudy days (these differences are quantified below). The EB model skin temperature seems to 446 
‘overshoot’ at the daily maximum by a few degrees, whereas at nighttime it gets cooler than in situ 447 
observations for some days (e.g., 2–3 Apr, 12–13 Aug), and warmer for others (e.g., 9–10 Aug). 448 
Regarding the AMSR-E all-weather LST product, at nighttime in August there is a clear 449 
overestimation of in situ LSTs. At daytime these differences are reduced, i.e. AMSR-E LST does not 450 
show the overshooting behavior of EB model 𝑇ௌ௞ and of IR LST (see days 7, 13–16, 19–20 and 22 of 451 
August). Note that some days (e.g. 27 or 29 of March) do not show any AMSR-E values, which is due 452 
to the fact that the closest measurement was too far from the station (i.e. more than 12 km away). 453 
AMSR-E revisiting time is generally between 1 to 2 days. 454 

In Figure 7 the EB model skin temperature (separated into clear sky and cloudy sky cases) is 455 
evaluated against in situ estimates for the 3 stations, as well as the IR LST (for clear sky only) and the 456 
derived all-weather LST product i.e., IR LST (clear sky) + EB 𝑇௦௞ (cloudy sky). The matchups are 457 
performed using the nearest neighbor of the station, except for Gobabeb, where a specific pixel in the 458 
vicinity of the station, the so-called Tidbit01 location, was used to avoid the effect of the sand dunes 459 
surrounding the station [17,20]. Each plot of Figure 7 contains the summary statistics described in 460 
section 2.4, and global summary statistics are shown in Table 2. All datasets are sampled in 30 min 461 
frequency for the matchups. Colocations are only possible when all datasets are available. If any of 462 
the inputs for the IR LST and EB models are unavailable at the time of the processing, or are of low 463 
quality, all-weather LST cannot be obtained. In situ stations also contain missing data. 464 

Figure 6. LST products over Evora station: IR clear-sky LST (red line), EB model (all-weather) TSk (blue
line), in situ LST without directional correction (black line), in situ LST with directional correction to
MSG/SEVIRI viewing angle (in green) and AMSR-E LST (yellow diamonds). Spring is characterized
by mild temperatures and high soil moisture (top panel), and summer is characterized by warm
temperatures and low soil moisture (bottom panel).

The IR LST follows the in situ curve quite closely, with some negative differences for partly cloudy
days (these differences are quantified below). The EB model skin temperature seems to ‘overshoot’ at
the daily maximum by a few degrees, whereas at nighttime it gets cooler than in situ observations for
some days (e.g., 2–3 Apr, 12–13 Aug), and warmer for others (e.g., 9–10 Aug). Regarding the AMSR-E
all-weather LST product, at nighttime in August there is a clear overestimation of in situ LSTs. At
daytime these differences are reduced, i.e. AMSR-E LST does not show the overshooting behavior of
EB model TSk and of IR LST (see days 7, 13–16, 19–20 and 22 of August). Note that some days (e.g. 27
or 29 of March) do not show any AMSR-E values, which is due to the fact that the closest measurement
was too far from the station (i.e. more than 12 km away). AMSR-E revisiting time is generally between
1 to 2 days.

In Figure 7 the EB model skin temperature (separated into clear sky and cloudy sky cases) is
evaluated against in situ estimates for the 3 stations, as well as the IR LST (for clear sky only) and
the derived all-weather LST product i.e., IR LST (clear sky) + EB Tsk (cloudy sky). The matchups are
performed using the nearest neighbor of the station, except for Gobabeb, where a specific pixel in the
vicinity of the station, the so-called Tidbit01 location, was used to avoid the effect of the sand dunes
surrounding the station [17,20]. Each plot of Figure 7 contains the summary statistics described in
Section 2.4, and global summary statistics are shown in Table 2. All datasets are sampled in 30 min
frequency for the matchups. Colocations are only possible when all datasets are available. If any of the
inputs for the IR LST and EB models are unavailable at the time of the processing, or are of low quality,
all-weather LST cannot be obtained. In situ stations also contain missing data.
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Figure 7. Scatterplots comparing the various LST estimates and matched-up in situ LST. Left to
right column: clear-sky EB model skin temperature, cloudy-sky EB model skin temperature, IR LST
(clear-sky) and all-weather LST product (IR LST + Cloudy Sky EB model skin temperature). Top to
bottom row: Evora, Kalahari, Gobabeb. Also shown are summary (robust) statistics: median difference
(µ), median absolute deviation (σ), root-mean-square differences (RMSD), and number of matchups
(#points). Colors denote data point density, computed over a 100 × 100 grid. Axes are common to
all panels.

Table 2. Overall average summary statistics (each in situ station was weighted by its number of
available observations for each case), for the skin temperature (clear-sky and cloudy sky), for the IR
LST and for the all-weather LST (IR LST for clear sky + EB Skin Temperature for cloudy sky).

Accuracy (µ, K) Precision (σ, K) RMSD (K)

EB TSk (clear sky) 0.4 2.2 3.8
EB TSk (cloudy sky) −0.2 2.0 3.8

IR LST 0.2 1.0 2.2
All-weather LST 0.1 1.2 2.7

The comparison of clear sky EB model TSk and IR LST statistics complements the results shown
in Figure 4, and shows that the IR LST outperforms the EB model Tsk for all stations, both in terms
of accuracy, precision and uncertainty, supporting its use for clear sky cases in the all-weather LST
product. The clear sky Tsk RMSD may be up to 2 K higher than that obtained for the IR LST, with larger
differences for Kalahari and Gobabeb stations. Considering the cloudy cases, the Tsk estimated bias
was found to range between –1.0 K and +0.6 K, close or below what was found for Tsk and IR LST clear
sky cases, while the RMSD ranged between 2.9 and 4.9 K. The latter value was obtained for the desert
site in Gobabeb, where the frequency of cloudy cases is the lowest (less than 13%). It should be noted
that cloudy LST scatter plots of the desert stations show higher dispersion of the points for higher
values of LST. This indicates that these observations are likely performed under broken clouds, which
may lead to discrepancies between point measurements and the pixel scale estimates.
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The all-weather product (IR split-window LST for clear sky + EB model skin temperature for
cloudy cases, right column in Figure 7) shows statistics that are well within the acceptable range for
LST products (see overall statistics in Table 2), with a mean accuracy of 0.1 K, precision of 1.2 K, and a
RMSD of 2.7 K. These values are only slightly worse than the standard IR LST retrieval (whose statistics
for 2010 are: 0.2 K accuracy, 1.1 K precision and 2.2 K uncertainty). For Evora and Kalahari stations,
the new all-weather product increases the number of available samples by around 60% compared to
IR LST.

3.2.2. Median Diurnal Cycle of Error

Figure 8 shows the diurnal cycle of the median of the differences between the IR LST and the
EB model skin temperature and the corresponding in situ, for each station and season (December,
January and February—DJF; March, April and May—MAM; June, July and August—JJA; September,
October and November—SON). The IR LST itself shows a somewhat pronounced error in diurnal cycle,
reaching generally lower values (often negative) at nighttime and larger (positive) during daytime,
when spatial heterogeneity becomes larger and directional effects become non-negligible. For example,
in MAM over Kalahari, satellite IR LST overestimates in situ LST by about 3.5 K at daytime and
underestimates it at nighttime by about 1.2 K. The clear sky component of the EB model, TSk, shows a
somewhat similar behavior, but with larger amplitudes and, in some cases, with large phase differences
(i.e. its maximum is reached earlier in the diurnal cycle, when compared to other estimates). This is
more pronounced for Kalahari and Gobabeb stations. For Kalahari in DJF the model overestimates in
situ surface temperature by about 6 K in the early morning, whereas for IR LST the largest differences
are found around noon. This is consistent with the larger dynamic LST range at that time of day.
Over these three stations, the results suggest that the model struggles to reproduce in situ surface
temperature for drier seasons/locations, e.g. for Evora in Winter (DJF) the differences are smaller than
in Summer (JJA), when the landscape surrounding the station is much drier.
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Figure 8. Diurnal cycle of the median differences between satellite and in situ surface temperature
estimates (K) for each station and season (December, January and February—DJF, April and May—MAM,
June, July and August—JJA and September, October and November—SON). IR LST is represented in
red, and the clear (cloudy) sky cases of EB skin temperature are represented in blue (green). Values
were averaged over 3h. Axes is common to all panels.
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Regarding the cloudy sky (EB model) TSk, the signal is somewhat different in Kalahari and
Gobabeb, suggesting that it is caused by different factors, including the diurnal sampling of cloudy
conditions (e.g., Gobabeb has frequent morning fog but almost no clouds in the afternoon). The bias
usually changes sign in the late afternoon, with almost all cases showing a more or less negative
median difference. These may be partly explained by the occasional presence of opaque convective
clouds, which directly affect the inputs of the EB model such as the shortwave and longwave surface
radiative fluxes. During the early morning, the model generally overestimates the in situ values by a
few degrees. These comparisons are currently being used to tune the EB model in terms of its internal
parameterizations, in order to improve the representation of the amplitude and the phase of the TSk
signal, which could lead to improvements of other variables obtained from the EB model (such as
surface turbulent fluxes).

3.3. Comparison to AMSR-E

3.3.1. In Situ Comparisons

The full year of 2010 LST retrievals from AMSR-E LST was compared with both the IR LST + EB
model TSk All-Weather LST product and with in situ LST data from the aforementioned stations. The
AMSR-E estimates used here were already validated against in situ [25] and independent measurements
over clear sky pixels [26]. The purpose of this section is to assess the quality of the new all-weather
LST product by comparing it to the performance of an alternative product.

Data from the 3 sources were carefully collocated in order to ensure similar sampling between
MSG/in situ and AMSR-E/in situ comparisons. For all AMSR-E swaths in 2010, the closest pixel to
the station was determined and only considered if its distance was less than 5 km. Then the in situ
value closest in time (i.e. 30 s or less apart) was determined. To ensure similar sampling, the closest
MSG/SEVIRI-based all-weather LST value (i.e. at most 7.5 min and 5 km apart) is determined and
collocated to its in situ counterpart in the same way. If any of the collocated values are invalid, then all
of them are disregarded. This way, the same sampling in the comparisons is ensured, with similar
MSG/SEVIRI and AMSR-E observation conditions.

Figure 9 shows both all-weather LST products plotted against the corresponding in situ LST from
each station. Due to the much lower number of AMSR-E observations, the number of matchups is
much smaller than in Section 3.2. The scatterplots were separated into clear/cloudy and day/night cases
and the results are summarized in Table 3. The EB+IR-based product presents accuracies between
–0.4 and +1.5 K, while the corresponding values for the MW LST lie between –4.4 and +1.1 K. The
MW LST accuracy index is largest at Gobabeb (indicating larger differences to in situ), presenting
negative values for both day and night-time. Although the reasons for the poorer comparison over
Gobabeb for all cases in Figure 9 are still unclear, it may be due to 1) contamination of the retrieval by
the nearby sand dunes, particularly considering the spatially coarser AMSR-E pixels; 2) the sensitivity
of the MW signal to the subsurface, particularly in dry soils, while the in situ LST represents skin
temperatures [41]. For Kalahari, the median error of the IR+EB LST is relatively low, but when results
are separated into day and night retrievals, they show a positive bias of around 3.5 K at daytime and a
negative bias of –1.5 K (–2.5 K) for clear-sky (cloudy) cases. It must be taken into account that Aqua’s
afternoon overpass time corresponds to the time of day at which the errors are higher (see Figure 8).
The values of the AMSR-E estimates are less precise than the MSG/SEVIRI-based all-weather LST,
most likely due to the larger AMSR-E pixel size, which makes the in situ value less representative of
the satellite observations. The RMSDs are comparable for Evora, but for Kalahari and Gobabeb the
AMSR-E RMSD increases by about 0.8 K and 3.0 K with respect to MSG/SEVIRI estimates.
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Figure 9. Energy balance (EB) + infrared (IR) based all-weather LST (blue) and microwave (MW)-based
all-weather LST (red) against in situ LST estimates, for Aqua satellite overpasses at the three stations
(rows). Axes are common to all panels.

Table 3. Summary statistics for the point comparisons of the MSG/SEVIRI IR+EB and AMSR-E products
with collocated in situ estimates from 3 stations.

Station Accuracy (µ, K) Precision (σ, K) RMSD (K) # Points

MSG/SEVIRI AMSR-E MSG/SEVIRI AMSR-E MSG/SEVIRI AMSR-E

Evora 1.5 1.1 1.6 2.3 3.3 3.5 429
Kalahari −0.4 0.9 2.4 2.8 3.7 4.5 449
Gobabeb 0.2 −4.4 1.0 1.8 2.1 5.1 325

3.3.2. Spatial Comparisons

In order to provide a more thorough evaluation of the new product against independent all-weather
LST estimates, AMSR-E retrievals for the days mentioned in Section 2.1 (i.e. 10 days in January and 10
days in July 2010) were collocated with MSG/SEVIRI over a 0.15◦ regular grid, which is approximately
the resolution of AMSR-E retrievals. Lower quality estimates of the AMSR-E LST product (described
in Section 2.2) were identified using its quality flags and then removed. Again, the closest MSG/SEVIRI
retrieval in time was used (if available), with time differences of up to 7.5 minutes.

Figure 10 shows the median differences (calculated over January 2010 in the top row, and July
in the bottom row) between MSG/SEVIRI-based and AMSR-E based all-weather LST products. The
retrievals were further separated into day and night-times and cloudy and clear-sky. The central part
of Africa is widely covered by clouds and shows an area of positive differences (i.e. MSG/SEVIRI
warmer than AMSR-E), which is more pronounced in daytime; this area moves northward following
the mean location of the ITCZ in July. In the July cloudy case, the southern Sahel shows a high positive
median difference that stands out during nighttime, which may be related to unusually cold AMSR-E
LST from convective cloud contamination or wet soils due to rain events or flooding, which would
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lower emissivity. This effect may actually affect MW estimates everywhere, when soil moistening
due to rain or flooding happens. Over desert areas, median differences are generally negative, with
some smaller areas of positive differences. At daytime, any biases due to MW sub-surface emission
are likely to be positive, i.e., AMSR-E LST being colder because emission originates from typically
colder sub-surface layers, so other factors should be responsible for the observed differences. The
uncertainty of MSG/SEVIRI based LST also tends to be higher in those regions, mainly because under
dry atmospheres the sensitivity of the IR LST retrieval algorithm to uncertainty in surface emissivity
is large (e.g., [19]). These results are in general agreement with the clear sky-only comparisons of
Ermida et al. [26].
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Figure 10. Median differences between MSG/SEVIRI and AMSR-E based LST estimates for (left)
daytime clear sky (center-left) daytime cloudy (center-right) nighttime clear sky (right) night-time
cloudy. All AMSR-E quality flags were applied. Data from January 2010 (top row) and July 2010
(bottom row). Missing values are shown in white.

Table 4 summarizes the statistics of these comparisons, separated into clear and cloudy cases, day
and night, for January and July. The clear and cloudy statistics are comparable especially in terms
of RMSD (smaller during nighttime). The bias is generally negative in the clear sky cases (except in
January, night-time case). Moreover, it is larger during daytime for the clear sky cases; and larger in
the nighttime for cloudy cases, which could be due to lower reliability of the cloud mask as visible
channels are not available.

In Figure 11 the MSG/SEVIRI–AMSR-E differences are analyzed by land-cover type, for January
and July, separated into day/nighttime and for clear/cloudy conditions. Land-cover types from the
IGBP database [86] were aggregated into more general classes to simplify the analysis (forest, mixed
forest, closed shrub lands, savannas, grass lands, permanent wetlands, croplands and newly vegetated
areas, urban, snow and ice, barren, open water and inland water). This dataset was re-projected to the
regular grid used to perform the comparisons and the most frequent land cover class for each grid
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point is considered. Due to re-gridding and land cover class aggregation, some differences between
the land cover used in the processing of each dataset may be present.

Table 4. Summary statistics for the MSG/SEVIRI AMSR-E all-weather LST differences, for clear sky
versus cloudy sky pixels, separated into day and night retrievals, for the whole MSG/SEVIRI disk. All
AMSR-E quality flags were applied. Data from January 2010 (top) and July 2010 (bottom).

Clear Sky Cloudy

Accuracy
(K)

Precision
(K)

RMSD
(K)

#
Points

Accuracy
(K)

Precision
(K)

RMSD
(K)

#
Points

January Day –2.6 3.2 5.3 235324 Day 0.5 3.2 5.2 451657
Night 0.2 2.0 3.6 295802 Night 1.3 2.0 3.9 479401

July Day –1.6 3.3 5.6 318424 Day 0.4 3.1 5.3 556763
Night –1.3 2.0 3.7 435619 Night 0.9 1.9 4.0 503576
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Figure 11. Comparison between MSG/SEVIRI-based and AMSR-E all-weather LST products by
land-cover type. The top row shows the values for daytime and the bottom values for nighttime.
Results for clear sky (left columns) and cloudy pixels (right column). Blue indicatesµ for January and red
the corresponding values for July; whiskers represents σ, and numbers indicate the available matchups.

For clear-sky pixels, the daytime bias is negative for all land cover classes (in January and July),
except forests and wetlands (in July). Classes with significant seasonal variability of vegetation
(e.g. grasslands) show larger differences in the statistics between January and July, possibly due to
differences in how surface emissivity is taken into account in the retrieval algorithms. However, other
factors may play a role, namely a larger spatial heterogeneity often experienced by those land-cover
types (e.g., closed shrubs, grass) during the dry season, which may increase directional effects and
lower representativeness. Standard deviations are in general larger for the July case, except for mixed
forest. Different seasons may be mixed up within each land class/month, as contributing pixels may
originate from very different geographic areas within the MSG/SEVIRI disk. For the cloudy case,
daytime biases are generally smaller in magnitude and show positive and negative signals depending
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on land cover class and month. Over grasslands and barren soils, there are very large differences
between the two periods. This could be an artifact produced by poor detection of deep convection by
AMSR-E and/or by MSG/SEVIRI. The majority of those pixels is located over or south of the Sahel,
which experiences a pronounced seasonal cycle affecting both surface and atmospheric conditions.
Under the influence of the ITCZ (July in this area) there are frequent deep convective clouds, not always
properly flagged, which produce large amounts of precipitation. These in turn may also affect surface
emissivity, particularly in the case of the MW product. Large areas of positive bias are also found north
of the Caspian and Black seas (cf. Figure 10), at the edge of the MSG/SEVIRI disk, particularly for
cloudy cases. These regions are also characterized by frequent continental convection, especially in
the afternoon.

The night-time bias for clear sky cases shows some dependence on season, although in general
MSG/SEVIRI is colder than AMSR-E. The standard deviations are somewhat smaller than those for the
daytime case, as expected. The night-time cloudy cases show a different picture, with IR+EB model
LST being warmer than AMSR-E for all land covers.

4. Discussion

The proposed all-weather LST, based primarily on MSG/SEVIRI observations, represents a
considerable leap forward, since it overcomes one of the main limitations of IR products, namely
missing LST for cloudy scenes. One of its advantages is that any remote-sensing imager capable of
providing the inputs to the EB model as well as the IR LST estimates for clear sky sky is suitable for
the proposed product. This is the case for most imagers on current geostationary satellites (e.g. the
Geostationary Operational Environmental Satellite (GOES)-R operated by the National Oceanic and
Atmospheric Administration (NOAA), Himawari operated by the Japan Meteorological Agency, or
MSG/SEVIRI Indian Ocean Coverage, operated by the European Organisation for the Exploitation of
Meteorological Satellites – EUMETSAT) and polar orbiters (e.g. the Visible Infrared Imaging Radiometer
Suite – VIIRS – operated by National Aeronautics and Space Administration (NASA)/NOAA, MODIS
operated by NASA, MetOp operated by EUMETSAT, Sentinel-3 operated by the European Space
Agency).

For clear skies, a standard retrieval methodology for IR sensors with two adjacent channels in the
split-window region of the electromagnetic spectrum is used. Since this is a well-established method,
its performance and limitations are well known and documented in the literature [17,19,69,91,92].
Figures 6 and 7 show that this methodology usually performs well in clear sky situations. Furthermore,
IR LST provides a better representation of the diurnal cycle in terms of its amplitude and phase.

Although the LST retrieval in cloudy sky cases uses a diagnostic model of the surface energy
balance, the main forcing is provided by products generated from observations of the same sensor
(MSG/SEVIRI), which constrain the physical model to produce more realistic LST estimates than
schemes forced with inputs from an atmospheric model. The comparison of the EB model skin
temperature with IR LST for clear sky cases (Figure 4) revealed some of the caveats that one might
expect from such products. Apart from differences in cloud classification in the two datasets (discussed
below), high aerosol loads (which are generally not well-accounted for) may also introduce errors into
IR LST, and also into estimates of short-wave (and to a lesser extent long-wave) incoming radiation.
It is known that aerosol loads are often underestimated (e.g., [93]), as is the case over northwest
Africa in July (lower left panel in Figure 4). This explains the high positive bias at daytime: the
underestimation of aerosol loads may actually lead to an underestimation of IR LST (attenuation of IR
radiances not properly accounted for) and to an over-estimation of skin temperature (essentially due
to overestimating solar radiation).

There are many other factors that may explain differences between clear sky EB LST and IR LST,
ranging from model parameters (e.g., land cover, associated emissivity and roughness values) and
model inputs (both ECMWF and satellite) to algorithm differences. Relatively large diurnal cycles of EB
LST over inland waters (see positive/negative daytime/night-time bias over Lakes Victoria or Malawi,
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in Figure 4), which could be due to a too simplistic representation of lakes, e.g. by not considering
mixing within a lake’s upper layers [94]. The relative simplicity of IR LST retrieval compared to EB
LST estimation also allows a better understanding of error sources and their propagation to LST values.
All these factors sustain the option to use a combination of IR LST and the EB model skin temperature
to generate an all-weather LST by the LSA-SAF.

The validation of the EB skin temperatures estimated under cloudy conditions with in situ
observations yielded somewhat better summary statistics than for clear-sky conditions, except for
Gobabeb, which has significantly fewer clouds than Kalahari or Evora. Furthermore, when IR-based
LST and EB TSk are blended into an all-weather LST, the RMSDs against in situ data range between
2.2 and 3.1 K, which corresponds to an increase of 0.1 to 0.8 K compared to the RMSD of the clear
sky IR LST. It is worth noting that the accuracy (bias) of the two LST products is considerably better
than 2 K for clear skies as well as for cloudy skies. Moreover, the RMSD is only slightly above 2.5 K,
the threshold value of the Climate Monitoring-SAF LST climate data record [95]. Guillevic et al. [82]
proposed tighter thresholds of 1 K for both precision and uncertainty for an LST product to be useful
for climate applications. However, existing LST products rarely achieve this target accuracy and it is
also difficult to identify reference measurements with equally low uncertainties (e.g., [17,92]). The
RMSD value of the proposed method (2.7 K) is slightly higher than that of the IR LST equivalent (2.2
K), therefore still being useful for a variety of weather and climate applications.

The comparison with in situ LST from 3 validation stations showed that the EB model skin
temperature presents larger errors during mid-day, sometimes with a change of sign, particularly
for the two African stations (Figure 8). The exact reasons still need to be identified, and will help to
improve the model. Furthermore, factors such as precipitation, cloud type and amount also complicate
the retrieval of the model inputs, thereby increasing their uncertainty. Problems in the representation
of surface parameters in numerical models have already been acknowledged in the literature [9,10].

Downward short- and long-wave radiative fluxes may be estimated from satellite observations,
mainly through their cloud signatures. Within the LSA-SAF, these are estimated every 30-minutes
from MSG/SEVIRI measurements on a pixel-by-pixel basis. The respective algorithms described in
Geiger et al. [53] and in Trigo et al. [50] make use of bulk parameterization schemes combined with
information on cloud cover and type. When validated against 6 in situ stations spread across the
MSG disk, the biases of LSA-SAF Downwelling Surface Shortwave and Longwave Flux products
mostly within the target accuracy of 10% [50,53,77]. Furthermore, the two fluxes form a consistent
dataset derived from the same source data, where errors in cloud amount and type tend to partially
compensate each other [50,77].

One of the main (and harder to account for) sources of uncertainty in any LST retrieval is the
presence of undetected clouds [96], which usually introduce negative biases into IR LST products. If the
cloud mask algorithm fails to detect a cloudy or partly cloudy pixel, the cloud top temperature instead
of the surface temperature is measured (or a mix of the two), which then causes the observed negative
biases. This is likely to happen near cloud edges or under broken cloud, which may explain some of
the large positive median differences observed for clear-sky LST in Figure 4, since these occur over
areas where sampling is reduced due to increased cloud coverage. Comparing Figure 4 and Figure S1,
this seems to be the case for Europe and South-Central Africa in January and for Central Africa, Eastern
Brazil and Central Europe in July. Cloud contaminated pixels may affect spatial aggregation, e.g. when
upscaling MSG/SEVIRI all-weather LST and AMSR-E LST to a common grid. Over partly cloudy areas
this can, therefore, increase the bias between two satellite products. Cloud contamination can also affect
comparisons between satellite and in situ data, since it impacts the representativeness of radiometric
in situ measurements at the satellite pixel scale and, therefore, increases the dispersion in scatterplots.
In the EB model, under overcast situations, thermal balance should be more easily reached, and
directional effects are less important [97]. The simulation of clouds in numerical models, particularly
those overlapping in time and space with those identified at satellite pixel scale is challenging. The
impact of differences in cloud classification on mismatches between ECMWF model screen variables
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and MSG/SEVIRI radiation fluxes, as well as their impact on the estimation of turbulent fluxes and skin
temperature, is not yet well known. However, the errors in the downward short- and long-wave fluxes
tend to partially compensate for each other. Nevertheless, it should be noted that comparisons over
areas where cloud frequency is high (e.g. as in Figure 4) are less robust, since the number of (clear sky)
matchups is necessarily much lower. Overall, the errors due to cloudy sky situations are acceptable
especially considering the increase in the number of available satellite LST data.

The validation of land surface products is usually performed against in situ estimates and
against alternative estimates of the same variable retrieved from other sensors, mainly for consistency
verification. Therefore, we used LST derived from AMSR-E as an alternative remote-sensing all-weather
product to illustrate the regimes under which the retrieval is less certain and to assess the consistency
between the two products derived with very different methodologies/observations. This is particularly
interesting since the AMSR-E LST product is also quite recent. Although it was already compared
against in situ [25], and IR LST from other sensors [26], the comparison of AMSR-E LST with the EB
model LST extends the previous comparison to cloudy sky cases over large geographical areas. As
described in [25], MW LST has its own issues, which need to be accounted for in any comparison
with IR skin temperature. The quality of the AMSR-E product may be affected by situations that lead
to variations of surface emissivities in the MW window, namely flooded surfaces and moist regions
such as permanent wetlands, snow and ice or coastal areas, as well as by MW penetration depth. The
expected deep convection impact on the MW retrievals was also noticed in this study. Failure to detect
such situations impacted some of the comparisons, but it was also useful to discuss possible retrieval
deficiencies in both AMSR-E and all-weather LST products. A more elaborate MW scheme to detect
cloudy situations [98] is currently under development. Another factor to take into account is the 12 km
resolution of AMSR-E, which is considerably coarser than MSG/SEVIRI resolution (3 km at nadir). This
complicates comparisons with in situ LST even further, since over heterogeneous surfaces such point
values become less representative with increasing pixel scale. One important advantage of the new IR
+ EB all-weather LST over existing MW products is its ability to finely sample the diurnal LST cycles.

5. Conclusions

Combining IR LST retrievals with skin temperatures obtained from an EB model yielded very
promising results, particularly when compared to in situ LST obtained under all-sky conditions at
three dedicated LST validation stations operated by the Karlsruhe Institute of Technology (Gobabeb
and Kalahari stations, both in Namibia, and Evora, Portugal). The comparison of LST retrieved with
the proposed method against in situ LST showed an overall accuracy between –0.8 K and 1.1 K, a
precision between 1.0 K and 1.4 K and total uncertainty between 2.2. and 3.1 K, with some variations
between stations associated with their representativeness on the satellite pixel scale. These statistics
are within the range that is generally accepted for satellite IR LST products. In certain locations, the
land surface model does not represent the LST diurnal cycle well (overestimation in the late morning
and under-estimation in the late-afternoon/early-night in the dry season, particularly over areas with
high seasonal vegetation variability). This behavior is currently under investigation and can hopefully
be mitigated in future product versions.

The comparison of the IR+EB model all-weather LST and the AMSR-E LST against in situ LST
showed that the former generally provides more accurate and precise LST estimates; an exception was
station Evora, where AMSR-E showed a better accuracy (1.1 K for AMSR-E vs. 1.5 K for the IR + EB
model product). To some extent this was expected, since AMSR-E has a considerably larger footprint
than SEVIRI, and AMSR-E LST retrieval is physically more constrained. Compared to the AMSR-E
product, the IR + EB model product provides a more detailed sampling of the diurnal LST cycle (since
AMSR-E is onboard a polar orbiter). Spatial comparisons between both products showed that over
moister areas, e.g. within the ITCZ, all-weather IR+EB model LSTs are generally warmer than AMSR-E
LSTs, while over arid or semi-arid areas they are generally colder.
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While the uncertainty budgets of IR-based LST have already been well studied in detail (see [19]
for LSA-SAF standard LST product), such an exercise is still needed for the EB LST approach. The
nature of the EB model and its larger variety of input data increase the complexity of error propagation
for cloudy-sky LST estimates. However, such an exercise will help our understanding of the results
presented here and will allow us to study the main sources of uncertainties in more detail and to
identify aspects of the EB LST that can be improved. The main sources of uncertainty identified in
this study are: cloud detection, the characterization of surface emissivity (mainly for IR retrieval), soil
moisture information and surface net radiation (for the EB model). High aerosol loads affect both IR
LST retrievals and various EB model inputs.

Finally, it should be stressed that the overall methodology is applicable to any remote-sensing
imager capable of providing the inputs to the EB model as well as the IR LST estimates for clear
sky situations. Thus, the presented method has the potential to provide a global, (nearly) gap-free
all-weather LST product.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/24/3044/s1,
Figure S1: Number of data points used for the mean difference calculation, for each panel in Figure 4. White pixels
denote no valid data points.

Author Contributions: J.P.A.M., I.F.T., N.G., F.G.-M. and A.A. developed the concept of the all-weather LST
presented here and organized the results for the paper. J.P.A.M. wrote the first draft. C.J. and S.L.E. prepared the
all-weather LST based on micro-wave observations. The in situ observations were obtained and up-scaled by
F.-M.G., F.-S.O. and S.L.E. All authors contributed to the discussion of the results and final version of the article.

Funding: This work was performed within the framework of the LSA SAF (http://lsa-saf-eumetsat.int) project,
funded by EUMETSAT.

Acknowledgments: The MSG/SEVIRI IR and EB model LST data were generated by the LSA SAF. The work
at RMI has been funded by EUMETSAT and the European Space Agency through the PRODEX programme
of the Belgian Science Policy. The AMSR-E/Aqua LST data was obtained through the GlobTemperature portal
(http://data.globtemperature.info/). CJ acknowledges support from the European Space Agency (ESA) Data User
Element (DUE) GlobTemperature project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Agric. For.
Meteorol. 1995, 77, 153–166. [CrossRef]

2. Lakshmi, V. A simple surface temperature assimilation scheme for use in land surface models. Water Resour.
Res. 2000, 36, 3687–3700. [CrossRef]

3. Schmugge, T.J.; Becker, F. Remote Sensing Observations for the Monitoring of Land-Surface Fluxes and Water
Budgets. In Land Surface Evaporation; Schmugge, T.J., André, J.C., Eds.; Springer: New York, NY, USA, 1991;
pp. 337–347. ISBN 978-1-4612-3032-8.

4. Caparrini, F.; Castelli, F.; Entekhabi, D. Variational estimation of soil and vegetation turbulent transfer and
heat flux parameters from sequences of multisensor imagery. Water Resour. Res. 2004, 40, 1–15. [CrossRef]

5. Ghilain, N.; Arboleda, A.; Batelaan, O.; Ardö, J.; Trigo, I.; Barrios, J.-M.; Gellens-Meulenberghs, F. A New
Retrieval Algorithm for Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites
over Europe and Africa and Its Validation. Remote Sens. 2019, 11, 1968. [CrossRef]

6. Freitas, S.C.; Trigo, I.F.; Macedo, J.; Barroso, C.; Silva, R.; Perdigão, R. Land surface temperature from multiple
geostationary satellites. Int. J. Remote Sens. 2013, 34, 3051–3068. [CrossRef]

7. Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential
climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95,
1431–1443. [CrossRef]

8. Good, E.J. An in situ-based analysis of the relationship between land surface “skin” and screen-level air
temperatures. J. Geophys. Res. 2016, 121, 8801–8819. [CrossRef]

9. Orth, R.; Dutra, E.; Trigo, I.F.; Balsamo, G. Advancing land surface model development with satellite-based
Earth observations. Hydrol. Earth Syst. Sci. 2017, 21, 2483–2495. [CrossRef]

http://www.mdpi.com/2072-4292/11/24/3044/s1
http://lsa-saf-eumetsat.int
http://data.globtemperature.info/
http://dx.doi.org/10.1016/0168-1923(95)02259-Z
http://dx.doi.org/10.1029/2000WR900204
http://dx.doi.org/10.1029/2004WR003358
http://dx.doi.org/10.3390/rs11171968
http://dx.doi.org/10.1080/01431161.2012.716925
http://dx.doi.org/10.1175/BAMS-D-13-00047.1
http://dx.doi.org/10.1002/2016JD025318
http://dx.doi.org/10.5194/hess-21-2483-2017


Remote Sens. 2019, 11, 3044 24 of 28

10. Trigo, I.F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I. Comparison of model land skin
temperature with remotely sensed estimates and assessment of surface-atmosphere coupling. J. Geophys. Res.
Atmos. 2015, 120, 12096–12111. [CrossRef]

11. Johannsen, F.; Ermida, S.; Martins, J.P.A.; Trigo, I.F.; Nogueira, M.; Dutra, E. Cold Bias of ERA5 Summertime
Daily Maximum Land Surface Temperature over Iberian Peninsula. Remote Sens. 2019, 11, 2570. [CrossRef]

12. Wang, A.; Barlage, M.; Zeng, X.; Draper, C.S. Comparison of land skin temperature from a land model,
remote sensing, and in situ measurement. J. Geophys. Res. Atmos. 2014, 119, 3093–3106. [CrossRef]

13. Trigo, I.F.; Viterbo, P. Clear-Sky Window Channel Radiances: A Comparison between Observations and the
ECMWF Model. J. Appl. Meteorol. 2003, 42, 1463–1479. [CrossRef]

14. Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface
temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [CrossRef]

15. Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature.
J. Geophys. Res. 2008, 113, 1–12. [CrossRef]

16. Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from
Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905.

17. Göttsche, F.M.; Olesen, F.S.; Trigo, I.F.; Bork-Unkelbach, A.; Martin, M.A. Long term validation of land
surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote
Sens. 2016, 8, 410. [CrossRef]

18. Ermida, S.L.; Trigo, I.F.; DaCamara, C.C.; Göttsche, F.M.; Olesen, F.S.; Hulley, G. Validation of remotely
sensed surface temperature over an oak woodland landscape-The problem of viewing and illumination
geometries. Remote Sens. Environ. 2014, 148, 16–27. [CrossRef]

19. Freitas, S.C.; Trigo, I.F.; Bioucas-dias, J.M.; Göttsche, F. Quantifying the Uncertainty of Land Surface
Temperature Retrievals from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 2009, 48, 523–534. [CrossRef]

20. Göttsche, F.M.; Olesen, F.S.; Bork-Unkelbach, A. Validation of land surface temperature derived from
MSG/SEVIRI with in situ measurements at Gobabeb, Namibia. Int. J. Remote Sens. 2013, 34, 3069–3083.
[CrossRef]

21. Duan, S.B.; Li, Z.L.; Leng, P. A framework for the retrieval of all-weather land surface temperature at a high
spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ.
2017. [CrossRef]

22. Crosson, W.L.; Al-Hamdan, M.Z.; Hemmings, S.N.J.; Wade, G.M. A daily merged MODIS Aqua-Terra land
surface temperature data set for the conterminous United States. Remote Sens. Environ. 2012. [CrossRef]

23. Zhang, X.; Wang, C.; Zhao, H.; Lu, Z. Retrievals of all-weather daytime land surface temperature from
FengYun-2D data. Opt. Express 2017, 25, 27210. [CrossRef] [PubMed]

24. Ermida, S.L.; Trigo, I.F.; DaCamara, C.C.; Jiménez, C.; Prigent, C. Quantifying the Clear-Sky Bias of Satellite
Land Surface Temperature Using Microwave-Based Estimates. J. Geophys. Res. Atmos. 2019, 124, 844–857.
[CrossRef]

25. Jimenez, C.; Prigent, C.; Ermida, S.L.; Moncet, J.-L. Inversion of AMSR-E observations for land surface
temperature estimation: 1. Methodology and evaluation with station temperature. J. Geophys. Res. Atmos.
2017, 122, 3330–3347. [CrossRef]

26. Ermida, S.L.; Jimenez, C.; Prigent, C.; Trigo, I.F.; Dacamara, C.C. Inversion of AMSR-E observations for land
surface temperature estimation: 2. Global comparison with infrared satellite temperature. J. Geophys. Res.
Atmos. 2017, 122, 3348–3360. [CrossRef]

27. Gao, H.; Fu, R.; Dickinson, R.E.; Juárez, R.I.N. A practical method for retrieving land surface temperature
from AMSR-E over the amazon forest. IEEE Trans. Geosci. Remote Sens. 2008. [CrossRef]

28. Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz)
passive microwave observations. J. Geophys. Res. Atmos. 2009, 114. [CrossRef]

29. Jang, K.; Kang, S.; Kimball, J.S.; Hong, S.Y. Retrievals of all-weather daily air temperature using MODIS and
AMSR-E data. Remote Sens. 2014. [CrossRef]

30. Zhao, E.; Gao, C.; Jiang, X.; Liu, Z. Land surface temperature retrieval from AMSR-E passive microwave
data. Opt. Express 2017, 25, A940–A952. [CrossRef]

31. Njoku, E.G.; Li, L. Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz.
IEEE Trans. Geosci. Remote Sens. 1999. [CrossRef]

http://dx.doi.org/10.1002/2015JD023812
http://dx.doi.org/10.3390/rs11212570
http://dx.doi.org/10.1002/2013JD021026
http://dx.doi.org/10.1175/1520-0450(2003)042&lt;1463:CWCRAC&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2012.12.008
http://dx.doi.org/10.1029/2008JD010035
http://dx.doi.org/10.3390/rs8050410
http://dx.doi.org/10.1016/j.rse.2014.03.016
http://dx.doi.org/10.1109/TGRS.2009.2027697
http://dx.doi.org/10.1080/01431161.2012.716539
http://dx.doi.org/10.1016/j.rse.2017.04.008
http://dx.doi.org/10.1016/j.rse.2011.12.019
http://dx.doi.org/10.1364/OE.25.027210
http://www.ncbi.nlm.nih.gov/pubmed/29092199
http://dx.doi.org/10.1029/2018JD029354
http://dx.doi.org/10.1002/2016JD026144
http://dx.doi.org/10.1002/2016JD026148
http://dx.doi.org/10.1109/TGRS.2007.906478
http://dx.doi.org/10.1029/2008JD010257
http://dx.doi.org/10.3390/rs6098387
http://dx.doi.org/10.1364/OE.25.00A940
http://dx.doi.org/10.1109/36.739125


Remote Sens. 2019, 11, 3044 25 of 28

32. Aires, F.; Prigent, C.; Rossow, W.B.; Rothstein, M. A new neural network approach including first guess for
retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over
land from satellite microwave observations. J. Geophys. Res. Atmos. 2001, 106, 14887–14907. [CrossRef]

33. Basist, A.; Grody, N.C.; Peterson, T.C.; Williams, C.N. Using the Special Sensor Microwave/Imager to Monitor
Land Surface Temperatures, Wetness, and Snow Cover. J. Appl. Meteorol. 2002. [CrossRef]

34. Fily, M.; Royer, A.; Goïta, K.; Prigent, C. A simple retrieval method for land surface temperature and fraction
of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote
Sens. Environ. 2003. [CrossRef]

35. Prigent, C.; Jimenez, C.; Aires, F. Toward “all weather” long record, and real-time land surface temperature
retrievals from microwave satellite observations. J. Geophys. Res. Atmos. 2016, 121, 5699–5717. [CrossRef]

36. Weng, F.; Grody, N.C. Physical retrieval of land surface temperature using the special sensor microwave
imager. J. Geophys. Res. Atmos. 1998, 103, 8839–8848. [CrossRef]

37. Wen, J. Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring
Mission/Microwave Imager remote sensing data. J. Geophys. Res. 2003. [CrossRef]

38. Galantowicz, J.F.; Moncet, J.L.; Liang, P.; Lipton, A.E.; Uymin, G.; Prigent, C.; Grassotti, C. Subsurface
emission effects in AMSR-E measurements: Implications for land surface microwave emissivity retrieval. J.
Geophys. Res. Atmos. 2011, 116. [CrossRef]

39. Holmes, T.R.H.; Crow, W.T.; Hain, C. Spatial patterns in timing of the diurnal temperature cycle. Hydrol.
Earth Syst. Sci. 2013, 17, 3695–3706. [CrossRef]

40. Prigent, C.; Rossow, W.B.; Matthews, E.; Marticorena, B. Microwave radiometric signatures of different
surface types in deserts. J. Geophys. Res. Atmos. 1999, 104, 12147–12158. [CrossRef]

41. Zhou, J.; Zhang, X.; Zhan, W.; Göttsche, F.M.; Liu, S.; Olesen, F.S.; Hu, W.; Dai, F. A Thermal Sampling Depth
Correction Method for Land Surface Temperature Estimation from Satellite Passive Microwave Observation
Over Barren Land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4743–4756. [CrossRef]

42. Prigent, C.; Aires, F.; Rossow, W.B.; Robock, A. Sensitivity of satellite microwave and infrared observations
to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements.
J. Geophys. Res. Atmos. 2005. [CrossRef]

43. Cordisco, E.; Prigent, C.; Aires, F. Snow characterization at a global scale passive microwave satelite
observations. J. Geophys. Res. Atmos. 2006, 111. [CrossRef]

44. André, C.; Ottlé, C.; Royer, A.; Maignan, F. Land surface temperature retrieval over circumpolar Arctic using
SSM/I-SSMIS and MODIS data. Remote Sens. Environ. 2015. [CrossRef]

45. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;
Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [CrossRef]

46. Zhang, X.; Zhou, J.; Gottsche, F.-M.; Zhan, W.; Liu, S.; Cao, R. A Method Based on Temporal Component
Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal
Infrared and Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2019, 1–22. [CrossRef]

47. Jin, M.; Dickinson, R.E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite
thermal infrared radiances. J. Geophys. Res. Atmos. 2000. [CrossRef]

48. Lu, L.; Venus, V.; Skidmore, A.; Wang, T.; Luo, G. Estimating land-surface temperature under clouds using
MSG/SEVIRI observations. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 265–276. [CrossRef]

49. Leng, P.; Li, Z.L.; Duan, S.B.; Tang, R.; Gao, M.F. A Method for Deriving All-Sky Evapotranspiration from
the Synergistic Use of Remotely Sensed Images and Meteorological Data. J. Geophys. Res. Atmos. 2017.
[CrossRef]

50. Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.-L.; Olesen, F.; Barroso, C.; Camacho-de-Coca, F.; Carrer, D.;
Freitas, S.C. The Satellite Application Facility for Land Surface Analysis. Int. J. Remote Sens. 2011, 32,
2725–2744. [CrossRef]

51. Trigo, I.F.; Peres, L.F.; DaCamara, C.C.; Freitas, S.C. Thermal land surface emissivity retrieved from
SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 2008, 46, 307–315. [CrossRef]

52. Geiger, B.; Carrer, D.; Franchistéguy, L.; Roujean, J.L.; Meurey, C. Land surface albedo derived on a daily
basis from meteosat second generation observations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3841–3856.
[CrossRef]

http://dx.doi.org/10.1029/2001JD900085
http://dx.doi.org/10.1175/1520-0450(1998)037&lt;0888:UTSSMI&gt;2.0.CO;2
http://dx.doi.org/10.1016/S0034-4257(03)00011-7
http://dx.doi.org/10.1002/2015JD024402
http://dx.doi.org/10.1029/98JD00275
http://dx.doi.org/10.1029/2002JD002176
http://dx.doi.org/10.1029/2010JD015431
http://dx.doi.org/10.5194/hess-17-3695-2013
http://dx.doi.org/10.1029/1999JD900153
http://dx.doi.org/10.1109/TGRS.2017.2698828
http://dx.doi.org/10.1029/2004JD005087
http://dx.doi.org/10.1029/2005JD006773
http://dx.doi.org/10.1016/j.rse.2015.01.028
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1109/TGRS.2019.2892417
http://dx.doi.org/10.1029/2000JD900318
http://dx.doi.org/10.1016/j.jag.2010.12.007
http://dx.doi.org/10.1002/2017JD027880
http://dx.doi.org/10.1080/01431161003743199
http://dx.doi.org/10.1109/TGRS.2007.905197
http://dx.doi.org/10.1109/TGRS.2008.2001798


Remote Sens. 2019, 11, 3044 26 of 28

53. Geiger, B.; Meurey, C.; Lajas, D.; Franchistéguy, L.; Carrer, D.; Roujean, J.L. Near real-time provision of
downwelling shortwave radiation estimates derived from satellite observations. Meteorol. Appl. 2008, 15,
411–420. [CrossRef]

54. Roujean, J.-L.; Lacaze, R. Global mapping of vegetation parameters from POLDER multiangular
measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation.
J. Geophys. Res. 2002, 107, 4150. [CrossRef]

55. Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements.
Remote Sens. Environ. 1995, 51, 375–384. [CrossRef]

56. García-Haro, F.J.; Sommer, S.; Kemper, T. A new tool for variable multiple endmember spectral mixture
analysis (VMESMA). Int. J. Remote Sens. 2005, 26, 2135–2162. [CrossRef]

57. Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F. Evapotranspiration modelling at large scale using
near-real time MSG SEVIRI derived data. Hydrol. Earth Syst. Sci. 2011, 15, 771–786. [CrossRef]

58. De Bruin, H.A.R.; Trigo, I.F.; Bosveld, F.C.; Meirink, J.F. A Thermodynamically Based Model for Actual
Evapotranspiration of an Extensive Grass Field Close to FAO Reference, Suitable for Remote Sensing
Application. J. Hydrometeorol. 2016, 17, 1373–1382. [CrossRef]

59. Amraoui, M.; DaCamara, C.C.; Pereira, J.M.C. Detection and monitoring of African vegetation fires using
MSG-SEVIRI imagery. Remote Sens. Environ. 2010, 114, 1038–1052. [CrossRef]

60. Wooster, M.J.; Roberts, G.; Freeborn, P.H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Fisher, D.;
Mullen, R. LSA SAF Meteosat FRP products-Part 1: Algorithms, product contents, and analysis. Atmos.
Chem. Phys. 2015, 15, 13217–13239. [CrossRef]

61. Roberts, G.; Wooster, M.J.; Xu, W.; Freeborn, P.H.; Morcrette, J.J.; Jones, L.; Benedetti, A.; Jiangping, H.;
Fisher, D.; Kaiser, J.W. LSA SAF Meteosat FRP products-Part 2: Evaluation and demonstration for use in the
Copernicus Atmosphere Monitoring Service (CAMS). Atmos. Chem. Phys. 2015, 15, 13241–13267. [CrossRef]

62. Van den Hurk, B.J.J.M.; Viterbo, P.; Beljaars, A.C.M.; Betts, A.K. Offline Validation of the ERA40 Surface Scheme;
Technical Memorandum: Shinfield Park, Reading, UK, 2000.

63. Albergel, C.; Balsamo, G.; De Rosnay, P.; Muñoz-Sabater, J.; Boussetta, S. A bare ground evaporation revision
in the ECMWF land-surface scheme: Evaluation of its impact using ground soil moisture and satellite
microwave data. Hydrol. Earth Syst. Sci. 2012, 16, 3607–3620. [CrossRef]

64. Balsamo, G.; Beljaars, A.; Scipal, K.; Viterbo, P.; van den Hurk, B.; Hirschi, M.; Betts, A.K. A Revised
Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the
Integrated Forecast System. J. Hydrometeorol. 2009, 10, 623–643. [CrossRef]

65. Viterbo, P.; Beljaars, A.C.M. An improved land surface parameterization scheme in the ECMWF model and
its validation. J. Clim. 1995, 8, 2716–2748. [CrossRef]

66. Ghilain, N. Continental Scale Monitoring of Subdaily and Daily Evapotranspiration Enhanced by the
Assimilation of Surface Soil Moisture Derived from Thermal Infrared Geostationary Data. In Satellite Soil
Moisture Retrieval: Techniques and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 309–332.
ISBN 9780128033890.

67. Yu, Y.; Privette, J.L.; Pinheiro, A.C. Evaluation of Split-Window Land Surface Temperature Algorithms for
Generating Climate Data Records. IEEE Trans. Geosci. Remote Sens. 2008, 46, 179–192. [CrossRef]

68. Dash, P.; Göttsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from
passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [CrossRef]

69. Martins, J.P.; Trigo, I.; Bento, V.; da Camara, C. A Physically Constrained Calibration Database for Land
Surface Temperature Using Infrared Retrieval Algorithms. Remote Sens. 2016, 8, 808. [CrossRef]

70. Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 3–5 µm atmospheric window. Remote
Sens. Environ. 1994. [CrossRef]

71. Peres, L.F.; DaCamara, C.C. Land surface temperature and emissivity estimation based on the two-temperature
method: Sensitivity analysis using simulated MSG/SEVIRI data. Remote Sens. Environ. 2004, 91, 377–389.
[CrossRef]

72. Ghilain, N.; Arboleda, A.; Sepulcre-Cantò, G.; Batelaan, O.; Ardö, J.; Gellens-Meulenberghs, F. Improving
evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite.
Hydrol. Earth Syst. Sci. 2012, 16, 2567–2583. [CrossRef]

http://dx.doi.org/10.1002/met.84
http://dx.doi.org/10.1029/2001JD000751
http://dx.doi.org/10.1016/0034-4257(94)00114-3
http://dx.doi.org/10.1080/01431160512331337817
http://dx.doi.org/10.5194/hess-15-771-2011
http://dx.doi.org/10.1175/JHM-D-15-0006.1
http://dx.doi.org/10.1016/j.rse.2009.12.019
http://dx.doi.org/10.5194/acp-15-13217-2015
http://dx.doi.org/10.5194/acp-15-13241-2015
http://dx.doi.org/10.5194/hess-16-3607-2012
http://dx.doi.org/10.1175/2008JHM1068.1
http://dx.doi.org/10.1175/1520-0442(1995)008&lt;2716:AILSPS&gt;2.0.CO;2
http://dx.doi.org/10.1109/TGRS.2007.909097
http://dx.doi.org/10.1080/01431160110115041
http://dx.doi.org/10.3390/rs8100808
http://dx.doi.org/10.1016/0034-4257(94)90102-3
http://dx.doi.org/10.1016/j.rse.2004.03.011
http://dx.doi.org/10.5194/hess-16-2567-2012


Remote Sens. 2019, 11, 3044 27 of 28

73. Petropoulos, G.P.; Ireland, G.; Lamine, S.; Griffiths, H.M.; Ghilain, N.; Anagnostopoulos, V.; North, M.R.;
Srivastava, P.K.; Georgopoulou, H. Operational evapotranspiration estimates from SEVIRI in support of
sustainable water management. Int. J. Appl. Earth Obs. Geoinf. 2016. [CrossRef]

74. Ghilain, N. Algorithm Theoretical Basis Document Meteosat Second Generation based products Instantaneous
Evapotranspiration (MET v2), Daily Evapotranspiration (DMET v2), Surface Latent Heat Flux (LE), Surface Sensible
Heat Flux (H); SAF/LAND/RMI/ATBD_ETv2HLE/1.1; Land Surface Analysis Satellite Application Facility:
Lisbon, Portugal, 2016; Available online: http://lsa-saf.eumetsat.int/ (accessed on 13 December 2019).

75. Faroux, S.; Kaptué Tchuenté, A.T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe:
A twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information
for use in land surface, meteorological and climate models. Geosci. Model. Dev. 2013, 6, 563–582. [CrossRef]

76. Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface
parameters at 1-km resolution in meteorological and climate models. J. Clim. 2003, 16, 1261–1282. [CrossRef]

77. Carrer, D.; Lafont, S.; Roujean, J.-L.; Calvet, J.-C.; Meurey, C.; Le Moigne, P.; Trigo, I.F. Incoming Solar and
Infrared Radiation Derived from METEOSAT: Impact on the Modeled Land Water and Energy Budget over
France. J. Hydrometeorol. 2011. [CrossRef]

78. Trigo, I.F.; Barroso, C.; Viterbo, P.; Freitas, S.C.; Monteiro, I.T. Estimation of downward long-wave radiation
at the surface combining remotely sensed data and NWP data. J. Geophys. Res. Atmos. 2010, 115. [CrossRef]

79. Lakshmi, V.; Jackson, T.J.; Zehrfuhs, D. Soil moisture-temperature relationships: Results from two field
experiments. Hydrol. Process 2003, 17, 3041–3057. [CrossRef]

80. Verstraeten, W.W.; Veroustraete, F.; Van Der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture retrieval using
thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote
Sens. Environ. 2006, 101, 299–314. [CrossRef]

81. Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W.
Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ
observations. Remote Sens. Environ. 2012, 118, 215–226. [CrossRef]

82. Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.;
Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol. Version 1.0. In Best
Practice for Satellite-Derived Land Product Validation; Göttsche, F., Nickeson, J., Román, M., Eds.; Land Product
Validation Subgroup (WGCV/CEOS); Internal Publication: Brussels, Belgium, 2017; p. 60. Available online:
http://ceos.org/ourwork/lessons-learned-best-practices/ (accessed on 13 December 2019). [CrossRef]

83. Göttsche, F.-M.; Hulley, G.C. Validation of six satellite-retrieved land surface emissivity products over two
land cover types in a hyper-arid region. Remote Sens. Environ. 2012, 124, 149–158. [CrossRef]

84. Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Poutier, L.; Göttsche, F.-M.; Masiello, G.; Serio, C.; Venafra, S.;
Liuzzi, G.; et al. Physical Retrieval of Land Surface Emissivity Spectra from Hyper-Spectral Infrared
Observations and Validation with In Situ Measurements. Remote Sens. 2018, 10, 976. [CrossRef]

85. Guillevic, P.C.; Bork-Unkelbach, A.; Gottsche, F.M.; Hulley, G.; Gastellu-Etchegorry, J.P.; Olesen, F.S.;
Privette, J.L. Directional viewing effects on satellite land surface temperature products over sparse vegetation
canopies-a multisensor analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1464–1468. [CrossRef]

86. Belward, A.S. The IGBP-DIS Global 1km Land Cover Data Set (DISCover)–Proposal and Implementation Plans;
IGBP-DIS Working Paper: Toulouse, France, 1996.

87. Ghent, D.J.; Corlett, G.K.; Göttsche, F.M.; Remedios, J.J. Global Land Surface Temperature from the
Along-Track Scanning Radiometers. J. Geophys. Res. Atmos. 2017, 122, 12167–12193. [CrossRef]

88. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity
product. Remote Sens. Environ. 2014, 140, 36–45. [CrossRef]

89. Zheng, W.; Wei, H.; Wang, Z.; Zeng, X.; Meng, J.; Ek, M.; Mitchell, K.; Derber, J. Improvement of daytime
land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data
assimilation. J. Geophys. Res. Atmos. 2012, 117. [CrossRef]

90. Ermida, S.L.; DaCamara, C.C.; Trigo, I.F.; Pires, A.C.; Ghent, D.; Remedios, J. Modelling directional effects on
remotely sensed land surface temperature. Remote Sens. Environ. 2017, 190, 56–69. [CrossRef]

91. Liu, Y.; Yu, Y.; Yu, P.; Göttsche, F.M.; Trigo, I.F. Quality assessment of S-NPP VIIRS land surface temperature
product. Remote Sens. 2015, 7, 12215–12241. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2016.02.006
http://lsa-saf.eumetsat.int/
http://dx.doi.org/10.5194/gmd-6-563-2013
http://dx.doi.org/10.1175/1520-0442-16.9.1261
http://dx.doi.org/10.1175/JHM-D-11-059.1
http://dx.doi.org/10.1029/2010JD013888
http://dx.doi.org/10.1002/hyp.1275
http://dx.doi.org/10.1016/j.rse.2005.12.016
http://dx.doi.org/10.1016/j.rse.2011.11.017
http://ceos.org/ourwork/lessons-learned-best-practices/
http://dx.doi.org/10.5067/doc/ceoswgcv/lpv/lst.001
http://dx.doi.org/10.1016/j.rse.2012.05.010
http://dx.doi.org/10.3390/rs10060976
http://dx.doi.org/10.1109/LGRS.2013.2260319
http://dx.doi.org/10.1002/2017JD027161
http://dx.doi.org/10.1016/j.rse.2013.08.027
http://dx.doi.org/10.1029/2011JD015901
http://dx.doi.org/10.1016/j.rse.2016.12.008
http://dx.doi.org/10.3390/rs70912215


Remote Sens. 2019, 11, 3044 28 of 28

92. Martin, M.A.; Ghent, D.; Pires, A.C.; Göttsche, F.-M.; Cermak, J.; Remedios, J.J.; Martin, M.A.; Ghent, D.;
Pires, A.C.; Göttsche, F.-M.; et al. Comprehensive In Situ Validation of Five Satellite Land Surface Temperature
Data Sets over Multiple Stations and Years. Remote Sens. 2019, 11, 479. [CrossRef]

93. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere: Aerosols, climate, and the hydrological
cycle. Science 2001, 294, 2119–2124. [CrossRef]

94. Thiery, W.; Martynov, A.; Darchambeau, F.; Descy, J.P.; Plisnier, P.D.; Sushama, L.; Van Lipzig, N.P.M.
Understanding the performance of the FLake model over two African Great Lakes. Geosci. Model. Dev. 2014,
7, 317–337. [CrossRef]

95. Duguay-Tetzlaff, A.; Stöckli, R.; Bojanowski, J. Product User Manual Land Surface Temperature (LST);
(SUMET) Ed. 1. Satellite Application Facility for Climate Monitoring, EUMETSAT: Darmstadt, Germany,
(SAF/CM/MeteoSwiss/PUM/MET/LST); 2017.

96. Bulgin, C.E.; Merchant, C.J.; Ghent, D.; Klüser, L.; Popp, T.; Poulsen, C.; Sogacheva, L. Quantifying uncertainty
in satellite-retrieved land surface temperature from cloud detection errors. Remote Sens. 2018, 10, 616.
[CrossRef]

97. Prigent, C.; Aires, F.; Rossow, W. Land surface skin temperatures from a combined analysis of microwave
and infrared satellite observations for an all-weather evaluation of the differences between air and skin
temperatures. J. Geophys. Res. 2003. [CrossRef]

98. Favrichon, S.; Prigent, C.; Jimenez, C.; Aires, F. Detecting cloud contamination in passive microwave satellite
measurements over land. Atmos. Meas. Tech. 2019, 12, 1531–1543. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs11050479
http://dx.doi.org/10.1126/science.1064034
http://dx.doi.org/10.5194/gmd-7-317-2014
http://dx.doi.org/10.3390/rs10040616
http://dx.doi.org/10.1029/2002JD002301
http://dx.doi.org/10.5194/amt-12-1531-2019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology and Datasets 
	Satellite Application Facility on Land Surface Analysis (LSA-SAF) All-Weather Land Surface Temperature (LST) 
	Clear Sky 
	Cloudy Sky 

	Microwave-Based Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) LST 
	In Situ LST 
	Statistical Metrics 

	Results 
	Infrared (IR) and Energy Balance (EB) Model Comparison in Clear Sky Situations 
	IR and EB Model In Situ Comparisons 
	Time Series 
	Median Diurnal Cycle of Error 

	Comparison to AMSR-E 
	In Situ Comparisons 
	Spatial Comparisons 


	Discussion 
	Conclusions 
	References

